MiR-30e-3p Influences Tumor Phenotype through MDM2/TP53 Axis and Predicts Sorafenib Resistance in Hepatocellular Carcinoma

Article in Cancer Research - February 2020
DOI: 10.1158/0008-5472.CAN-19-0472

18 authors, including:

Laura Gramantieri
Azienda Ospedaliero-Universitaria di Bologna, Policlinico S.Osola-Malpighi
183 PUBLICATIONS 7,890 CITATIONS

Daniela Pollutri
Policlinico S.Osola Malpighi, Bologna, Italy
23 PUBLICATIONS 667 CITATIONS

Martina Gagliardi
University of Bologna
9 PUBLICATIONS 106 CITATIONS

Manuela Ferracin
University of Bologna
243 PUBLICATIONS 30,028 CITATIONS

Some of the authors of this publication are also working on these related projects:

- Identification of innovative microRNA-based biomarkers and anti-cancer strategies for the treatment of hepatocellular carcinoma View project
- Liver and dual kidney transplantation View project
MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma

Laura Gramantieri1$, Daniela Pollutri1,2, Martina Gagliardi1,3, Catia Giovannini1,3, Santina Quarta4, Manuela Ferracin2, Andrea Casadei-Gardini5, Elisa Callegari6, Sabrina De Carolis1,2, Sara Marinelli1,3, Francesca Benevento3, Francesco Vasuri7, Matteo Ravaoli8, Matteo Cescon3,8, Fabio Piscaglia3, Massimo Negrini6, Luigi Bolondi1,3, Francesca Fornari1,3,$

1 Center for Applied Biomedical Research, St.Orsola-Malpighi University Hospital, Bologna, Italy
2 Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Italy
3 Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
4 Department of Medicine, University of Padua, Padua, Italy
5 Department of Oncology and Hematology, Division of Oncology, University of Modena and Reggio Emilia, Italy
6 Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Italy
7 Pathology Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy
8 General Surgery and Transplant Unit, St.Orsola-Malpighi University Hospital, Bologna, Italy

Running title: MiR-30e predicts sorafenib escape in HCC

Key words: HCC, microRNA, miR-30e, Sorafenib

Corresponding Authors:
Francesca Fornari, Laura Gramantieri
Address: Via Massarenti, 9, 40138, Bologna, Italy.
Tel/Fax: +390512143902
E-mail: francesca.fornari2@unibo.it, laura.gramantieri@aosp.bo.it

Conflict of interest: The Authors have no conflict of interest to declare
Abstract

The molecular background of hepatocellular carcinoma (HCC) is highly heterogeneous and biomarkers predicting response to treatments are an unmet clinical need. We investigated miR-30e-3p contribution to HCC phenotype and response to sorafenib, as well as the mutual modulation of TP53/MDM2 pathway, in HCC tissues and preclinical models. MiR-30e-3p was downregulated in human and rat HCCs and its downregulation associated with TP53 mutations. TP53 contributed to miR-30e-3p biogenesis and MDM2 was identified among its target genes, establishing a miR-30e-3p/TP53/MDM2 feedforward loop and accounting for miR-30e-3p dual role based on TP53 status.

EpCAM, PTEN and p27 were demonstrated as miR-30e-3p additional targets mediating its contribution to stemness and malignant features. In a preliminary cohort of HCC patients treated with sorafenib, increased miR-30e-3p circulating levels predicted the development of resistance.

In conclusion, molecular background dictates miR-30e-3p dual behavior in HCC. Mdm2 targeting/p53 axis plays a predominant tumor-suppressor function in wild type TP53 contexts, whereas other targets such as PTEN, p27 and EpCAM gain relevance and mediate miR-30e-3p oncogenic role in non-functional TP53 backgrounds. Increased circulating levels of miR-30e-3p predict the development of sorafenib resistance in a preliminary series of HCC patients and deserve future investigations.
Statement of significance

The dual role of miR-30e-3p in hepatocellular carcinoma clarifies how the molecular context dictates the tumor suppressor or oncogenic function played by microRNAs.
Introduction

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancers representing the second leading cause of cancer mortality with increasing incidence in western countries [1]. HCC is characterized by a high inter- and intra-individual tumor heterogeneity: the former ascribed to different risk factors and genomic contexts [2] and the latter to clonal evolution of cancer cells [3], both contributing to limited targeted therapy efficacy. Primary resistance and escape from antitumor strategies remain poorly understood and no biomarker predicting response to sorafenib or other targeted treatments has been identified so far, highlighting the need for novel tools to allocate patients to the best treatment.

The deregulation of tumor-specific microRNAs (miRNAs) with tumor suppressor or oncogenic properties has been described [4, 5]. Our group and others demonstrated the key role of deregulated miRNAs in tumor progression and metastasis [6, 7], as well as their involvement in drug resistance phenotype [8-10]. Aberrant expression of miR-30 family members is a frequent event in solid tumors [11, 12] displaying a prominent connection with other deregulated miRNAs in neoplastic tissues [13]. The miR-30 family contains five members encoded by six genes located on three distinct loci of the human genome (chromosomes 1, 6 and 8) giving rise to six mature miRNAs (miR-30a, -30b, -30c-1, -30c-2, -30d, -30e) with the same seed sequence. The downregulation of these miRNAs was associated with proliferation and invasion, as well as with induction of epithelial-to-mesenchymal transition (EMT), exerted by direct targeting of EMT-associated factors [14, 15] and cell adhesion molecules [16]. Remarkably, besides studies supporting the tumor suppressor role of miR-30 family, other studies point to its opposite behavior [17, 18].

TP53 is one of the most frequently mutated gene in human cancers with about 30% of affected HCC cases [19]. TP53 regulates miRNA expression by acting at two different levels: on one hand, it activates their transcriptional regulation [20-22] and, on the other hand, it interferes with their maturation process by interacting with key molecules, such as Drosha and p68 RNA
helicase [23]. Notably, TP53 regulates the expression of miR-30 family members contributing to cell invasion and distal spreading as reported in colorectal and breast cancers [24, 25].

Despite the prominent role of miR-30 family as tumor suppressor miRNAs, there are conflicting data regarding its aberrant expression in HCC. Previous studies reported the downregulation of miR-30a and miR-30e and the upregulation of miR-30d [26-28]. Although miR-30 was reported as participating in hepatobiliary development [29], its functional roles in HCC remain poorly understood. Here, we investigated the expression of miR-30 family members in two HCC patient cohorts, in a HCC animal model and in HCC cells, and focused on miR-30e-3p, characterizing its biological activity as well as its involvement in drug resistance and modulation of MDM2/TP53 and PTEN/AKT axes. Moreover, we investigated circulating miR-30e-3p levels in a preliminary series of HCC patients and in preclinical models in order to evaluate its contribution as a non-invasive biomarker of treatment response.
Materials and Methods

HCC study cohorts

HCC and cirrhotic tissues were obtained from two independent cohorts of patients undergoing liver surgery for HCC at the Department of Surgery and Transplant Unit of St. Orsola-Malpighi University Hospital of Bologna. The discovery cohort consists of 22 patients, whereas the validation cohort consists of 48 patients, all enrolled at the Department of Surgery of St. Orsola-Malpighi University Hospital. We collected tissue samples at surgery and stored as previously described [30]. Local ethics committee of St. Orsola-Malpighi University Hospital approved this study (138/2015/O/Tess). Normal liver tissues were from patients undergoing liver surgery for traumatic lesions or haemangioma resection. The clinical characteristics of patients are detailed in Supplementary Table S1. TP53 mutations were identified as previously described [20].

