Infection by the human papillomavirus (HPV) is a cause of cervical intraepithelial neoplasia (CIN) and cancer. microRNA (miRNA) in situ analysis of the transformation zone epithelia, the site of initial cervical HPV infection, showed that miRNAs let-7c, -99a, 26a, and 125b were the most abundantly expressed. In situ testing of CIN 1 showed a dramatic reduction in miR-125b expression in the koilocytes, the cytologic marker of productive HPV infection. A marked reduction in miR-125b was likewise observed in the HPV-infected cells of the condyloma acuminatum, verruca vulgaris, and epidermodysplasia verruciformis. Reverse transcriptase in situ polymerase chain reaction (PCR) showed that the pre-miRNA 125b was present in the koilocyte, suggesting direct inactivation of the mature miRNA. HEK cells transfected with only the antimiR-125b showed perinuclear halos equivalent to HPV-infected koilocytes. NIH 3T3 cells transfected with the HPV 16 full-length genome and mimetic miR-125b showed a marked reduction in viral DNA and protein synthesis by quantitative PCR and in situ-based analyses, respectively (P=0.002). Alternatively, cotransfection with anti-miR-125b and HPV 16 markedly increased HPV DNA (P=0.002). Sequence analyses showed strong homology between L2 of different HPV genotypes and miR-125b. Transfection with HPV 16 L2 resulted in a marked reduction in miR-125b levels in the NIH 3T3 cells. HPV L2-induced inactivation of miR-125b is associated with the classic cytologic changes of the koilocyte, and the exogenous application of mimetic miR-125b markedly inhibits HPV DNA synthesis.

Strong inverse correlation between microRNA-125b and human papillomavirus DNA in productive infection.

VOLINIA, Stefano;CROCE, Carlo Maria
2010

Abstract

Infection by the human papillomavirus (HPV) is a cause of cervical intraepithelial neoplasia (CIN) and cancer. microRNA (miRNA) in situ analysis of the transformation zone epithelia, the site of initial cervical HPV infection, showed that miRNAs let-7c, -99a, 26a, and 125b were the most abundantly expressed. In situ testing of CIN 1 showed a dramatic reduction in miR-125b expression in the koilocytes, the cytologic marker of productive HPV infection. A marked reduction in miR-125b was likewise observed in the HPV-infected cells of the condyloma acuminatum, verruca vulgaris, and epidermodysplasia verruciformis. Reverse transcriptase in situ polymerase chain reaction (PCR) showed that the pre-miRNA 125b was present in the koilocyte, suggesting direct inactivation of the mature miRNA. HEK cells transfected with only the antimiR-125b showed perinuclear halos equivalent to HPV-infected koilocytes. NIH 3T3 cells transfected with the HPV 16 full-length genome and mimetic miR-125b showed a marked reduction in viral DNA and protein synthesis by quantitative PCR and in situ-based analyses, respectively (P=0.002). Alternatively, cotransfection with anti-miR-125b and HPV 16 markedly increased HPV DNA (P=0.002). Sequence analyses showed strong homology between L2 of different HPV genotypes and miR-125b. Transfection with HPV 16 L2 resulted in a marked reduction in miR-125b levels in the NIH 3T3 cells. HPV L2-induced inactivation of miR-125b is associated with the classic cytologic changes of the koilocyte, and the exogenous application of mimetic miR-125b markedly inhibits HPV DNA synthesis.
2010
G. J., Nuovo; X., Wu; Volinia, Stefano; F., Yan; G. d., Leva; N., Chin; A. F., Nicol; J., Jiang; G., Otterson; T. D., Schmittgen; Croce, Carlo Maria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1402419
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 24
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 58
social impact