Rett syndrome (RS), a progressive severe neurodevelopmental disorder mainly caused by de novo mutations in the X-chromosomal MeCP2 gene encoding the transcriptional regulator methyl-CpG-binding protein 2, is a leading cause of mental retardation with autistic features in females. However, its pathogenesis remains incompletely understood, and no effective therapy is available to date. We hypothesized that a systemic oxidative stress may play a key role in the pathogenesis of classic RS. Patients with classic RS (n=59) and control subjects (n=43) were evaluated. Oxidative stress markers included intraerythrocyte non-protein-bound iron (NPBI; i.e., free iron), plasma NPBI, F2-isoprostanes (F2-IsoPs, as free, esterified, and total forms), and protein carbonyls. Lung ventilation/perfusion (V/Q) ratio was assessed using a portable gas analyzer, and RS clinical severity was evaluated using standard scales. Significantly increased intraerythrocyte NPBI (2.73-fold), plasma NPBI (x 6.0), free F(2)-IsoP (x1.85), esterified F2-IsoP (x 1.69), total F2-IsoP (x 1.66), and protein carbonyl (x 4.76) concentrations were evident in RS subjects and associated with reduced (-10.53%) arterial oxygen levels compared to controls. Biochemical evidence of oxidative stress was related to clinical phenotype severity and lower peripheral and arterial oxygen levels. Pulmonary V/Q mismatch was found in the majority of the RS population. These data identify hypoxia-induced oxidative stress as a key factor in the pathogenesis of classic RS and suggest new therapeutic approaches based on oxidative stress modulation.

Systemic oxidative stress in classic Rett syndrome

VALACCHI, Giuseppe;
2009

Abstract

Rett syndrome (RS), a progressive severe neurodevelopmental disorder mainly caused by de novo mutations in the X-chromosomal MeCP2 gene encoding the transcriptional regulator methyl-CpG-binding protein 2, is a leading cause of mental retardation with autistic features in females. However, its pathogenesis remains incompletely understood, and no effective therapy is available to date. We hypothesized that a systemic oxidative stress may play a key role in the pathogenesis of classic RS. Patients with classic RS (n=59) and control subjects (n=43) were evaluated. Oxidative stress markers included intraerythrocyte non-protein-bound iron (NPBI; i.e., free iron), plasma NPBI, F2-isoprostanes (F2-IsoPs, as free, esterified, and total forms), and protein carbonyls. Lung ventilation/perfusion (V/Q) ratio was assessed using a portable gas analyzer, and RS clinical severity was evaluated using standard scales. Significantly increased intraerythrocyte NPBI (2.73-fold), plasma NPBI (x 6.0), free F(2)-IsoP (x1.85), esterified F2-IsoP (x 1.69), total F2-IsoP (x 1.66), and protein carbonyl (x 4.76) concentrations were evident in RS subjects and associated with reduced (-10.53%) arterial oxygen levels compared to controls. Biochemical evidence of oxidative stress was related to clinical phenotype severity and lower peripheral and arterial oxygen levels. Pulmonary V/Q mismatch was found in the majority of the RS population. These data identify hypoxia-induced oxidative stress as a key factor in the pathogenesis of classic RS and suggest new therapeutic approaches based on oxidative stress modulation.
2009
De Felice, C; Ciccoli, L; Leoncini, S; Signorini, C; Rossi, M; Vannuccini, L; Guazzi, G; Latini, G; Comporti, M; Valacchi, Giuseppe; Hayek, J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1515335
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 119
  • ???jsp.display-item.citation.isi??? 111
social impact