A further cohort of sorafenib-treated advanced HCC patients (Table S2) was tested for serum miR-30e-3p levels before treatment and at two-month follow-up assessment. Sera samples, obtained after the local committee approval (271/2012/O/Oss), were processed as previously described [31]. Informed written consent has been obtained from patients enrolled in this study.

HCC animal models

The diethyl-nitrosamine (DEN)-induced HCC rat model and the xenograft model were established and treated as previously described [9]. Total RNA was extracted from frozen tissues by using TRIzol Reagent (Invitrogen) and was analyzed by microarray and QPCR. Local ethics committee approved the study protocols (14/70/12 and 23/79/14).

Microarray analysis

RNAs from 22 rat samples (12 HCCs, 8 surrounding livers and 2 normal livers) were hybridized on Agilent rat whole-genome miRNAs microarray (#G4471A_046066 Release 19.0, Agilent
Technologies). One-color gene expression was performed according to the manufacturer’s procedure. Raw data are available in ArrayExpress repository (accession number E-MTAB-7624).

Technical details are described in Supplementary section.

**Cell culture and treatments**

HCC cell lines were cultured as previously described [9]. Starvation was obtained culturing cells in media without FBS for 48-60 hours. Cells were treated with 5.0-7.5 µM sorafenib-tosylate (Bayer) or Nutlin-3 (Sigma-Aldrich) or with 1.0-2.0 µg/ml of doxorubicin (Pfizer) for 48 hours.

Cell transfection and proliferation, clonogenic and sphere formation assays are detailed in Supplementary Material. Genetics Unit at S.Orsola-Malpighi Hospital performed HCC authentication and cell identification was obtained by online STR analysis (https://www.dsmz.de/).

**Reporter assays**

3’ untranslated regions (3’UTR) of MDM2, CDKNIB/p27, PTEN and EpCAM mRNAs were amplified by PCR as reported in Supplementary Table S2. Mutagenesis of miR-30e-3p seed sequence was performed by using QuikChange II Site-Directed Mutagenesis Kit (Agilent Technologies) following manufacturer’s instruction (Supplementary Table S3). Sanger sequencing verified mutated sequences. Dual-luciferase reporter and p53 activity assays were performed as previously described [32].

**Real-time PCR**

TaqMan MicroRNA Assays (Applied Biosystems) were used to evaluate miRNA expression, as previously described [30]. RNU6B was used as housekeeping gene. Quantitative PCR (qPCR)
was used for gene expression analysis. β-actin and GAPDH housekeeping genes were considered for gene normalization. QPCR experiments were run in triplicate. Primers and conditions are detailed in Supplementary Table S4.

**Western blot**

Western blot (WB) was used to analyze protein extracts (30 µg) from cell and tissues with antibodies reported in Supplementary Table S5. ChemiDocTM XRS+ (Image LabTM Software, Bio-Rad) was employed to quantify digital images of X-ray films. WB analysis was performed in duplicate.

**Chromatin immunoprecipitation and electrophoretic mobility shift assay**

HepG2 cells were subjected to chromatin immunoprecipitation (ChIP) with a polyclonal p53 antibody (Novocastra) as previously described [21]. Primers and conditions are reported in Supplementary Table S4. Amplicon design has been detailed in Supplementary Material. Electrophoretic mobility shift assay (EMSA) was performed with nuclear extract (NE) from Nutlin-3 treated HepG2 cells by using LightShift Chemiluminescent EMSA Kit (Thermo Scientific) as previously described [21]. Probe sequences are reported in Supplementary Table S6.

**Flow cytometry**

Annexin-V assay was performed in duplicate by flow cytometry (FACSaria I, BD) as previously reported [33]. Annexin-V assay in miR-30e-3p overexpressing HepG2 cells was assessed on Cytoflex S (Beckam Coulter). Immunophenotype analysis of EpCAM was performed by using CD326 monoclonal antibody (MH99)-Alexa Fluor 488 (eBioscience).
Cell invasion and wound healing assay

Real-time cell invasion, performed on xCELLigence DP instrument (ACEA), and wound healing assays were executed as previously described [34].

Caspase activity assay

Caspase pathway activation was evaluated by Caspase-Glo 3/7 assay (Promega) according to manufacturer’s instructions. Each sample was performed in quadruplicate in two independent experiments.

Serum and exosome miRNA extraction

Isolation of circulating miRNAs from exosomes, cell culture supernatant, and serum was executed as previously reported [9, 31].

Statistical analysis

Differences between two or more groups were analyzed using unpaired Student’s t-test or ANOVA. Tukey’s post hoc test was used for comparisons among groups after ANOVA analysis. Pearson’s correlation coefficient was used to investigate relationships between two variables. Time to recurrence (TTR) curve based on miR-30e-3p levels was computed by Kaplan-Meier product-limit method and compared using a log-rank test. Paired t-test was used to evaluate the relationship between circulating miR-30e-3p and response to sorafenib in HCC patients analyzed both before and on treatment. Reported p-values were two-sided and considered significant when lower than 0.05. Statistical calculations were executed using SPSS version 20.0 (SPSS inc). * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
Results

MiR-30e-3p is downregulated in HCC and associates with TP53 status

We previously reported a deregulation of miR-30 family members in histologically aggressive HCCs [35]. Here, we confirmed in a first patient cohort, a decrease of miR-30e-3p in 73% of HCCs in comparison to matched cirrhotic livers (t-test; p=0.0002), showing a mean downregulation of 1.7-fold (Figure 1A). Similarly, a decrease of miR-30e-5p and miR-30a-3p was detected in 64% of tumors with an average 1.6-fold change (t-test; p=0.003 and p=0.008, respectively) (Figure 1B, C). A positive correlation between these miR-30 family members was detected in HCC and cirrhotic human samples (Figure S1A-F), suggesting common regulation mechanisms for these miR-30 family members.

