Chronic lymphocytic leukemia (CLL) is the most common leukemia in the world. The TCL1 gene, responsible for prolymphocytic T cell leukemia, is also overexpressed in human B cell malignancies and overexpression of the Tcl1 protein occurs frequently in CLL. Aging transgenic mice that overexpress TCL1 under control of the mu immunoglobulin gene enhancer, develop a CD5+ B cell lymphoproliferative disorder mimicking human CLL and implicating TCL1 in the pathogenesis of CLL. In the current study, we exploited this transgenic mouse to investigate two different CLL-related issues: potential treatment of CLL and characterization of neoplasms that accompany CLL. We successfully transplanted CLL cells into syngeneic mice that led to CLL development in the recipient mice. This approach allowed us to verify the involvement of the Tcl1/Akt/mTOR biochemical pathway in the disease by testing the ability of a specific pharmacologic agent, rapamycin, to slow CLL. We also showed that 36% of these transgenic mice were affected by solid malignancies, in which the expression of the Tcl1 protein was absent. These findings indicate that other oncogenic mechanism(s) may be involved in the development of solid tumors in Emu-TCL1 transgenic mice.

Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in E mu-TCL1 transgenic mice

VOLINIA, Stefano;CROCE, Carlo Maria
2006

Abstract

Chronic lymphocytic leukemia (CLL) is the most common leukemia in the world. The TCL1 gene, responsible for prolymphocytic T cell leukemia, is also overexpressed in human B cell malignancies and overexpression of the Tcl1 protein occurs frequently in CLL. Aging transgenic mice that overexpress TCL1 under control of the mu immunoglobulin gene enhancer, develop a CD5+ B cell lymphoproliferative disorder mimicking human CLL and implicating TCL1 in the pathogenesis of CLL. In the current study, we exploited this transgenic mouse to investigate two different CLL-related issues: potential treatment of CLL and characterization of neoplasms that accompany CLL. We successfully transplanted CLL cells into syngeneic mice that led to CLL development in the recipient mice. This approach allowed us to verify the involvement of the Tcl1/Akt/mTOR biochemical pathway in the disease by testing the ability of a specific pharmacologic agent, rapamycin, to slow CLL. We also showed that 36% of these transgenic mice were affected by solid malignancies, in which the expression of the Tcl1 protein was absent. These findings indicate that other oncogenic mechanism(s) may be involved in the development of solid tumors in Emu-TCL1 transgenic mice.
2006
Zanesi, N; Aqeilan, R; Drusco, A; Kaou, M; Sevignani, C; Costinean, S; Bortesi, L; LA ROCCA, G; Koldovsky, P; Volinia, Stefano; Mancini, R; Calin, G; Scott, Cp; Pekarsky, Y; Croce, Carlo Maria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1199774
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact