This paper is concerned with a novel elasto-plastic reformulation of the Theory of Critical Distances (TCD) specifically devised to estimate lifetime of notched metallic materials (ferrous and nonferrous) failing in the low/medium-cycle fatigue regime. We used the classic Manson–Coffin and Smith–Topper–Watson approaches, but applied in conjunction with the TCD. We assumed that the material’s critical distance is a constant whose value does not depend on either the sharpness of the notch or on the number of cycles to failure. The accuracy and reliability of the proposed approach was checked by using a number of experimental results generated by testing cylindrical specimens made of En3B, which is a commercial low-carbon steel, and Al6082, which is a conventional aluminum alloy, containing different geometrical features and tested at applied load ratios of R=-1 and R=0. The resulting predictions of fatigue life were highly accurate, giving estimates falling within an error factor (in lifetime) of about 2. This result is undoubtedly encouraging, especially in light of the fact that the pieces of experimental information needed to calibrate our method can easily be generated by using standard testing equipment, and the necessary stress/strain fields acting on the fatigue process zone can be determined by directly postprocessing elasto-plastic finite element results.

An elasto-plastic reformulation of the Theory of Critical Distances to estimate lifetime of notched components failing in the low/medium-cycle fatigue regime

SUSMEL, Luca;TAYLOR, David
2010

Abstract

This paper is concerned with a novel elasto-plastic reformulation of the Theory of Critical Distances (TCD) specifically devised to estimate lifetime of notched metallic materials (ferrous and nonferrous) failing in the low/medium-cycle fatigue regime. We used the classic Manson–Coffin and Smith–Topper–Watson approaches, but applied in conjunction with the TCD. We assumed that the material’s critical distance is a constant whose value does not depend on either the sharpness of the notch or on the number of cycles to failure. The accuracy and reliability of the proposed approach was checked by using a number of experimental results generated by testing cylindrical specimens made of En3B, which is a commercial low-carbon steel, and Al6082, which is a conventional aluminum alloy, containing different geometrical features and tested at applied load ratios of R=-1 and R=0. The resulting predictions of fatigue life were highly accurate, giving estimates falling within an error factor (in lifetime) of about 2. This result is undoubtedly encouraging, especially in light of the fact that the pieces of experimental information needed to calibrate our method can easily be generated by using standard testing equipment, and the necessary stress/strain fields acting on the fatigue process zone can be determined by directly postprocessing elasto-plastic finite element results.
2010
Susmel, Luca; Taylor, David
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1390215
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 102
  • ???jsp.display-item.citation.isi??? 81
social impact