We next tested the DEN-induced HCC rat model [9] by microarray analysis on 12 HCCs and 10 non-cancerous livers. The downregulation of five miRNAs belonging to miR-30 family was observed in tumors compared to surrounding livers (Figure S2 and Table S7). In rat HCC, miR-30e-3p decreased in 64% of tumors, showing a 1.5-fold change (t-test; p=0.034), mirroring findings from human HCCs (Figure 1D). MiR-30e-5p and miR-30a-3p were downregulated in 59% and 32% of rat HCCs, showing no difference between tumor and non-tumor samples (Figure 1E, F). The discrepancy between human and rat HCCs might be ascribed to the lack of cirrhotic microenvironment in the rat model.

In the validation cohort, we confirmed miR-30e-3p, miR-30e-5p and miR-30a-3p downregulation in HCCs with respect to both matched cirrhosis (Tukey’s post hoc test; p=0.012, p=0.013 and p=0.025, respectively) and normal livers (Tukey’s post hoc test; p=0.046, p=0.001 and p=0.044, respectively) (Figure 1G-I). Here, we focused on miR-30e-3p, which is the most downregulated miRNA in human and rat HCCs.

Since TP53 is mutated in about 30% of HCCs and it establishes complex regulatory networks with miRNAs [1, 36], we investigated the relationship between TP53 status and miR-30e-3p in...
HCC. Lower miR-30e-3p levels were observed in TP53 mutated HCCs while no difference was found for primary miR-30e (pri-miR-30e) levels (Figure 1J, K). Remarkably, a negative correlation between primary and mature miR-30e levels was found in HCCs (Pearson’s correlation; R=−0.32) (Figure S3A), suggesting a role for post-transcriptional mechanisms in miR-30e biogenesis regulation. Interestingly, after splitting HCCs according to TP53 status, a negative correlation was confirmed between primary and mature miRNA levels in TP53 mutated cases, while a trend towards a positive correlation was found in TP53 WT cases (Figure S3B, C). These findings suggest an impairment of miR-30e-3p maturation by mutant p53 isoforms which were previously reported to interfere with the functional assembly of Drosha/p68 processing complex [23].

TP53 influences miR-30e-3p transcription and biogenesis in HCC cells

To start dissecting p53 involvement in miR-30e biogenesis in HCC, we modulated its expression in TP53 WT HepG2 cells by using different strategies. First, we investigated the influence of p53 silencing on miR-30e primary transcript and mature isoforms. As showed in Figure 2A, a decrease of primary and mature miR-30e-3p and miR-30e-5p levels was detected in p53-silenced cells. MiR-34a was used as a positive control since it represents the first identified p53-target miRNA [37], whereas p53 silencing was verified by WB and qPCR analyses of target genes (Figure 2A). Secondly, we investigated the effect of p53 overexpression in HepG2 cells following transfection of a p53-overexpressing vector or treatment with Nutlin-3, a MDM2 inhibitor. In line, an increase of miR-30e primary transcript and mature miRNA isoforms was detected in both experimental settings (Figure 2B, C). Notably, Nutlin-3 administration led to a stronger p53 transcriptional activation with respect to p53-overexpressing vector, as confirmed by the extent of variation of CDKN1A/p21 and MDM2 mRNAs. In turn, this resulted in higher pri-miR-30e levels, but not mature isoforms (Figure 2B, C), letting us to speculate that
mdm2/p53 axis might have an additional role in miR-30e biogenesis. To investigate p53 involvement in miRNA maturation, we quantified primary and mature miR-30e levels in p53-deleted (CRISPR/Cas9 technology) HepG2 cells and p53-null Hep3B cells following Nutlin-3 treatment. In line with p53 absence, no increase of miR-30e primary transcript was observed, whereas increased mature miRNA isoforms were detected in both treated cell lines (**Figure 2D, E**), confirming p53 role in miRNA processing impairment during Nutlin-3 administration. Since Dicer1 promoter contains several p63/p53 responsive elements [38], we investigated Dicer1 expression in HepG2 cells following p53 overexpression or Nutlin-3 treatment in both p53 WT and p53-deleted cells. A downregulation of Dicer1 was observed in Nutlin-3 treated HepG2 cells, but not in p53-overexpressing cells, which is in line with miRNA maturation impairment detected after Nutlin-3 administration in p53 WT cells (**Figure S3D, E**). On the contrary, higher Dicer1 levels were detected in p53-deleted HepG2 and p53 null Hep3B cells (**Figure S3F, G**), suggesting that mdm2 inhibition by Nutlin-3 influences miR-30e processing by regulating Dicer1 transcription in a p53-dependent and independent manner.

To go deeper into p53-mediated mechanisms regulating miR-30e expression, we overexpressed WT and mutant (truncated, dominant negative) *TP53* isoforms in p53-deleted Hep3B and p53 WT HepG2 cells, respectively. As displayed in Figure 2F, an increase of primary and mature miR-30e isoforms was observed in *TP53*-overexpressing Hep3B cells confirming its role in miRNA transcription. Interestingly, mutant p53 expression in HepG2 cells decreased miR-30e transcription and, consequently, mature isoforms (**Figure 2G**), suggesting a negative role for p53 mutations in miR-30e regulation. These findings demonstrate that *TP53* WT isoform is necessary to induce miR-30e transcription in HCC cells and that p53/mdm2 axis is involved in a multi-step regulation of miR-30e biogenesis.

To prove p53 binding to hypothetical consensus elements in proximity of miR-30e precursor region, a ChIP experiment was conducted in control and Nutlin-3 treated HepG2 cells. Six amplicons containing *TP53* hypothetical binding sites were designed in a DNA region spanning
from −4000 to +1000 nucleotides, considering +1 the first nucleotide of miR-30e precursor (Figure S3H). This region was chosen based on described promoter distance for intronic miRNA [39] and due to the presence of histone modifications (Figure S3I). The ChIP analysis showed an enrichment of three out of six p53 hypothetical binding sites, namely BS1, BS2 and BS6, in Nutlin-3 treated cells only (Figure S3J), demonstrating that p53 activation strengthen its binding to miR-30e-3p genomic region favoring pri-miR-30e regulation. EMSA assay further confirmed p53 binding to hypothetical consensus sites identified in the ChIP experiment, showing a specific shift for BS1, BS2 and BS6 probes in presence of nuclear extracts from Nutlin-3 treated HepG2 cells (Figure S3K).

Notably, a positive correlation (Pearson’s correlation; R=0.71) exists between pri-miR-30e and its host gene, nuclear transcription factor Y subunit gamma (NFYC, NM_014223) in HCCs, whereas a negative correlation (Pearson’s correlation; R=−0.76) was found between mature miR-30e-3p and NFYC, outlining the relevance of maturation process in the regulation of miR-30e levels (Figure S3L, M).

