We investigate the dynamics of a gas of noninteracting particlelike soliton waves, demonstrating that phase transitions originate from their collective behavior. This is predicted by solving exactly the nonlinear equations and by employing methods of the statistical mechanics of chaos. In particular, we show that a suitable free energy undergoes a metamorphosis as the input excitation is increased, thereby developing a first-order phase transition whose measurable manifestation is the formation of shock waves. This demonstrates that even the simplest phase-space dynamics, involving independent (uncoupled) degrees of freedom, can sustain critical phenomena.

Free-Energy Transition in a Gas of Noninteracting Nonlinear Wave Particles

TRILLO, Stefano
2008

Abstract

We investigate the dynamics of a gas of noninteracting particlelike soliton waves, demonstrating that phase transitions originate from their collective behavior. This is predicted by solving exactly the nonlinear equations and by employing methods of the statistical mechanics of chaos. In particular, we show that a suitable free energy undergoes a metamorphosis as the input excitation is increased, thereby developing a first-order phase transition whose measurable manifestation is the formation of shock waves. This demonstrates that even the simplest phase-space dynamics, involving independent (uncoupled) degrees of freedom, can sustain critical phenomena.
2008
Fratalocchi, A.; Conti, C.; Ruocco, G.; Trillo, Stefano
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1379276
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 44
social impact