The role of the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor kappa B ligand (RANKL) in promoting the differentiation of osteoclasts has been extensively characterized. In this study, we have investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily of cytokines, in osteoclastogenesis, by using human peripheral blood mononuclear cells and the RAW264.7 murine monocytic cell line. Both cell models differentiate into osteoclast-like cells in presence of RANKL plus macrophage-colony-stimulating factor (M-CSF), as evaluated in terms of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and bone resorption activity. Unexpectedly, when added in culture in combination with RANKL plus M-CSF, TRAIL inhibited osteoclastic differentiation in both cell models. To investigate the molecular mechanism underlining such inhibitory activity, we analyzed the effect of TRAIL on the mitogen-activated protein kinases (MAPKs) pathways, which play a key role in osteoclastogenesis. Treatment with RANKL plus M-CSF activated both the ERK1/2 and p38/MAPK pathways, which are essential for proliferation and differentiation of preosteoclasts, respectively. Of note, the addition of TRAIL to RANKL plus M-CSF did not affect ERK1/2 but it profoundly inhibited p38/MAPK phosphorylation. Thus, our data demonstrate that TRAIL blocks osteoclastic differentiation and suggest that inhibition of the p38/MAPK pathway by TRAIL likely plays an important role in this process.

TNF-related apoptosis-inducing ligand (TRAIL) blocks osteoclastic differentiation induced by RANKL plus M-CSF

ZAULI, Giorgio;RIMONDI, Erika;MELLONI, Elisabetta;CELEGHINI C;SECCHIERO, Paola
2004

Abstract

The role of the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor kappa B ligand (RANKL) in promoting the differentiation of osteoclasts has been extensively characterized. In this study, we have investigated the effect of TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily of cytokines, in osteoclastogenesis, by using human peripheral blood mononuclear cells and the RAW264.7 murine monocytic cell line. Both cell models differentiate into osteoclast-like cells in presence of RANKL plus macrophage-colony-stimulating factor (M-CSF), as evaluated in terms of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells and bone resorption activity. Unexpectedly, when added in culture in combination with RANKL plus M-CSF, TRAIL inhibited osteoclastic differentiation in both cell models. To investigate the molecular mechanism underlining such inhibitory activity, we analyzed the effect of TRAIL on the mitogen-activated protein kinases (MAPKs) pathways, which play a key role in osteoclastogenesis. Treatment with RANKL plus M-CSF activated both the ERK1/2 and p38/MAPK pathways, which are essential for proliferation and differentiation of preosteoclasts, respectively. Of note, the addition of TRAIL to RANKL plus M-CSF did not affect ERK1/2 but it profoundly inhibited p38/MAPK phosphorylation. Thus, our data demonstrate that TRAIL blocks osteoclastic differentiation and suggest that inhibition of the p38/MAPK pathway by TRAIL likely plays an important role in this process.
2004
Zauli, Giorgio; Rimondi, Erika; Nicolin, V; Melloni, Elisabetta; Celeghini, C; Secchiero, Paola
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1208109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 105
  • ???jsp.display-item.citation.isi??? 100
social impact