MiR-30e-3p establishes a TP53 positive feedback loop through MDM2 targeting

To investigate the interplay between miR-30e-3p and TP53, we interrogated bioinformatics tools and identified the principal p53 negative regulator, MDM2 (NM_002392), as a hypothetic miR-30e-3p target gene containing three complementary binding sites (Figure 3A). We quantified miR-30e-3p levels in seven HCC cell lines and compared its expression with mean values observed in HCCs, cirrhosis and normal livers (Figure 3B). In order to avoid a confounding effect due TP53/MDM2 auto-regulatory loop, we performed a functional analysis in HCC cell lines with mutated or null p53 isoform. Huh-7, Hep3B and SNU475 cells were chosen based on their low/intermediate miR-30e-3p basal levels, whereas SNU449 cells were selected because of their high basal levels (Figure 3B). MiR-30e-3p overexpression in Huh-7, Hep3B and SNU475
cells decreased mdm2 mRNA and protein levels, whereas miRNA silencing in SNU449 cells increased its mRNA and protein expression (Figure 3C-F). Subsequently, we explored MDM2 targeting by miR-30e-3p in HepG2 cells. We observed increased mRNA and protein levels following transient miRNA silencing in p53 WT and silenced (1.3 and 1.5-fold, respectively) HepG2 cells (Figure S4A, B). To assess if miR-30e-3p regulation of MDM2 is long lasting, we evaluated its expression in miR-30e-3p stably silenced (MZI-30e-3p) HepG2 cells and detected increased protein levels (Figure S4C), highlighting a prolonged post-transcriptional regulation. Finally, we verified miRNA/mRNA interaction by performing a reporter assay in HepG2 cells. MiR-30e-3p co-transfection decreased luciferase activity of WT MDM2-3’UTR vectors, but not that of mutant ones, proving miRNA direct interaction with its complementary sequence in MDM2 mRNA (Figure 3G). To verify the existence of a possible miR-30e/MDM2/TP53 feedback loop, we measured p53 transcriptional activity and expression in WT and mutant TP53-bearing cells following miR-30e-3p overexpression. An increase of luciferase signal and p53 protein expression was registered in miR-30e-3p transfected HepG2 cells; whereas no change was observed in Huh-7 cells harboring an inactive p53 isoform (Figure 3H, S4D). These data demonstrated that, in p53 WT contexts, miR-30e-3p increases p53 expression and activity by targeting mdm2, leading to a feedforward loop sustained by p53-dependent transcription of miR-30e-3p itself. Conversely, in TP53 mutated backgrounds this positive loop is hampered, suggesting that other targets might mediate miR-30e-3p functions in these contexts. 

MiR-30e-3p influences cell proliferation and invasion of HCC cells by targeting MDM2, PTEN and CDKN1B/p27

The regulation of cell proliferation and invasion by miR-30 family members has been reported in tumors [40, 41]; nevertheless, miR-30e-3p, the most downregulated miR-30 member in our patient cohorts and preclinical model, was not previously studied. Besides MDM2, a
bioinformatics analysis highlighted \textit{p27} and \textit{PTEN} among miR-30e-3p hypothetic targets (Figure S5A). Due to their key role in hepatocarcinogenesis, it is conceivable that miR-30e-3p establishes multi-target networks driving HCC phenotype. QPCR and WB analyses in transfected HCC cells proved \textit{p27} and \textit{PTEN} inhibition by miR-30e-3p at mRNA and protein levels (Figure S5B). A reporter assay showed decreased luciferase activity of \textit{p27} and \textit{PTEN} 3'UTR WT vectors upon miR-30e-3p overexpression, demonstrating that miR-30e-3p directly regulates these targets through mRNA degradation (Figure S5C).

We subsequently explored the effect of miR-30e-3p on HCC cell proliferation by dissecting the contribution of mdm2/p53 axis and PTEN/AKT pathway. In order to investigate the former, we performed the proliferation assay in \textit{TP53} WT and p53-silenced HepG2 cells. Cell growth inhibition (1.2-fold) occurred upon miR-30e-3p enforced expression in \textit{TP53} WT cells, whereas an increase of cell proliferation (1.4-fold) was detected in \textit{TP53}-silenced HepG2 cells (Figure 4A, B), suggesting p53 as a pivotal factor modulating miR-30e-3p effect. The relevance of \textit{PTEN} targeting on cell proliferation was next assessed in p53-silenced cells by evaluating \textit{AKT} phosphorylation upon miR-30e-3p enforced expression. An increase of phospho-AKT occurred in both \textit{TP53} WT and p53-silenced HepG2 cells highlighting AKT, beside p53, as pivotal factors mediating miR-30e-3p effects. We next assayed p53-mutated Huh-7 and p53-deleted Hep3B cells displaying high constitutive pten levels [20]. MiR-30e-3p overexpression increased proliferation of Huh-7 and Hep3B cells (1.9 and 2.1-fold, respectively). Enhanced AKT phosphorylation confirmed PTEN/AKT targeting as a trigger for proliferation in these non-functional p53 backgrounds (Figure 4C, D). To check whether \textit{p27} contributes to cell proliferation, we chose p53-mutated SNU475 cells displaying null pten levels [20]. MiR-30e-3p increased proliferation of SNU475 cells without changing phospho-AKT levels, but strongly decreasing \textit{p27} (Figure 4E). These findings support the crucial role of mdm2/p53, \textit{p27} and AKT in mediating miR-30e-3p regulation of cell proliferation. We hence analyzed cell cycle regulators \textit{p21} and \textit{p27} in miR-30e-3p overexpressing HCC cells. \textit{P21} modulation reflected p53
status, showing an increase in TP53 WT HepG2 cells only, while it did not change in TP53-mutated cell lines (Figure 4A-E). Conversely, p27 downregulation was observed in all cell lines, confirming its targeting by miR-30e-3p (Figure 4A-E). Opposite proliferative changes induced by miR-30e-3p in HCC cell lines can be explained by its multi-target activity. Indeed, the inhibition of mdm2 prevents cell cycle acceleration through p53/p21 signaling in TP53 WT contexts only. On the contrary, p27 and PTEN inhibition prevails in TP53-mutated/deleted backgrounds, leading to increased proliferation.

We next explored miR-30e-3p ability to modulate invasive properties of HepG2 and SNU449 cells. These cell lines were chosen due to high miR-30e-3p constitutive levels that allowed the investigation of miR-30e-3p stable silencing (Figure S5D) in a p53 WT (HepG2) and p53-mutated context (SNU449). No change was observed in miR-30e-3p silenced HepG2 cells, whereas decreased invasive and migratory potentials were detected in miRNA-silenced SNU449 cells (Student’s t-test; p<0.0001) (Figure 4F, S5E). Despite decreased phospho-AKT levels in both cell lines, their different invasion capability highlights cell context as pivotal in driving miR-30e-3p influence on cell aggressiveness.

