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Abstract 
Purpose: Over the last two decades, increasing attention has been paid to environmental toxins and their 
effects on the female reproductive system. Endocrine disrupting chemicals (EDCs) are exogenous 
substances or mixtures that can mimic the action of steroid hormones and interfere with their metabolism. 
Advanced glycation end products (AGEs) are proinflammatory molecules that can interact with cell surface 
receptors and mediate the triggering of proinflammatory pathways and oxidative stress. The purpose of 
this review is to explore the effects of environmental toxins exposure in the pathogenesis of both polycystic 
ovary syndrome (PCOS) and OC (ovarian cancer), considered separately, and also to evaluate possible 
neoplastic ovarian repercussion after exposure in patients diagnosed with PCOS. 
 
Materials and methods: We searched PubMed for articles published in the English language with the use of 
the following MeSH search terms: “Polycystic Ovary Syndrome” and “Ovarian Cancer” combined with 
“endocrine disruptors”. Titles and abstracts were examined and full articles that met the selection criteria 
were retrieved. A manual search of review articles and cross-references completed the search.  
 
Results: Extensive data from different studies collected in recent years concerning the effects of EDCs/AGEs 
exposure have confirmed their role in the pathophysiology of both PCOS and OC. They favour PCOS/OC 
development through different mechanisms that finally lead to hormonal and metabolic disruption and 
epigenetic modifications. 
 
Conclusions: Environmental toxin exposure in PCOS women could favour neoplastic transformation by 
exacerbating and potentiating some PCOS features. Further research, although difficult, is needed in order 
to prevent further diffusion of these substances in the environment, or at least to provide adequate 
information to the population considered at risk. 
 
Keywords: polycystic ovary syndrome; ovarian cancer; endocrine disrupting chemicals; advanced glycation 
end products 
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BACKGROUND 
Endocrine Disrupting Chemicals and Advanced Glycation End products  
Endocrine disrupting chemicals (EDCs) are defined as “exogenous substances or mixtures that alter 
function(s) of the endocrine system and consequently cause adverse effects in an intact organisms or its 
progeny or (sub)population”1. Also known as endocrine disruptors, they can mimic the action of steroid 
hormones and “interfere with the synthesis, secretion, transport, metabolism, binding action or elimination 
of natural blood-born hormones that are present in the body and are responsible for homeostasis, 
reproduction and developmental process”2. They usually possess a phenol group and express affinity for 
hormone receptors (e.g. oestrogen, progestin, androgen), although lower than the natural ligand. They may 
also interfere with the synthesis of carrier proteins, such as sex-hormone binding globulin (SHGB), and alter 
the transport of steroid hormones to target cells3,4. Over the last two decades, increasing attention has 
been paid to EDCs and their effects on the female reproductive system. More than 800 chemicals have 
been classified as EDCs, including drugs (diethylstilbestrol (DES)), pesticides 
(dichlorodiphenyltrichloroethane (DTT), atrazine, vinclozin), polychlorinated biphenyls (PBCs), dioxin and 
dioxin-like compounds, plasticizers (bisphenol A (BPA), bisphenol F, bisphenol S, phthalates), heavy metals 
(lead, arsenic, aluminum, cadmium) and the list is growing rapidly5. These chemicals are present in 
common industrial and home products and possess a high potential for bioaccumulation in the food web6. 
Therefore, humans are continually exposed to a mixture of EDCs and the contact with them has become 
inevitable today1,7. In addition, globalisation and consumerism have amplified the phenomenon. Heat-
processed food and highly processed products represent an important source of advanced glycation end 
products (AGEs)8. Also called glycotoxins, AGEs are proinflammatory molecules that can interact with cell 
surface receptors (receptors for AGEs, RAGE) and mediate the triggering of proinflammatory pathways and 
oxidative stress9,10. They are believed to take part in atherosclerosis and diabetes pathogenesis, female 
fertility disruption and carcinogenesis8,11-13.  
 
