Protonated Schiff bases (PSBs) of polyenals constitute a class of light-driven switchers selected by biological evolution that provide model compounds for the development of artificial light-driven molecular devices or motors. In the present paper, our primary target is to show, through combined computational and experimental studies, that it is possible to approach the design of artificial PSBs suitable for such applications. Below, we use the methods of computational photochemistry to design and characterize the prototype biomimetic molecular switchers 4-cyclopenten-2'-enylidene-3,4-dihydro-2H-pyrrolinium and its 5,5'-dimethyl derivative both containing the penta-2,4-dieniminium chromophore. To find support for the predicted behavior, we also report the photochemical reaction path of the synthetically accessible compound 4-benzylidene-3,4-dihydro-2H-pyrrolinium. We show that the preparation and photochemical characterization of this compound (together with three different N-methyl derivatives) provide both support for the predicted photoisomerization mechanism and information on its sensitivity to the molecular environment.

Design and photochemical characterization of a biomimetic light-driven Z/E switcher

ZANIRATO, Vinicio;
2004

Abstract

Protonated Schiff bases (PSBs) of polyenals constitute a class of light-driven switchers selected by biological evolution that provide model compounds for the development of artificial light-driven molecular devices or motors. In the present paper, our primary target is to show, through combined computational and experimental studies, that it is possible to approach the design of artificial PSBs suitable for such applications. Below, we use the methods of computational photochemistry to design and characterize the prototype biomimetic molecular switchers 4-cyclopenten-2'-enylidene-3,4-dihydro-2H-pyrrolinium and its 5,5'-dimethyl derivative both containing the penta-2,4-dieniminium chromophore. To find support for the predicted behavior, we also report the photochemical reaction path of the synthetically accessible compound 4-benzylidene-3,4-dihydro-2H-pyrrolinium. We show that the preparation and photochemical characterization of this compound (together with three different N-methyl derivatives) provide both support for the predicted photoisomerization mechanism and information on its sensitivity to the molecular environment.
2004
Sampedro, D; Migani, A; Pepi, A; Busi, E; Basosi, R; Latterini, L; Elisei, F; Fusi, S; Ponticelli, F; Zanirato, Vinicio; Olivucci, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1211228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 46
social impact