MiR-30e-3p influences stem cell properties of HCC cells through EpCAM targeting

We investigated miR-30e-3p driven changes on stemness in HCC and observed a negative correlation between miR-30e-3p and both AFP and EpCAM mRNAs in HCC patients (Pearson’s correlation; R=-0.45 and -0.36, respectively) (Figure 5A) and cell lines (Pearson’s correlation; R=-0.62) (Figure S6A). Analyzing HCCs according to TP53 status, an even stronger correlation was observed in TP53 mutated patients (Pearson’s correlation; R=-0.78) (Figure S6B), suggesting a stronger activity of miR-30e-3p in the absence of miR-30e-3p/mdm2/p53 regulatory loop. An opposite behavior was detected for pri-miR-30e that positively correlated with EpCAM mRNA (Pearson’s correlation; R=0.39) (Figure S6C). Accordingly, a change of EpCAM mRNA
and immunophenotype was observed following miR-30e-3p modulation in HCC cells (Figure 5B and S6D). To investigate how miR-30e-3p influences stem cell properties, we interrogated bioinformatics algorithms and identified two hypothetical miRNA binding sites in EpCAM 3’UTR (Figure S6E). A decreased luciferase activity was observed for WT EpCAM-3’UTR vector in presence of miR-30e-3p overexpression (Student’s t-test; p=0.00045), demonstrating a direct regulation of this target in HCC (Figure 5C). We next performed clonogenic and sphere formation assays in miR-30e-3p stably silenced (MZIP-30e-3p) p53 WT HepG2 and p53-mutated SNU449 cells (Figure S5E, S6F), chosen on the basis of their different stemness features (Figure S6G). The clonogenic assay displayed an increase of colony number (t-test; p=0.0005) and OD 595 (t-test; p=0.001) in MZIP-30e-3p HepG2 cells, whereas an opposite behavior was observed in SNU449 cells displaying a decreased colony number (t-test; p<0.0001) and OD 595 (t-test; p=0.025) in miR-30e-3p silenced cells (Figure 5D, E). Finally, we performed colony-forming unit and sphere formation assays in miR-30e-3p stably overexpressing Huh-7 cells exhibiting high stem cell characteristics and a mutated p53 isoform (Figure S6F, G). A decrease of colony and sphere number (t-test; p=0.0033 and p=0.010, respectively) was observed in miR-30e-3p-Huh-7 cells (Figure 5F, G). Similarly, miR-30e-3p silencing determined an increased sphere formation (Student’s t-test; p<0.0001) in HepG2 cells (Figure 5G, S6H). Due to low expression of stem cell characteristics, SNU449 cells displayed no capability to sphere formation (Figure S6I). An increase of AFP and EpCAM levels was observed in MZIP-30e-3p HepG2-derived spheres, whereas their decrease was detected in pMXs-miR-30e-3p Huh-7-derived spheres (Figure 5H), confirming findings observed in HCC specimens and cell lines.

In primary HCCs, low miR-30e-3p expression associated with microvascular invasion (Student’s t-test; p=0.012) and increased recurrence rate (log-rank test; p=0.027) (Figure 5I, J). These findings demonstrated that miR-30e-3p downregulation participates to boost stemness properties in HCC cells characterized by a stem-like phenotype.
MiR-30e-3p regulates treatment response in HCC preclinical models through MDM2 and PTEN targeting

Due to the relevance of miR-30e-3p targets in stressful conditions and drug response, we evaluated apoptotic cell death in HepG2 and Huh-7 cells following starvation and doxorubicin or sorafenib treatment. Firstly, we considered TP53 WT HepG2 cells and observed that miR-30e-3p overexpression had no effect in basal conditions (Figure 6A). On the contrary, it increased early apoptosis (2.3-fold) following serum deprivation and both early and late apoptosis (1.3 and 7.8-fold, respectively) in doxorubicin treated cells (Figure 6B, C), which is consistent with p53 activation in these conditions (Figure S7A). WB and caspase assay confirmed increased p53 expression, apoptotic markers and caspase-3/7 activity upon miR-30e-3p enforced expression in serum-deprived and doxorubicin treated HepG2 cells (Figure 6C-E).

Similarly, sorafenib increased early apoptosis (3.1-fold increase) in miR-30e-3p transfected HepG2 cells (Figure 6F-H). Since both sorafenib (Figure S7A) and miR-30e-3p induces p53 expression (Figure 6G), we wondered if p53 might account for increased apoptotic cell death in miR-30e-3p overexpressing cells. To prove a p53-dependent response, we performed the same assays in p53-silenced HepG2 cells. In this setting, miR-30e-3p overexpression decreased (4.2-fold) early apoptotic cells (Figure 6I-K), demonstrating the central role of p53 in triggering miR-30e-3p-mediated apoptosis. In agreement, miR-30e-3p overexpression in TP53 deleted (CRISPR/Cas9 technology) HepG2 cells determined a resistance to both starvation and sorafenib (Figure S7B-E), confirming p53 as a determinant of miR-30e-3p duality in HCC. To demonstrate the relevance of PTEN/AKT axis in the absence of p53, we coupled miR-30e-3p inhibition with PTEN silencing in p53-deleted HepG2 cells. Annexin-V assay after sorafenib administration showed that PTEN inhibition decreases early apoptosis (1.5-fold) in miR-30e-3p
silenced/p53-knockout HepG2 cells confirming PTEN/AKT pathway as a driver of sorafenib-resistance in the absence of p53 (Figure S7F, G). Finally, since sorafenib triggers p27 in HepG2 cells (Figure S7H), we wondered whether p27 targeting by miR-30e-3p might influence sorafenib response. Strikingly, when both TP53 and PTEN were inhibited, miR-30e-3p overexpression decreased early apoptotic cell population (1.4-fold) in sorafenib treated HepG2 cells, suggesting p27 participation to miR-30e-3p-mediated sorafenib resistance in p53-depleted cells (Figure S7I). These findings confirm the importance of PTEN and p27 in driving miR-30e-3p-associated phenotype in TP53 mutated backgrounds. In line, miR-30e-3p overexpression in TP53 mutated Huh-7 cells determined a resistance to starvation, doxorubicin and sorafenib administration (Figure S8A-H) and high miR-30e-3p levels associated with increased tumor cell proliferation in sorafenib-treated Huh-7-derived xenograft mice (Figure S8I, J), confirming its oncogenic role in p53-mutated cells.

In sorafenib-treated DEN-HCC rats, a downregulation of miR-30e-3p expression was found in 73% of nodules (Student’s t-test; p=0.02) (Figure 7A). Sorafenib resistant tumors showed lower miR-30e-3p tissue levels (Student’s t-test; p=0.004) (Figure 7B), suggesting miR-30e-3p downregulation as an adverse event with respect to sorafenib efficacy in this model. In agreement, an inverse correlation between miR-30e-3p and tumor size (Pearson’s correlation; R=-0.69) (Figure 7C) and a positive correlation between miR-30e-3p and apoptotic markers (Pearson’s correlation; R=0.70, 0.71 and 0.49) were identified in treated rat HCCs (Figure S9A-C). Finally, the positive correlation between miR-30e-3p and p21 levels in tumor tissues (Pearson’s correlation; R=0.52) (Figure S9D) from TP53 WT rat DEN-HCCs [42], led us to speculate that miR-30e-3p/mdm2/p53 axis might take part to sorafenib sensitization also in rat tumors.

Circulating miR-30e-3p levels predict treatment response in HCC
Circulating miRNAs were proposed as biomarkers of treatment response [43] and TKIs, such as gefitinib, promote exosomal secretion [44]. Thus, we assayed if sorafenib could modulate miR-30e-3p extracellular levels. An exosome-mediated miR-30e-3p extrusion was confirmed in all HCC cell lines treated by sorafenib, except for SNU449 cells. Sorafenib decreased intracellular miR-30e-3p levels in sensitive cell lines (HepG2, Hep3B and Huh-7), while it increased miRNA levels in the resistant (SNU475) one (Figure 7D-F). Aiming at identifying molecular mechanisms underneath miR-30e-3p extrusion triggered by sorafenib, we focused on p53, a known promoter of exosomal secretion [45]. We assayed p53 activity following sorafenib treatment in WT TP53 HepG2 cells, in SNU475 cells that harbor a double TP53 heterozygous mutation but maintain a residual TP53 transcriptional activity and in SNU449 cells with a mutated and transcriptionally inactive TP53 isoform (Figure 3B). Sorafenib increased TP53 activity in both HepG2 and SNU475 cells, but not in SNU449 cells (Figure 7G). We next performed TP53 silencing and deletion in HepG2 cells and observed that p53 absence prevented miR-30e-3p extracellular and exosomal rising (Figure 7H and S9E), confirming that p53 contributes to sorafenib-mediated miR-30e-3p exosomal secretion by HCC cells.

Remarkably, an inverse correlation between tissue and serum miR-30e-3p levels was detected in both DEN-HCC rats and xenograft mice subjected to sorafenib treatment (Pearson’s correlation; R=-0.58 and R=-0.88, respectively) (Figure S9F, G). In addition, a negative correlation between miR-30e-3p circulating levels and apoptotic molecules was found in sorafenib-treated HCC rats (Pearson’s correlation; R=-0.82, -0.65 and -0.51, respectively) (Figure S9H-J) and higher circulating miR-30e-3p levels were detected in sorafenib-resistant group (Student’s t-test; p=0.05) (Figure 7I). Taken together, these correlative findings suggested miR-30e-3p as a potential biomarker of treatment response.

We thus tested circulating miR-30e-3p levels in patients with advanced HCC (Table S2), assaying sera samples collected before (46 patients, 25 responders and 21 non-responders at two months) and on sorafenib treatment (49 patients, 23 responders and 26 non-responders at the 4
months follow-up assessment). Circulating miR-30e-3p levels did not differ between responders and non-responders (mean circulating miR-30e-3p: 2.24 in R vs 1.96 in NR; unpaired t-test, p=0.3, **Figure 7J**) ruling out any predictor role of primary response. Conversely, higher circulating miR-30e-3p was found at the two months follow-up in patients experiencing escape to treatment at the four months TC (circulating miR-30e-3p at two months: 2.13 in responders vs 3.18 in non-responders, unpaired T-test, p<0.0001; **Figure 7K**), suggesting its early elevation in acquired drug resistance. In a subgroup of 28 patients (13 responders and 15 non-responders at the four months follow-up), variations of circulating miR-30e-3p were tested over time (basal versus two months follow-up). Even though the cohort is small, preventing any conclusion, an increase in circulating miR-30e-3p levels at the two months assessment was observed in patients developing escape at the subsequent CT-scan (**Figure S9K, L**). Notably, circulating miR-30e-5p levels did not predict sorafenib response neither before nor on treatment (**Figure S9M, N**) further highlighting the specificity of miR-30e-3p variations in acquired resistance to sorafenib. In conclusion, even though these data are very preliminary and circumstantial, the early rising of circulating miR-30e-3p in patients developing sorafenib resistance makes this miRNA appealing for further exploitation, in a field where non-invasive biomarkers are needed.
Discussion

MiRNAs act as tumor suppressors (TS) or oncogenes depending on targets’ core, driver gene mutations and tumor microenvironment. Here we report the downregulation of miR-30e-3p in human and rat HCCs and its association with poor prognosis, proliferation, stemness phenotype and drug resistance. The modulation of different biological functions has to be ascribed to the simultaneous targeting of both oncogenes and tumor suppressor genes.

Previous studies reported miR-30 as a ‘dual’ miRNA, with opposite functions in NSCLC and pancreatic cancer [15, 18]. Here, we describe the ‘dual’ role of miR-30e-3p within the same tumor type, highlighting opposite effects based on different molecular backgrounds and in particular to TP53 status. On one hand, miR-30e-3p decreased cell proliferation and induced sorafenib sensitization in TP53 WT HepG2 cells, behaving as a TS miRNA. On the other hand, it induced proliferation, and drug resistance in TP53-mutated/deleted HCC cells, behaving as an oncomiR. Indeed, both tumor suppressors (CDKN1B/p27 and PTEN) and oncogenes (MDM2, EpCAM) were demonstrated to be miR-30e-3p targets. Specifically, miR-30e-3p exerts TS functions in TP53 WT contexts where mdm2 targeting is prevalent, leading to p53 pathway activation. On the contrary, tumor-promoting effects take place in non-functional p53 contexts, where p27 and PTEN targeting becomes prevalent. In particular, p27 drives the proliferating phenotype; EpCAM modulates staminal properties, whereas PTEN contributes to drug resistance by triggering AKT activation [46]. Similarly, we previously reported a dual behavior for miR-221 with respect to p53 status, highlighting the importance of molecular characterization when antagoniR strategies are considered [21]. Indeed, both miR-221 and miR-30e-3p modulate the TP53 axis through mdm2 direct regulation explaining, at least in part, their opposite activity in different TP53 contexts.