The exact mechanism of action by which EDCs interfere with the female reproductive system is not yet fully 
understood. However, it is well established that through binding to nuclear hormone receptors, with 
agonistic or antagonistic effect, they may activate a rapid downstream intracellular signalling, resulting 
transcription errors (genomic pathway)14. They primarily alter the oestrogen (E) signalling pathway, 
probably because it is evolutionarily conserved among animals and regulates many functions of the female 
reproductive system15. They may also act through binding to membrane steroids hormone receptors or G 
protein-coupled receptor 30 (GPR30), leading to protein kinase activation and recruitment of second 
messengers, which interfere with synthesis, secretion, transport and metabolism of endogenous hormones 
(non-genomic pathway)16. Recently, other mechanisms have been taken into account, including oxidative 
stress17 and epigenetic effects18,19. 
 
Polycystic Ovarian Syndrome  
Polycystic Ovarian Syndrome (PCOS) is a common and complex endocrinopathy that affect women of 
reproductive age20. PCOS affects approximately 5 to 10% of the general female population21. Depending on 
the diagnostic criteria and the geographic location this percentage may rise up to 21%22. PCOS was 
redefined in 2003 in a consensus meeting between the European Society of Human Reproduction and 
Embryology and the American Society of Reproductive Medicine (ESHRE/ASRM)23. Affected individuals 
must meet at least two of the following criteria (Rotterdam criteria):  

(i) clinical and/or biochemical hyperandrogenism  
(ii) oligo-/anovulation  
(iii) polycystic ovaries.  

 
The pathophysiology of this endocrine disorder is still unclear, however a genetic basis (multifactorial and 
polygenic) is suspected24. Some authors have suggested a possible autosomal dominant inheritance, based 
on the higher prevalence of increased androgens (A) levels and insulin-resistance in relatives of PCOS 
women25. In addition a possible role of environmental factors and lifestyle has also been taken into 
account24. Key features of PCOS are hyperandrogenism and insulin resistance, that exhibit in various 
degree. Hyperandrogenism contributes to clinical phenotypes and fertility dysregulation. The most 
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common clinical signs include hirsutism, acne, menstrual cycle dysfunction (oligo-/amenorrhea, 
unpredictable bleeding) and subfertility/infertility20,26. Amenorrhea and oligomenorrhea result from 
anovulation. The lack of endogenous progesterone (P), generally produced by the corpus luteum after 
ovulation, impedes the triggering of a normal menstrual cycle. In addition, elevated A levels counteract the 
proliferative effect of E on the endometrium, resulting in a thin endometrial stripe. Insulin resistance (IR) 
and compensatory hyperinsulinemia are present in the majority of PCOS women27. Elevated insulin levels 
stimulates A production (further promoting anovulation) and may also favour the development of 
obesity28. However, given the fact that obesity itself, in particular central obesity, exacerbates IR, its 
prevalence increases with the rate of obesity28. The metabolic profile of PCOS women is similar to that seen 
in the metabolic syndrome and includes atherogenic dyslipidemia (increased LDL-cholesterol and 
triglycerides levels, depressed HDL-cholesterol levels and elevated total cholesterol:HDL-cholesterol ratios) 
and impaired glucose tolerance. Consequently, patients with PCOS are more likely to develop type 2 
diabetes (T2DM)29 and cardiovascular disease (CVD)30 when compared to the general population.  

 
Ovarian Cancer  
Worldwide, ovarian cancer (OC) is the 7th leading cause of cancer in females31 and the 1st cause of death 
from gynaecological malignancies32 and its incidence is continuously rising both in Western countries and 
Asian nations31,33. Postmenopausal women are more likely to be diagnosed with OC. Although the 
pathophysiology is poorly understood, several factors including genetic, reproductive, hormonal and 
behavioural factors, may contribute to the tumorigenic process34. Evidence suggests that hormonal 
imbalance plays a key role in OC development. OC cells express higher levels of oestrogen receptor alpha 
(ERα) when compared to normal ovarian cells, suggesting that E may provide a favourable hormonal milieu 
for tumour progression by directly regulating cellular growth and proliferation35. Recent advances in 
molecular techniques have led to consider OC as a complex group of distinct diseases sharing a common 
anatomical location36. In 90% of the cases, OCs arise from the neoplastic transformation of epithelial cells 
on the ovarian surface37. Epithelial ovarian tumours are further divided into type 1 and type 2 subgroups38. 
Type 1 OCs are generally low-grade and well differentiated and include low-grade serous and mucinous 
carcinoma, endometrioid carcinoma, clear-cell carcinoma and transitional carcinoma. They are usually 
ovarian derived or may arise from pre-invasive endometriotic lesions. On the other hand, type 2 OCs are 
high-grade, undifferentiated and metastasized tumours and account for the 75% of all OC diagnoses. This 
subgroup includes high-grade serous adenocarcinoma, high-grade endometrioid-carcinoma, 
carcinosarcoma and undifferentiated carcinoma39,40. OC is usually considered a sporadic disease, but in 10 
to 15% of the cases it shows hereditary etiology41. The genetic profiling of OC varies among the two 
subgroups. Type 1 OCs are usually characterised by genomic stability and frequently exhibit point 
mutations42. Type 2 OCs are usually the result of multiple mutational events that mainly involve p53 genes. 
The reduced activity of the tumour suppressor protein 53 (TP53) leads to uncontrolled cellular growth and 
division, favouring the development of cancer43. In addition, constitutive mutations in breast cancer 
antigen (BRCA) 1 and 2 genes are also often associated with type 2 OCs. Indeed, women with a BRCA1 gene 
mutation have 40% to 60% lifetime risk of developing OC, whereas the risk for women with BRCA 2 gene 
mutation is 20% to 35%44. 

