Lipid microparticles loaded with the complex between hydroxypropyl-β-cyclodextrin (HP-β-CD) and the sunscreen agent, butyl methoxydibenzoylmethane (BMDBM) were evaluated for their effect on the UV filter percutaneous penetration. The microparticles were prepared by the melt emulsification technique using tristearin as lipidic material and hydrogenate phosphatidylcholine as the surfactant. Human skin penetration was investigated in vivo by the tape stripping technique, a minimal invasive procedure based on the progressive removal of the upper cutaneous layers (stratum corneum) with adhesive tape strips. The amount of sunscreen fixed to each strip was determined by HPLC after solvent extraction. The recovery of the UV filter from spiked adhesive tapes was >94.4% and the precision of the method was better than 7.6% relative standard deviation. Non-encapsulated BMDBM, its complex with HP-β-CD, the lipid microparticles loaded with the sunscreen alone or the BMDBM/HP-β-CD complex were introduced into oil-in-water emulsions and applied to human volunteers. Compared to the cream with the non-encapsulated sunscreen agent (percentage of the applied dose penetrated, 9.7% ± 2.5), the amount of BMDBM diffusing into the stratum corneum was increased by the formulations containing the BMDBM/HP-β-CD complex (17.1% ± 3.2 of the applied dose) or the microparticles loaded with BMDBM only (15.1% ± 2.7 of the applied dose). On the contrary, a significant decrease in the level of UV filter penetrated into the stratum corneum was achieved by the cream containing the microencapsulated BMDBM/HP-β-CD complex (percentage of the applied dose penetrated, 6.0% ± 1.5). The reduced BMDBM percutaneous penetration attained by the latter system should enhance the UV filter efficacy and limit potential toxicological risks. © 2010 Elsevier B.V.

Microencapsulation of a cyclodextrin complex of the UV filter, butyl methoxydibenzoylmethane: In vivo skin penetration studies

SCALIA, Santo;
2011

Abstract

Lipid microparticles loaded with the complex between hydroxypropyl-β-cyclodextrin (HP-β-CD) and the sunscreen agent, butyl methoxydibenzoylmethane (BMDBM) were evaluated for their effect on the UV filter percutaneous penetration. The microparticles were prepared by the melt emulsification technique using tristearin as lipidic material and hydrogenate phosphatidylcholine as the surfactant. Human skin penetration was investigated in vivo by the tape stripping technique, a minimal invasive procedure based on the progressive removal of the upper cutaneous layers (stratum corneum) with adhesive tape strips. The amount of sunscreen fixed to each strip was determined by HPLC after solvent extraction. The recovery of the UV filter from spiked adhesive tapes was >94.4% and the precision of the method was better than 7.6% relative standard deviation. Non-encapsulated BMDBM, its complex with HP-β-CD, the lipid microparticles loaded with the sunscreen alone or the BMDBM/HP-β-CD complex were introduced into oil-in-water emulsions and applied to human volunteers. Compared to the cream with the non-encapsulated sunscreen agent (percentage of the applied dose penetrated, 9.7% ± 2.5), the amount of BMDBM diffusing into the stratum corneum was increased by the formulations containing the BMDBM/HP-β-CD complex (17.1% ± 3.2 of the applied dose) or the microparticles loaded with BMDBM only (15.1% ± 2.7 of the applied dose). On the contrary, a significant decrease in the level of UV filter penetrated into the stratum corneum was achieved by the cream containing the microencapsulated BMDBM/HP-β-CD complex (percentage of the applied dose penetrated, 6.0% ± 1.5). The reduced BMDBM percutaneous penetration attained by the latter system should enhance the UV filter efficacy and limit potential toxicological risks. © 2010 Elsevier B.V.
2011
Scalia, Santo; G., Coppi; V., Iannuccelli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1457713
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 17
social impact