Asynchronous cultures of wild-type Euglena gracilis were tested for their morphophysiological response to 10 mM MnSO4. Growth was only moderately slowed (15%), while oxygen evolution was never compromised. Inductively coupled plasma analyses indicated that the Mn cell content doubled with respect to controls, but no signs of localised accumulation were detected with X-ray microanalysis. Evident morphological alterations were found at the plastid level with transmission electron microscopy and confocal laser scanning microscopy. An increase in the plastid mass, accompanied by frequent aberrations of chloroplast shape and of the organisation of the thylakoid system, was observed. These aspects paralleled a decrease in the molar ratio of chlorophyll a to b and an increase in the fluorescence emission ratio of light-harvesting complex II to photosystem II, the latter evaluated by in vivo single-cell microspectrofluorimetry. These changes were observed between 24 and 72 h of treatment. However, the alterations in the pigment pattern and photosystem II fluorescence were no longer observed after 96 h of Mn exposure, notwithstanding the maintenance of the large plastid mass. The response of the photosynthetic apparatus probably allows the alga to limit the photooxidative damage linked to the inappropriately large peripheral antennae of photosystem II. On the whole, the resistance of Euglena gracilis to Mn may be due to an exclusion-tolerance mechanism since most Mn is excluded from the cell, and the small amount entering the organism is tolerated by means of morphophysiological adaptation strategies, mainly acting at the plastid level.

Adaptive modifications of the photosynthetic apparatus in Euglena gracilis Klebs exposed to manganese excess

FERRONI, Lorenzo;BALDISSEROTTO, Costanza;FASULO, Maria Palmira;PAGNONI, Antonella;PANCALDI, Simonetta
2004

Abstract

Asynchronous cultures of wild-type Euglena gracilis were tested for their morphophysiological response to 10 mM MnSO4. Growth was only moderately slowed (15%), while oxygen evolution was never compromised. Inductively coupled plasma analyses indicated that the Mn cell content doubled with respect to controls, but no signs of localised accumulation were detected with X-ray microanalysis. Evident morphological alterations were found at the plastid level with transmission electron microscopy and confocal laser scanning microscopy. An increase in the plastid mass, accompanied by frequent aberrations of chloroplast shape and of the organisation of the thylakoid system, was observed. These aspects paralleled a decrease in the molar ratio of chlorophyll a to b and an increase in the fluorescence emission ratio of light-harvesting complex II to photosystem II, the latter evaluated by in vivo single-cell microspectrofluorimetry. These changes were observed between 24 and 72 h of treatment. However, the alterations in the pigment pattern and photosystem II fluorescence were no longer observed after 96 h of Mn exposure, notwithstanding the maintenance of the large plastid mass. The response of the photosynthetic apparatus probably allows the alga to limit the photooxidative damage linked to the inappropriately large peripheral antennae of photosystem II. On the whole, the resistance of Euglena gracilis to Mn may be due to an exclusion-tolerance mechanism since most Mn is excluded from the cell, and the small amount entering the organism is tolerated by means of morphophysiological adaptation strategies, mainly acting at the plastid level.
2004
Ferroni, Lorenzo; Baldisserotto, Costanza; Fasulo, Maria Palmira; Pagnoni, Antonella; Pancaldi, Simonetta
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/1196684
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact