The development and the optimization of novel culture systems of mesenchymal osteoprogenitors are some of the most important challenges in the field of bone tissue engineering (TE). A new combination between cells and extracellular matrix (ECM)-scaffold, containing ECM has here been analyzed. As source for osteoprogenitors, mesenchymal stem cells obtained from human umbilical cord Wharton's Jelly (hWJMSCs), were used. As ECM-scaffold, a powder form of isolated and purified porcine urinary bladder matrix (pUBM), was employed. The goals of the current work were: (1) the characterization of the in vitro hWJMSCs behavior, in terms of viability, proliferation, and adhesion to ECM-scaffold; (2) the effectiveness of ECM-scaffold to induce/modulate the osteoblastic differentiation; and (3) the proposal for a possible application of cells/ECM-scaffold construct to the field of cell/TE. In this respect, the properties of the pUBM-scaffold in promoting and guiding the in vitro adhesion, proliferation, and three-dimensional colonization of hWJMSCs, without altering viability and morphological characteristics of the cells, are here described. Finally, we have also demonstrated that pUBM-scaffolds positively affect the expression of typical osteoblastic markers in hWJMSCs. © 2011 Wiley Periodicals, Inc.

Human mesenchymal stem cells seeded on extracellular matrix scaffold: Viability and osteogenic potential

PENOLAZZI, Maria Letizia
Primo
;
MAZZITELLI, Stefania
Secondo
;
VECCHIATINI, Renata;TORREGGIANI, Elena;LAMBERTINI, Elisabetta;PIVA, Maria Roberta
Penultimo
;
NASTRUZZI, Claudio
Ultimo
2012

Abstract

The development and the optimization of novel culture systems of mesenchymal osteoprogenitors are some of the most important challenges in the field of bone tissue engineering (TE). A new combination between cells and extracellular matrix (ECM)-scaffold, containing ECM has here been analyzed. As source for osteoprogenitors, mesenchymal stem cells obtained from human umbilical cord Wharton's Jelly (hWJMSCs), were used. As ECM-scaffold, a powder form of isolated and purified porcine urinary bladder matrix (pUBM), was employed. The goals of the current work were: (1) the characterization of the in vitro hWJMSCs behavior, in terms of viability, proliferation, and adhesion to ECM-scaffold; (2) the effectiveness of ECM-scaffold to induce/modulate the osteoblastic differentiation; and (3) the proposal for a possible application of cells/ECM-scaffold construct to the field of cell/TE. In this respect, the properties of the pUBM-scaffold in promoting and guiding the in vitro adhesion, proliferation, and three-dimensional colonization of hWJMSCs, without altering viability and morphological characteristics of the cells, are here described. Finally, we have also demonstrated that pUBM-scaffolds positively affect the expression of typical osteoblastic markers in hWJMSCs. © 2011 Wiley Periodicals, Inc.
2012
Penolazzi, Maria Letizia; Mazzitelli, Stefania; Vecchiatini, Renata; Torreggiani, Elena; Lambertini, Elisabetta; Johnson, S.; Badylak, S. F.; Piva, Maria Roberta; Nastruzzi, Claudio
File in questo prodotto:
File Dimensione Formato  
j cell physiol.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1496313
Citazioni
  • ???jsp.display-item.citation.pmc??? 9
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact