The present study first examined whether ruin lizards Podarcis sicula are able to orientate using the e-vector direction of polarized light. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze, positioned under an artificial light source producing plane polarized light with a single e-vector, which provided an axial cue. Lizards were subjected to axial training by positioning two identical goals in contact with the centre of two opposite side walls of the Morris water maze. Goals were invisible because they were placed just beneath the water surface, and water was rendered opaque. The results showed that the directional choices of lizards meeting learning criteria were bimodally distributed along the training axis, and that after 90deg rotation of the e-vector direction of polarized light the lizards directional choices rotated correspondingly, producing a bimodal distribution which was perpendicular to the training axis. The present results confirm in ruin lizards results previously obtained in other lizard species showing that these reptiles can use the e-vector direction of polarized light in the form of a sky polarization compass. The second step of the study aimed at answering the still open question of whether functioning of a sky polarization compass would be mediated by the lizard parietal eye. To test this, ruin lizards meeting learning criteria were tested inside the Morris water maze under polarized light after their parietal eyes were painted black. Lizards with black-painted parietal eyes were completely disoriented. Thus, the present data show for the first time that the parietal eye plays a central role in mediating the functioning of a putative sky polarization compass of lizards.

A sky polarization compass in lizards: the central role of the parietal eye

BELTRAMI, Giulia
Primo
;
BERTOLUCCI, Cristiano
Secondo
;
PARRETTA, Antonio;PETRUCCI, Ferruccio Carlo
Penultimo
;
FOA', Augusto Giuseppe Lorenzo
Ultimo
2010

Abstract

The present study first examined whether ruin lizards Podarcis sicula are able to orientate using the e-vector direction of polarized light. Ruin lizards were trained and tested indoors, inside a hexagonal Morris water maze, positioned under an artificial light source producing plane polarized light with a single e-vector, which provided an axial cue. Lizards were subjected to axial training by positioning two identical goals in contact with the centre of two opposite side walls of the Morris water maze. Goals were invisible because they were placed just beneath the water surface, and water was rendered opaque. The results showed that the directional choices of lizards meeting learning criteria were bimodally distributed along the training axis, and that after 90deg rotation of the e-vector direction of polarized light the lizards directional choices rotated correspondingly, producing a bimodal distribution which was perpendicular to the training axis. The present results confirm in ruin lizards results previously obtained in other lizard species showing that these reptiles can use the e-vector direction of polarized light in the form of a sky polarization compass. The second step of the study aimed at answering the still open question of whether functioning of a sky polarization compass would be mediated by the lizard parietal eye. To test this, ruin lizards meeting learning criteria were tested inside the Morris water maze under polarized light after their parietal eyes were painted black. Lizards with black-painted parietal eyes were completely disoriented. Thus, the present data show for the first time that the parietal eye plays a central role in mediating the functioning of a putative sky polarization compass of lizards.
2010
Beltrami, Giulia; Bertolucci, Cristiano; Parretta, Antonio; Petrucci, Ferruccio Carlo; Foa', Augusto Giuseppe Lorenzo
File in questo prodotto:
File Dimensione Formato  
JEB_2010.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 343.72 kB
Formato Adobe PDF
343.72 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1397736
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 14
social impact