Croton lechleri essential oil has been obtained by steam distillation of fresh stem bark from Amazonian Ecuador adult plants (yield: 0.61 ml/kg [0.061%]; density: 1.01 g/ml), and then chemically characterised by GC (Gas Chromatography) and GC–MS (gas chromatography–mass spectrometry). Seventy-four chemicals were detected and identified; the most abundant in descending order, were the sesquiterpenes sesquicineole (17.29%), α-calacorene (11.29%), 1,10-di-epi-cubenol (4.75%), β-calacorene (4.34%) and epi-cedrol (4.09%). Monoterpenes checked with a relative peak area higher than 2.0% were α-pinene (2.01%), p-cymene (2.61%), limonene (4.20%) and borneol (2.67%). The structure of the main chemicals were confirmed by GC–MS and 1H NMR analyses. Spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) and DPPH-(high performance) thin layer chromatography (DPPH-(HP)TLC) bioautographic assays showed a lower radical scavenging capacity (IC50) with respect to commercial thyme essential oil and BHA (butylated hydroxyl anisole), pointing out, however, that the C. lechleri essential oil fraction, characterised by α-calacorene, β-calacorene and δ-cadalene, was the most involved in the bioactivity. Similar results were obtained with β-carotene bleaching assay, where the IC50 values were 0.291 ± 0.024 mg/ml for C. lechleri essential oil, 0.164 ± 0.013 and 1.34 × 10−4 ± 10−5 mg/ml for thyme essential oil and BHA, respectively. (HP)TLC-bioautographic assay performed with Gram positive and Gram negative bacteria revealed a minimum inhibitory concentration (MIC) values comprised between 0.10 mg/ml (Escherichia coli) and 10.10 mg/ml (for e.g. Pseudomonas aeruginosa), and the fraction mainly characterised by sesquicineole (97.38%) as the most involved in antibacterial capacity. Ames test employing Salmonella typhimurium TA98 and TA100 with and without a metabolic activation mixture (S9 mix) demonstrated the absence of mutagenicity of the C. lechleri essential oil between a concentration range of 10−2 and 100 mg/plate. The same results were achieved by Saccharomyces cerevisiae D7 strain assay. An interesting mutagen-protective efficacy was evidenced by a 30% and 33% revertants reduction of TA98 strain treated with 2-aminoanthracene and nitrofluorene (2 μg/plate), suggesting, above all, the possibility to employ C. lechleri essential oil as a new flavouring protective ingredient for foods or dietary supplements against potential mutagens formed during cooking and/or processing in general.

Chemical fingerprinting and bioactivity of Amazonian Ecuador Croton lechleri Müll. Arg. (Euphorbiaceae) stem bark essential oil: a new functional food ingredient?

ROSSI, Damiano
Primo
;
GUERRINI, Alessandra
Secondo
;
MAIETTI, Silvia;PAGANETTO, Guglielmo;POLI, Ferruccio;SCALVENZI, Laura;RADICE, Matteo;SARO, Katia;SACCHETTI, Gianni
Ultimo
2011

Abstract

Croton lechleri essential oil has been obtained by steam distillation of fresh stem bark from Amazonian Ecuador adult plants (yield: 0.61 ml/kg [0.061%]; density: 1.01 g/ml), and then chemically characterised by GC (Gas Chromatography) and GC–MS (gas chromatography–mass spectrometry). Seventy-four chemicals were detected and identified; the most abundant in descending order, were the sesquiterpenes sesquicineole (17.29%), α-calacorene (11.29%), 1,10-di-epi-cubenol (4.75%), β-calacorene (4.34%) and epi-cedrol (4.09%). Monoterpenes checked with a relative peak area higher than 2.0% were α-pinene (2.01%), p-cymene (2.61%), limonene (4.20%) and borneol (2.67%). The structure of the main chemicals were confirmed by GC–MS and 1H NMR analyses. Spectrophotometric 1,1-diphenyl-2-picrylhydrazyl (DPPH) and DPPH-(high performance) thin layer chromatography (DPPH-(HP)TLC) bioautographic assays showed a lower radical scavenging capacity (IC50) with respect to commercial thyme essential oil and BHA (butylated hydroxyl anisole), pointing out, however, that the C. lechleri essential oil fraction, characterised by α-calacorene, β-calacorene and δ-cadalene, was the most involved in the bioactivity. Similar results were obtained with β-carotene bleaching assay, where the IC50 values were 0.291 ± 0.024 mg/ml for C. lechleri essential oil, 0.164 ± 0.013 and 1.34 × 10−4 ± 10−5 mg/ml for thyme essential oil and BHA, respectively. (HP)TLC-bioautographic assay performed with Gram positive and Gram negative bacteria revealed a minimum inhibitory concentration (MIC) values comprised between 0.10 mg/ml (Escherichia coli) and 10.10 mg/ml (for e.g. Pseudomonas aeruginosa), and the fraction mainly characterised by sesquicineole (97.38%) as the most involved in antibacterial capacity. Ames test employing Salmonella typhimurium TA98 and TA100 with and without a metabolic activation mixture (S9 mix) demonstrated the absence of mutagenicity of the C. lechleri essential oil between a concentration range of 10−2 and 100 mg/plate. The same results were achieved by Saccharomyces cerevisiae D7 strain assay. An interesting mutagen-protective efficacy was evidenced by a 30% and 33% revertants reduction of TA98 strain treated with 2-aminoanthracene and nitrofluorene (2 μg/plate), suggesting, above all, the possibility to employ C. lechleri essential oil as a new flavouring protective ingredient for foods or dietary supplements against potential mutagens formed during cooking and/or processing in general.
2011
Rossi, Damiano; Guerrini, Alessandra; Maietti, Silvia; R., Bruni; Paganetto, Guglielmo; Poli, Ferruccio; Scalvenzi, Laura; Radice, Matteo; Saro, Katia; Sacchetti, Gianni
File in questo prodotto:
File Dimensione Formato  
Food chemistry 2011.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 577.04 kB
Formato Adobe PDF
577.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1404385
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 52
social impact