As established for miR-30a and miR-30e-5p [24, 25] here we proved that p53 activates miR-30e transcription. Nevertheless, we observed a negative correlation between primary and mature
miR-30e-3p levels, envisaging regulatory events on miRNA biogenesis. Strikingly, mature but not primary miRNA profiles clustered normal and tumor samples into separate nodes, suggesting maturation processes as more relevant than altered transcription for aberrant miRNA expression [47]. Gain-of-function of mutated p53 isoforms hampers miRNA processing machinery leading to miRNA downregulation due to interference with both p68 and p72/82 RNA helicases, impairing Drosha microprocessor activity [23, 48]. Moreover, R273H mutated p53 inhibits miR-30a transcription contributing to its aberrant expression in breast cancer [49]. We observed an association between p53 mutations and miR-30e-3p downregulation, as well as the inhibition of miRNA maturation following Nutlin-3 treatment, suggesting the enrollment of other mdm2 targets, such as p53 family members (p63 and p73), as possible regulators of miRNA biogenesis. In this regard, an elegant study by Su and coworkers demonstrated that Dicer1 is a transcriptional target of TAp63 but not of p53 [50]. Our descriptive findings on p53 involvement in miRNA biogenesis led us to speculate that p53 accumulation, as in the case of MDM2 permanent inhibition by Nutlin-3, might be responsible for the transcriptional inhibition of Dicer1 through saturation of p63/p53-REs, preventing p63-mediated transcription. Dicer1 disruption in knockout (KO) mice promoted hepatocarcinogenesis and led to the deregulation of several miRNAs, including all miR-30 family members, suggesting a strict regulation of miR-30 maturation by Dicer1 in HCC [51]. Rat HCCs, characterized by a TP53 WT background [42], showed an inverse correlation between miR-30e-3p and tumor size, as well as reduced miR-30e-3p tissue levels in sorafenib resistant tumors, suggesting miR-30e-3p downregulation as a contributor to sorafenib resistance. New molecules, beside sorafenib, were recently registered for advanced HCC [52], however biomarkers predicting treatment outcome are lacking. In the last two decades, miRNAs have emerged as attractive diagnostic, prognostic and therapeutic tools [53, 54] and reliable markers [43]. Decreased miR-30e and miR-223 serum levels were reported in HCC patients irrespective
of tumor etiology [55], whereas miR-30e-enriched vesicles decreased mesenchymal properties in cholangiocarcinoma cells [56].

Our and other groups reported sorafenib as a trigger for TP53 activation and demonstrated TP53 as a key player for exosomal secretion in stressful conditions [45] even though mechanisms governing exosomal secretion remain poorly understood. Here we confirmed the contribution of the p53 pathway to miR-30e-3p exosomal secretion in sorafenib-treated HCC cell lines. In addition, as reported for the TKI gefitinib, sorafenib triggers exosome secretion in HCC cells [44]. Increased miR-30e-3p circulating levels were found in sorafenib resistant rat and human HCCs. In particular, higher miR-30e-3p circulating levels, deriving from exosomal secretion, were associated with subsequent escape to sorafenib. This does not prove a causative effect and may simple represent a bystander event; however, miR-30e-3p role as a non-invasive predictor of treatment escape can be envisaged and should be further investigated in larger patient cohorts.
Acknowledgements and Financial Support Statement

We thank Dr. Vilma Mantovani and Dr. Marinella Cenci of Genitics Unit at S.Orsola-Malpighi University Hospital for cell line authentication. We thank Dr. Clarissa Patrizi of Modena and Reggio Emilia University for her precious help with CRISPR technology.

References


**Figure Legends**

**Figure 1. Deregulated expression of miR-30 family in human and rat HCCs.** (A-C) Box plot graphs of miR-30e-3p, miR-30e-5p and miR-30a-3p in human and (D-F) rat tumor and non-tumor (NT) samples or liver cirrhosis (LC). (G-I) Box plot graph of miR-30e-3p, miR-30e-5p and miR-30a-3p in the validation cohort and in normal livers (NL). On the top of each graph is reported the p-value relative to ANOVA, whereas stars represent comparison between groups (Tukey’s post hoc test). (J, K) Box plot graphs of mature and primary (pri-miR) miR-30e-3p in wild type (WT) and mutated (MUT) TP53 HCC specimens. Y-axes report $2^{-\Delta\Delta Ct}$ values corresponding to miRNA levels.

**Figure 2. TP53 regulates miR-30e expression in HCC cells.** (A) QPCR analysis of primary miR-30e (pri-miR-30e) and mature isoforms (miR-30e-3p, miR-30e-5p, miR-34a) in TP53 silenced, (B) TP53 overexpressing (pCMV-p53) and (C) Nutlin-3 treated HepG2 cells or (D-E) Nutlin-3 treated p53-deleted HepG2 (CRISPR) and p53-null Hep3B cells. (F) QPCR analysis of primary miR-30e and mature isoforms in TP53 overexpressing Hep3B cells and (G) mutated TP53 (pBabe-p53-mut) overexpressing HepG2 cells. (A-G) WB and qPCR analyses of TP53, MDM2, CDKN1A/p21 in the same settings. U6RNA and β-actin were used as housekeeping genes. QPCR experiments were performed twice in triplicate; p-values from unpaired t-test are shown in each graph. Scr: scramble oligonucleotide; pCMV and pBabe: control vectors; DMSO: vehicle.

**Figure 3. MiR-30e-3p targets MDM2 in HCC cells.** (A) MiR-30e-3p hypothetical binding sites in MDM2 3'UTR, as identified by Targetscan. Stars represent mutated bases. (B) QPCR analysis of miR-30e-3p in HCC, liver cirrhosis (LC) and normal liver (NL) as well as in HCC cell lines.
TP53 status and relative transcriptional activity are reported in the table below the graph. TP53 activity has been normalized on that detected in HepG2 cells. (C-E) QPCR and WB analyses of miRNA and MDM2 expression in miR-30e-3p overexpressing Huh-7, Hep3B and SNU475 cells and (F) miR-30e-3p silenced SNU449 cells. Time after transfection: 24 h. Y-axes represent relative expression levels. U6RNA and β-actin were used as housekeeping genes. (G) Luciferase reporter assay in HepG2 cells co-transfected with wild type (WT) or mutated (MUT) pGL3-MDM2-3UTR vectors and miR-30e-3p or negative control (NC). This experiment was repeated three times in triplicate. (H) P53 reporter assay and WB analysis in miR-30e-3p overexpressing HepG2 and Huh-7 cells. (G, H) Y-axes report relative values with respect to negative controls. NC: pre-miR negative control; NCi: anti-miR negative control; AM-30e-3p: anti-miR-30e-3p.

Figure 4. MiR-30e-3p influences cell growth and invasion of HCC cells. (A, B) Growth curves of miR-30e-3p and negative control (NC) transfected HepG2 cells in basal conditions and following p53 silencing. (C-E) Growth curves of miR-30e-3p transfected Huh-7, Hep3B and SNU475 cells with respect to negative control (NC) cells. (A-E) WB analysis of p53, PTEN, pAKT, p27 and p21 levels normalized on β-actin housekeeping gene. (F) Real time invasion assay of miR-30e-3p stably silenced (MZIP-30e-3p) HepG2 and SNU449 cells with respect to controls (MZIP-shRNA).

