The neonatal intestinal microbiota is a complex ecosystem composed of numerous genera, species and strains of bacteria. This enormous cell mass performs a variety of unique activities that affect both the colonic and systemic physiology. Its primary activities include nutritive, metabolic, immunological and protective functions. Most studies of infants have been based on faecal samples using the classical plating techniques with culturing on specific media. The limitations of these methods must be taken into account when evaluating the varying results of the different studies. The establishment of the gut microbial population is not strictly a succession in the ecological sense; it is rather a complex process influenced by microbial and host interactions and by external and internal factors. The climax intestinal flora is attained in successive stages. The foetal intestine is sterile and bathed in swallowed amniotic fluid. Following delivery, multiple different antigens challenge the intestine of the newborn. The maternal intestinal flora is a source of bacteria for the neonatal gut. The bacterial flora is usually heterogeneous during the first few days of life, independently of feeding habits. After the first week of life, a stable bacterial flora is usually established. In full-term infants a diet of breast milk induces the development of a flora rich in Bifidobacterium spp. Other obligate anaerobes, such as Clostridium spp. and Bacteroides spp., are more rarely isolated and also enterobacteria and enterococci are relatively few. During the corresponding period, formula-fed babies are often colonized by other anaerobes in addition to bifidobacteria and by facultatively anaerobic bacteria; the development of a "bifidus flora" is unusual. In other studies the presence of a consistent number of bifidobacteria in infants delivered in large urban hospitals has not been demonstrated, whether the babies were bottle fed or exclusively breastfed. The predominant faecal bacteria were coliforms and bacteroides. According to these studies, environmental factors may be more important than breastfeeding in gut colonization after delivery. Environmental factors are indeed extremely important for the intestinal colonization of infants born by caesarean section. In these infants, the establishment of a stable flora characterized by a low incidence of Bacteroides spp. and by the isolation of few other bacteria is consistently delayed. In extremely low-birthweight infants, hospitalization in neonatal intensive care units, characterized by prolonged antibiotic therapy, parenteral nutrition, delayed oral feedings and intubation seems to affect the composition of the intestinal microbiota. The gut is colonized by a small number of bacterial species; Lactobacillus and Bifidobacteria spp. are seldom, if ever, identified. According to the few studies so far performed, the predominant species are Enterococcus faecalis, E. coli, Enterobacter cloacae, Klebsiella pneumoniae, Staphylococcus epidermidis and Staphylococcus haemolyticus. Hygienic conditions and antimicrobial procedures strongly influence the intestinal colonization pattern.

INTESTINAL MICROFLORA IN EARLY INFANCY: COMPOSITION AND DEVELOPMENT

FANARO, Silvia;GUERRINI, Pietro;VIGI, Vittorio
2003

Abstract

The neonatal intestinal microbiota is a complex ecosystem composed of numerous genera, species and strains of bacteria. This enormous cell mass performs a variety of unique activities that affect both the colonic and systemic physiology. Its primary activities include nutritive, metabolic, immunological and protective functions. Most studies of infants have been based on faecal samples using the classical plating techniques with culturing on specific media. The limitations of these methods must be taken into account when evaluating the varying results of the different studies. The establishment of the gut microbial population is not strictly a succession in the ecological sense; it is rather a complex process influenced by microbial and host interactions and by external and internal factors. The climax intestinal flora is attained in successive stages. The foetal intestine is sterile and bathed in swallowed amniotic fluid. Following delivery, multiple different antigens challenge the intestine of the newborn. The maternal intestinal flora is a source of bacteria for the neonatal gut. The bacterial flora is usually heterogeneous during the first few days of life, independently of feeding habits. After the first week of life, a stable bacterial flora is usually established. In full-term infants a diet of breast milk induces the development of a flora rich in Bifidobacterium spp. Other obligate anaerobes, such as Clostridium spp. and Bacteroides spp., are more rarely isolated and also enterobacteria and enterococci are relatively few. During the corresponding period, formula-fed babies are often colonized by other anaerobes in addition to bifidobacteria and by facultatively anaerobic bacteria; the development of a "bifidus flora" is unusual. In other studies the presence of a consistent number of bifidobacteria in infants delivered in large urban hospitals has not been demonstrated, whether the babies were bottle fed or exclusively breastfed. The predominant faecal bacteria were coliforms and bacteroides. According to these studies, environmental factors may be more important than breastfeeding in gut colonization after delivery. Environmental factors are indeed extremely important for the intestinal colonization of infants born by caesarean section. In these infants, the establishment of a stable flora characterized by a low incidence of Bacteroides spp. and by the isolation of few other bacteria is consistently delayed. In extremely low-birthweight infants, hospitalization in neonatal intensive care units, characterized by prolonged antibiotic therapy, parenteral nutrition, delayed oral feedings and intubation seems to affect the composition of the intestinal microbiota. The gut is colonized by a small number of bacterial species; Lactobacillus and Bifidobacteria spp. are seldom, if ever, identified. According to the few studies so far performed, the predominant species are Enterococcus faecalis, E. coli, Enterobacter cloacae, Klebsiella pneumoniae, Staphylococcus epidermidis and Staphylococcus haemolyticus. Hygienic conditions and antimicrobial procedures strongly influence the intestinal colonization pattern.
2003
Fanaro, Silvia; R., Chierici; Guerrini, Pietro; Vigi, Vittorio
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1202009
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 570
  • ???jsp.display-item.citation.isi??? 482
social impact