Electromagnetic field (EMF) exposure has been proposed for the treatment of osteoarthritis. In this study, we investigated the effects of EMF (75 Hz, 2,3 mT) on proteoglycan (PG) metabolism of bovine articular cartilage explants cultured in vitro, both under basal conditions and in the presence of interleukin-1beta (IL-1beta) in the culture medium. Proteoglycan synthesis and the residual PG tissue content resulted significantly higher in EMF-exposed explants than in controls, whereas no effect was observed on PG release and nitric oxide (NO) production. IL-1beta induced both a reduction in PG synthesis and an increase in PG release, related to a strong stimulation of NO production, which resulted in a net loss of tissue PG content. In IL-1beta-treated explants, EMF increased PG synthesis, whereas in spite of a slight stimulation of NO production EMF did not modify PG release. This resulted in the residual PG tissue content being maintained at the control level. In both experimental conditions, the effects of EMF were associated with an increase in lactate production. The results of our study show that EMFs are able to promote anabolic activities and PG synthesis in bovine articular cartilage explants. This effect also is maintained in the presence of IL-1beta, thus counteracting the catabolic activity of the cytokine. Altogether, these data suggest that EMF exposure exerts a chondroprotective effect on articular cartilage in vitro.

Effects of electromagnetic fields on proteoglycan metabolism of bovine articular cartilage explants

DE MATTEI, Monica
Primo
;
PASELLO, Michela
Secondo
;
PELLATI, Agnese;STABELLINI, Giordano;MASSARI, Leo;GEMMATI, Donato
Penultimo
;
CARUSO, Angelo
Ultimo
2003

Abstract

Electromagnetic field (EMF) exposure has been proposed for the treatment of osteoarthritis. In this study, we investigated the effects of EMF (75 Hz, 2,3 mT) on proteoglycan (PG) metabolism of bovine articular cartilage explants cultured in vitro, both under basal conditions and in the presence of interleukin-1beta (IL-1beta) in the culture medium. Proteoglycan synthesis and the residual PG tissue content resulted significantly higher in EMF-exposed explants than in controls, whereas no effect was observed on PG release and nitric oxide (NO) production. IL-1beta induced both a reduction in PG synthesis and an increase in PG release, related to a strong stimulation of NO production, which resulted in a net loss of tissue PG content. In IL-1beta-treated explants, EMF increased PG synthesis, whereas in spite of a slight stimulation of NO production EMF did not modify PG release. This resulted in the residual PG tissue content being maintained at the control level. In both experimental conditions, the effects of EMF were associated with an increase in lactate production. The results of our study show that EMFs are able to promote anabolic activities and PG synthesis in bovine articular cartilage explants. This effect also is maintained in the presence of IL-1beta, thus counteracting the catabolic activity of the cytokine. Altogether, these data suggest that EMF exposure exerts a chondroprotective effect on articular cartilage in vitro.
2003
DE MATTEI, Monica; Pasello, Michela; Pellati, Agnese; Stabellini, Giordano; Massari, Leo; Gemmati, Donato; Caruso, Angelo
File in questo prodotto:
File Dimensione Formato  
03008200390208546.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 125.57 kB
Formato Adobe PDF
125.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1200192
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 110
  • ???jsp.display-item.citation.isi??? 97
social impact