Figure 5. MiR-30e-3p influences stem cell properties of HCC cells. (A) Correlation graphs between miR-30e-3p and AFP or EpCAM mRNAs in HCC patients (N=30). Axes report 2^ΔΔCt values transformed in a log2 form. (B) QPCR analysis of EpCAM expression in miR-30e-3p overexpressing Huh-7 cells (transient transfection) and miR-30e-3p silenced HepG2 cells (stable infection). Y-axis reports relative gene expression. (C) Luciferase reporter assay in HepG2 cells.
co-transfected with WT or mutated (MUT) pGL3-EpCAM-3UTR vectors and miR-30e-3p or negative control (NC). (D-F) Six-well plate images of clonogenic assay in MIZ-30e-3p and control (MZIP-shRNA) HepG2 and SNU449 cells, as well as in miR-30e-3p overexpressing (pMXs-miR-30e-3p) and control (pMXs-shRNA) Huh-7 cells. Column graphs represent colony count and OD 595. Columns and bars represent average ± SD values. (G) Sphere formation assay in MZIP-30e-3p and control HepG2 cells as well as in pMXs-miR-30e-3p and control (pMXs-shRNA) Huh-7 cells. Average ± SD values from two independent experiments are shown. (H) WB analysis of stemness markers in MZIP-30e-3p HepG2 and pMXs-miR-30e-3p Huh-7 spheres. (I) Box plot graph displaying miR-30e-3p expression in patients with or without microvascular invasion (MVI). (J) Kaplan-Meier survival curve in HCC patients with high or low miR-30e-3p expression. High or low miRNA values were considered with respect to median value.

Figures 6. MiR-30e-3p induces drug sensitization in HepG2 cells. (A) Annexin-V assay in untreated or (B) serum deprived (60h) miR-30e-3p overexpressing and control cells. (C-E) Annexin-V images, WB analysis and caspase activity assay in miR-30e-3p overexpressing cells following doxorubicin (2.0 µg/ml, 48h) or (F-H) sorafenib treatment (7.5 µM, 48h). (I-K) Annexin-V images, WB analysis and caspase activity assay in p53-silenced miR-30e-3p overexpressing HepG2 cells following sorafenib treatment.

Figure 7. Increased miR-30e-3p serum levels associate with sorafenib escape in HCC. (A) Box plot graph displaying miR-30e-3p levels in sorafenib-treated rat HCCs with respect to surrounding livers or (B) in responder (R) and non-responder (NR) groups. (C) Correlation graph between tissue miR-30e-3p levels and tumor size in sorafenib-treated rat HCCs. (D)
QPCR analysis of intracellular, (E) extracellular and (F) exosomal miR-30e-3p levels in untreated and sorafenib treated HCC cells. Y-axes report relative values with respect to not-treated cells. DMSO was used as vehicle in untreated cells. Numbers below histograms represent relative cell viability values (%) of sorafenib treated versus untreated cells (48 h) identifying sensitive and resistant cell lines. (G) TP53 activity assay in sorafenib treated HepG2, SNU449 and SNU475 cell lines (5 µM for 48 h). Y-axis reports relative p53 activity with respect to untreated cells (vehicle: DMSO). (H) QPCR analysis of intracellular, extracellular and exosomal miR-30e-3p levels in scramble and p53-silenced HepG2 cells after sorafenib treatment (5 µM for 48 h). U6RNA and cel-miR-39 were used as housekeeping genes for intracellular and extracellular/exosomal miRNA levels, respectively. Y-axis reports relative values with respect to not-treated cells. (I) Box plot graph displaying circulating miR-30e-3p levels in responder (R) and non-responder (NR) animals. (J) Box plot graph displaying circulating miR-30e-3p levels in serum samples from responder and non-responder HCC patients collected before treatment start and (K) at two-month follow-up. Response/escape to sorafenib was assessed at the subsequent (2-months or 4 months respectively) TC scan. Axes report $2^{\Delta\Delta Ct}$ values transformed in a log2 form.
Figure 1

A. Discovery cohort, p = 0.0002
B. Discovery cohort, p = 0.003
C. Discovery cohort, p = 0.008

D. DEN-HCC rats, p = 0.034
E. DEN-HCC rats, p = n.s.
F. DEN-HCC rats, p = n.s.

G. Validation cohort, p = 0.004
H. Validation cohort, p = 0.001
I. Validation cohort, p = 0.013

J. Validation cohort, p = 0.04
K. Validation cohort, p = n.s.
Figure 3

A

**hsa-miR-30e-3p/MDM2 Alignment**

| 3' ogcacauguugcagouGCACUUUc 5' hsa-miR-30e-3p | mirSVR score: -0.0048 |
| 4715:5' aqgcaauaagacacCUAGA Au 3' MDM2 | PhastCons score: 0.5553 |

**hsa-miR-30e-3p/MDM2 Alignment**

| 3' ogcacaauugcagouGCACUUUc 5' hsa-miR-30e-3p | mirSVR score: -0.0009 |
| 3082:5' ogcacaauAAGUUUUCUUAGA Au 3' MDM2 | PhastCons score: 0.5061 |

**hsa-miR-30e-3p/MDM2 Alignment**

| 3' ogcacaauugcagouGCACUUUc 5' hsa-miR-30e-3p | mirSVR score: -0.0006 |
| 5477:5' cuuugagauagacCUAGA Au 3' MDM2 | PhastCons score: 0.5250 |

B

| p53 status | WT | DEL | MUT | MUT | MUT | MUT | MUT |
| p53 activity | 1.0 | n.a | 0.17 | 0.12 | 0.18 | 0.068 | 0.35 |

C

**Huh-7**

| miR-30e-3p | NC | 1 | 30573 |
| kDa | mdm2 | 1.0 | 0.67 |
| B-actin | 37 |

**Hep3B**

| miR-30e-3p | NC | 1 | 10086 |
| kDa | mdm2 | 1.0 | 0.78 |
| B-actin | 37 |

**SNU475**

| miR-30e-3p | NC | 1 | 13308 |
| kDa | mdm2 | 1.0 | 0.60 |
| B-actin | 37 |

**SNU449**

| miR-30e-3p | NC | 1 | 0.0073 |
| kDa | mdm2 | 1.0 | 1.6 |
| B-actin | 37 |

D

**MMD2 mRNA**

| MMD2 mRNA | NC | 0 |
| p=0.0089 |

**mdm2 mRNA**

| mdm2 mRNA | NC | 0 |
| p=0.037 |

**HepG2**

| p=0.01 |

**SNU75**

| p53 activity | NC | miR-30e-3p | Huh-7 |
| p=0.01 |

**SNU449**

| p53 activity | NC | miR-30e-3p | Huh-7 |
| p=0.01 |

Downloaded from cancerres.aacrjournals.org on February 16, 2020. © 2020 American Association for Cancer Research.
MiR-30e-3p influences tumor phenotype through MDM2/TP53 axis and predicts sorafenib resistance in hepatocellular carcinoma

Laura Gramantieri, Daniela Pollutri, Martina Gagliardi, et al.

Cancer Res Published OnlineFirst February 3, 2020.