 
MATERIAL AND METHODS 
We search PubMed for articles published in the English language with the use of the following MeSH search 
terms: “Polycystic Ovary Syndrome” and “Ovarian Cancer” combined with “endocrine disruptors”. Titles 
and abstracts were examined by two reviewers (I.S. and T.O.) and full articles that met the selection criteria 
were retrieved. A manual search of review articles and cross-references completed the search. All selected 
articles were assessed for study design, patient characteristics, diagnosis of PCOS/OC, type of EDC studied 
and completeness of information of the data sets. 
 
ENVIRONMENTAL TOXINS EXPOSURE AND PCOS 
Increased levels of BPA in biological fluids have been reported in both women and adolescents with PCOS 
when compared to healthy, non hyperandrogenic and ovulating controls45-47. Higher serum levels of other 
EDCs (PBCs, organochlorine pesticides, perfluorooctanoate, perfluorooctane sulfonate, polycyclic aromatic 
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hydrocarbons)48,49 and AGEs have also been observed in PCOS patients50. In one study elevated circulating 
serum levels of AGEs were positively associated with higher serum concentrations of antimüllerian 
hormone (AMH), testosterone (T) and insulin51. The link between environmental toxins exposure and PCOS 
may lay in the interaction between EDCs/AGEs and sex hormones, but human data are still limited6. The 
molecular similarity of environmental toxins to endogenous steroids hormones may favour the 
development of PCOS through different mechanisms that could finally lead to hormonal and metabolic 
disruption (Figure 1). 
 
Hormonal disruption 
EDCs may contribute to the destabilisation of hormonal homeostasis both by acting directly at gonadal 
level (direct effect) or via alteration of the hypothalamic-pituitary-ovarian axis (indirect effect)52. At ovarian 
level, possible effects on both granulosa and theca cells have been hypothesized. Elevated levels of BPA in 
follicular fluid may be responsible for decreased expression of aromatase and reduced production of E in 
granulosa cells, finally disrupting the intrafollicular environment and affecting oocytes growth and 
maturation53. Similar effects have also been shown in case of exposure to other popular plasticizer-
phthalates54. The impact of BPA on oogenesis may be modulated by the interaction with a variety of 
receptors, including ERα and β55, nonclassical membrane ER and GPR3056. In theca cells, BPA may stimulate 
A secretion53 and may inhibit T clearance and catabolism57, consequently increasing A circulating levels. In 
addition, BPA is a powerful SHBG ligand and it is able to displace T from SHBG, increasing free T serum 
levels58. Moreover, the increased levels of A reduce the hepatic clearance of BPA by decreasing the activity 
of UDP glucuronyl-transferase liver enzyme, consequently increasing free BPA levels and therefore 
contributing to the perpetuation of BPA/A reciprocal relationship59. The result of all these actions is the 
disruption of A-E balance, thus impairing oocytes maturation. EDCs may also be involved in the 
pathogenesis of anovulation by suppressing E production through a receptor-mediated signalling pathway 
(peroxisome proliferator-activated receptors, PPARγ)60. AGEs have also been reported to be able to impact 
oocytes development and maturation through different mechanisms of action: chronic inflammation and 
oxidative stress are though to play a pivotal role in AGE-mediated disruption of reproductive function in 
preovulatory follicles in PCOS women61,62. 
 
Metabolic disruption 
As stated before, the metabolic profile of PCOS women is characterized by IR with compensatory 
hyperinsulinemia and obesity and environmental toxins may be involved in the pathophysiology of both of 
them. Indeed, BPA may promote the development of IR by reducing adiponectine secretion, resulting in 
increased oxidative stress, inflammation and disruption of adipogenesis, which favour the onset of both 
T2DM and CVD63,64. In addition, it has also been observed that BPA has a direct effect on pancreatic cells, 
which contributes to the disruption of glucose homeostasis, leading to hyperinsulinemia, thus further 
increasing the risk of T2DM65,66. In vitro studies have also suggested a possible involvement of AGEs in the 
pathogenesis of IR. Indeed, glycotoxins may reduce glucose uptake by adipocytes67 and alter glucose 
transport in human cells68. AGE-induced inflammation may also decrease insulin sensitivity69. Moreover, it 
is well known that obesity itself worsens IR and central and visceral obesity are present in about 30-75% of 
PCOS women70. A positive correlation between glycotoxins serum levels and waist-hip ratio has been 
reported68 and in vitro studies support the role of AGEs in stimulating adipogenesis71. Moreover, it has also 
been observed that higher body mass index correlates with lower levels of soluble RAGE, thus reducing 
AGEs clearance and favouring their deposition in reproductive tissues (e.g. ovaries), possibly affecting 
steroidogenesis72,73. In addition, increased AGEs serum levels potentiate the inflammatory process already 
present in obese patients and worsen the metabolic aberrations characteristic of PCOS women, thus 
aggravating the metabolic syndrome components of the disease74. Furthermore, EDCs are often classified 
as “environmental obesogens”. Indeed, they promote fat accumulation, by altering lipid homeostasis and 
fat storage75. The molecular pathways by which these compounds participate in obesity development may 
include the interaction with both PPARγ and ER55,76, which may promote the expression of adipogenic 
genes77 and may enhance adipocytes differentiation78. 
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ENVIRONMENTAL TOXINS EXPOSURE AND OC 
Several studies have given substantial evidence concerning the link between EDCs/AGEs and OC 
development (Figure 2). Human exposure to different EDCs (e.g. pesticides, triazine herbicides, 
organophosphate diazinon, triclosan, methoxychlor (MXC)) has been proven to increase the risk of OC79-83 
and many studies conducted on animal models support this hypothesis. Mice exposed to BPA and 2,2-bis(p-
hydroxyphenyl)-1,1,1-trichloroethane (HPTE) have shown an increased incidence of ovarian cysts and 
ovarian adenomas, along with an enhanced OC cells proliferation84,85. Additionally, BPA has also been 
reported to interfere with sex steroid hormones synthesis, leading to hormonal imbalance86.  
 
Hormonal effects 
The role of E in the development and progression of OC is still debated, but a possible involvement in the 
early stages of malignancy seems plausible. Several studies conducted on postmenopausal women have 
linked hormone replacement therapy to an increased risk of OC87-89 and recent studies have reported that 
both E and E+P preparations are equally associated with OC90. Given the fact that some EDCs exhibit 
estrogenic properties, the environmental exposure may thus activate ER signalling, favouring cancer 
development91. Some in vitro studies support this hypothesis: plasticizers and pesticides have been shown 
to promote OC cells proliferation via E pathways activation83,92 and DDT via nuclear receptor binding93. Also 
EDCs with antiestrogenic properties might disrupt the hormonal milieu. The perimenopausal phase is 
characterized by increased levels of gonadotropins (hypergonadotropic condition) that are able to activate 
different molecular pathways involved in cellular growth and invasion and EDCs exposure may enhance this 
process, further increasing gonadotropins levels and consequently the risk of OC94. It has been reported 
that chlorpyrifos and MXC might be able to alter gonadotropin-releasing hormones production95,96 and that 
DDT might disturb the normal functioning of gonadotropins via the expression of FSH and LH97.  
 
