The biological problems considered in this study are sexual dimorphism in angular osteometric traits, changes in these traits with aging and their bilateral asymmetry in the same individual. The sample comprises the right and left long bones of 200 skeletons (100 males and 100 females) of Sardinian adults (Frasetto collection) for whom the sex and age at death are known. As concerns the sexual dimorphism, some angular traits of upper limb (joint axis angle of the ulna in particular) and the lower limb (condylo-diaphyseal angle of the femur and retroversion angle of the tibia) are significantly different between males and females. Torsion angles of long bones (especially the femur) were found to change with age. In sides comparison revealed a clear right-left asymmetry in our sample. The asymmetry, sexual dimorphism and changes with age are discussed in relation to varying stresses of different living activities. Our data indicate that the angular traits of long bones could be very informative in biomechanical interpretations of human activities based on skeletal remains.

Study on long bones: variation in angular traits with sex, age, and laterality

GUALDI, Emanuela
1998

Abstract

The biological problems considered in this study are sexual dimorphism in angular osteometric traits, changes in these traits with aging and their bilateral asymmetry in the same individual. The sample comprises the right and left long bones of 200 skeletons (100 males and 100 females) of Sardinian adults (Frasetto collection) for whom the sex and age at death are known. As concerns the sexual dimorphism, some angular traits of upper limb (joint axis angle of the ulna in particular) and the lower limb (condylo-diaphyseal angle of the femur and retroversion angle of the tibia) are significantly different between males and females. Torsion angles of long bones (especially the femur) were found to change with age. In sides comparison revealed a clear right-left asymmetry in our sample. The asymmetry, sexual dimorphism and changes with age are discussed in relation to varying stresses of different living activities. Our data indicate that the angular traits of long bones could be very informative in biomechanical interpretations of human activities based on skeletal remains.
1998
Gualdi, Emanuela
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1203173
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact