One of the most intriguing features revealed by the Swift satellite are flares that are superimposed on the gamma-ray burst (GRB) X-ray light curves. The vast majority of flares occurs before 1000 s, but some of them can be found up to 106 s after the main event. We shed light on late-time (i.e. with peak time tpk >∼ 1000 s) flaring activity. We address the morphology and energetic of flares in the window ∼103−106 s to put constraints on the temporal evolution of the flare properties and to identify possible differences in the mechanism producing the early and late-time flaring emission, if any. This requires the complete understanding of the observational biases affecting the detection of X-ray flares superimposed on a fading continuum at t > 1000 s. We consider all Swift GRBs that exhibit late-time flares. Our sample consists of 36 flares, 14 with redshift measurements. We inherit the strategy of data analysis from Chincarini et al. (2010) in order to make a direct comparison with the early-time flare properties. The morphology of the flare light curve is the same for both early-time and late-time flares, but they differ energetically. The width of late-time flares increases with time similarly to the early-time flares. Simulations confirmed that the increase of the width with time is not owing to the decaying statistics, at least up to 104 s. The energy output of late-time flares is one order of magnitude lower than the early-time flare one,and is ∼1% Eprompt. The evolution of the peak luminosity as well as the distribution of the peakflux-to-continuum ratio for late-time flares indicate that the flaring emission is decoupled from the underlying continuum, differently from early-time flares/steep decay. A sizable fraction of late-time flares are compatible with afterglow variability. The internal shock origin seems the most promising explanation for flares. However, some differences that emerge between late- and early-time flares suggest that there could be no unique explanation about the nature of late-time flares.

Gamma-Ray Burst long lasting X-ray flaring activity

GUIDORZI, Cristiano;
2011

Abstract

One of the most intriguing features revealed by the Swift satellite are flares that are superimposed on the gamma-ray burst (GRB) X-ray light curves. The vast majority of flares occurs before 1000 s, but some of them can be found up to 106 s after the main event. We shed light on late-time (i.e. with peak time tpk >∼ 1000 s) flaring activity. We address the morphology and energetic of flares in the window ∼103−106 s to put constraints on the temporal evolution of the flare properties and to identify possible differences in the mechanism producing the early and late-time flaring emission, if any. This requires the complete understanding of the observational biases affecting the detection of X-ray flares superimposed on a fading continuum at t > 1000 s. We consider all Swift GRBs that exhibit late-time flares. Our sample consists of 36 flares, 14 with redshift measurements. We inherit the strategy of data analysis from Chincarini et al. (2010) in order to make a direct comparison with the early-time flare properties. The morphology of the flare light curve is the same for both early-time and late-time flares, but they differ energetically. The width of late-time flares increases with time similarly to the early-time flares. Simulations confirmed that the increase of the width with time is not owing to the decaying statistics, at least up to 104 s. The energy output of late-time flares is one order of magnitude lower than the early-time flare one,and is ∼1% Eprompt. The evolution of the peak luminosity as well as the distribution of the peakflux-to-continuum ratio for late-time flares indicate that the flaring emission is decoupled from the underlying continuum, differently from early-time flares/steep decay. A sizable fraction of late-time flares are compatible with afterglow variability. The internal shock origin seems the most promising explanation for flares. However, some differences that emerge between late- and early-time flares suggest that there could be no unique explanation about the nature of late-time flares.
2011
M. G., Bernardini; R., Margutti; G., Chincarini; Guidorzi, Cristiano; J., Mao
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1404865
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 45
social impact