The osteoplant is an equine, flexible, heterologous, deantigenic, cortical, and spongy bone tissue, totally reabsorbable, used for implantation of bone tissue, to restore skeletal, even weight-bearing structures. However, how the osteoplant alters osteoblast activity to promote bone formation is poorly understood.To study how the osteoplant induces osteoblast differentiation in mesenchymal stem cells, the expression levels of bone-related genes, and mesenchymal stem cell markers are analyzed, using real time Reverse Transcription-Polymerase Chain Reaction (RT-PCR).The osteoplant causes induction of osteoblast transcriptional factors such as osterix (RUNX2), and of bone-related genes such as osteopontin (SPP1) and osteocalcin (BGLAP). In contrast the expression of ENG (CD105) is significantly decreased in stem cells treated with osteoplant, with respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells.The obtained results can be relevant to better understand the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects.

Osteoplant acts on stem cells derived from peripheral blood.

SOLLAZZO, Vincenzo;PALMIERI, Annalisa;ZOLLINO, Ilaria;BRUNELLI, Giorgio;CARINCI, Francesco
2010

Abstract

The osteoplant is an equine, flexible, heterologous, deantigenic, cortical, and spongy bone tissue, totally reabsorbable, used for implantation of bone tissue, to restore skeletal, even weight-bearing structures. However, how the osteoplant alters osteoblast activity to promote bone formation is poorly understood.To study how the osteoplant induces osteoblast differentiation in mesenchymal stem cells, the expression levels of bone-related genes, and mesenchymal stem cell markers are analyzed, using real time Reverse Transcription-Polymerase Chain Reaction (RT-PCR).The osteoplant causes induction of osteoblast transcriptional factors such as osterix (RUNX2), and of bone-related genes such as osteopontin (SPP1) and osteocalcin (BGLAP). In contrast the expression of ENG (CD105) is significantly decreased in stem cells treated with osteoplant, with respect to untreated cells, indicating the differentiation effect of this biomaterial on stem cells.The obtained results can be relevant to better understand the molecular mechanism of bone regeneration and as a model for comparing other materials with similar clinical effects.
2010
Sollazzo, Vincenzo; Palmieri, Annalisa; A., Girardi; Zollino, Ilaria; Brunelli, Giorgio; G., Spinelli; Carinci, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1437320
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact