Theoretical and practical issues concerning the nonlinear dynamic modelling of electron devices are discussed in this article. All the different dynamic phenomena, which are important for the description of the device behaviour, are comprehensively dealt with by means of a unified mathematical derivation. In particular, both the fast dynamics associated with charge-storage phenomena at high operating frequencies and the slow dynamics of low-frequency dispersion, due to device self-heating and charge-trapping effects in deep-bulk and surface regions, are simultaneously taken into account. The result is an empirical, technology-independent and nonquasi-static model of electron devices, suitable for a simple and reliable identification procedure and based on conventional measurements of static characteristics and bias- and frequency- dependent small-signal parameters. The model implementation in the framework of commercially available CAD tools is also outlined in this article. Experimental validation, based on a GaAs p-HEMT, is also presented.

Non-linear RF device modelling in the presence of low-frequency dispersive phenomena

RAFFO, Antonio;VANNINI, Giorgio;
2006

Abstract

Theoretical and practical issues concerning the nonlinear dynamic modelling of electron devices are discussed in this article. All the different dynamic phenomena, which are important for the description of the device behaviour, are comprehensively dealt with by means of a unified mathematical derivation. In particular, both the fast dynamics associated with charge-storage phenomena at high operating frequencies and the slow dynamics of low-frequency dispersion, due to device self-heating and charge-trapping effects in deep-bulk and surface regions, are simultaneously taken into account. The result is an empirical, technology-independent and nonquasi-static model of electron devices, suitable for a simple and reliable identification procedure and based on conventional measurements of static characteristics and bias- and frequency- dependent small-signal parameters. The model implementation in the framework of commercially available CAD tools is also outlined in this article. Experimental validation, based on a GaAs p-HEMT, is also presented.
2006
F., Filicori; A., Santarelli; P. A., Traverso; Raffo, Antonio; Vannini, Giorgio; M., Pagani
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1210714
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 27
social impact