The overexpression of androgen receptor in OC cells98 suggests that A may also play a role in the 
tumorigenic process. Androgens are involved in the regulation of cells proliferation and, in particular, are 
able to decrease cell death98. Some authors have depicted a possible link between the use of exogenous A 
and an increased risk of OC99,100 and some studies conducted on animal models have shown that the 
exposure to EDCs with androgenic properties (e.g. 4-Nitro-3-phenylphenol) is associated with hormonal 
disruption101.  
 
Epigenetic effects 
Long-term exposure to environmental toxins may also be associated with changes in gene expression 
(epigenetic modifications)102. Several epigenetic markers have been taken into account, including histone 
modifications, non coding RNAs transcription and changes in DNA methylation103. The latter is the most 
studied and consists in the transfer of a methyl group(s) to a DNA molecule by DNA methyl transferases 
(DNMTs) activation104. This process is essential for normal cellular development, but it is also believed to 
play a key role in carcinogenesis105. Chemicals and environmental toxins may interfere with the methylation 
of CpG islands (DNA regions where a cytosine nucleotide is followed by guanine nucleotide, separated only 
by a phospahte group) which can cause permanent silencing or activation of particular genes105. The 
epigenetic effect of EDCs in case of reproductive cancer has been observed106,107, but only few studies have 
examined the EDC-related epigenetic changes in the ovary. It has been reported that EDCs may alter the 
expression of E responsive genes by promoting hypermethylation in the promoter region of hormone 
receptor genes, leading to gene silencing108,109. In addition, studies on animal models have shown that high 
doses of MXC are associated with hypermethylation of ER β, DNA methyltransferase 3 β and pregnancy 
associated plasma protein A genes in rats110. Reduced expression of ER β gene and increased activity of 
DNMT gene under the influence of EDCs have also been observed108. 
 
POSSIBLE OVARIAN NEOPLASTIC REPERCUSSION IN PCOS WOMEN EXPOSED TO EDCs 
The previous sections explored the effects of environmental toxins exposure in the pathogenesis of both 
PCOS and OC, considered separately. The current section pertains to the possible neoplastic ovarian 
repercussion after environmental toxins exposure in patients with PCOS.  
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The possible association between PCOS and increased cancer risk was first hypothesized in 1940111 and, 
more recently, concerns that women with PCOS might be at increased risk of OC have been raised112. PCOS 
has been postulated to promote OC development mainly through excessive A stimulation98,113. Normal 
ovarian cells as well as borderline ovarian tumours cells express androgen receptors on their surface, and 
increased A levels positively correlate with an increased risk of borderline serous and invasive mucinous 
tumours114,115. Only few studies examined the possible link between PCOS and OC with inconsistent 
results98,99,116-123. Many of these studies had small cohort sizes and different diagnostic criteria for PCOS 
were used, limiting the power of the study and introducing selection bias. A recent review published by 
Harris et al. failed to identify a clear association between PCOS and OC and several potential confounders 
have been pointed out126. Firstly, obesity is a common finding in PCOS women who are also, as stated 
before, at higher risk of T2DM, IR and metabolic syndrome27,29,125. All these conditions have been 
associated with ovarian cancer126,127 and, in case of PCOS women, could act as potential intermediate 
variables. Few studies adjusted their results for these confounders, resulting in an attenuation of the true 
association120. In addition, oral contraceptives are often a first-line treatment in PCOS women not seeking 
for pregnancy, which use seems to play a protective role in ovarian neoplasms development by decreasing 
the number of potentially damaging ovulations128,129. Furthermore, metformin is frequently prescribed in 
PCOS patients in order to improve IR and reduce the risk of T2DM. Laboratory studies have advised a 
possible anti-cancer activity of metformin130 and several studies have confirmed its influence on ovarian 
cells growth and proliferation131,132. One study reported a decreased risk of OC in patients treated with 
metformin118. Age represents another possible confounding factor. Given the fact that postmenopausal 
women are more likely to be diagnosed with OC, in a recent meta-analysis published by Barry and 
colleagues only PCOS patients <54 years of age (premenopausal women) were considered and even in this 
case, no robust association between PCOS and OC was found119.  
 
Although there may be several confounding factors, environmental toxins exposure in patients with PCOS 
may exacerbate some PCOS features (hormonal, metabolic, genetic) that in the end may favour the 
neoplastic process.  
 
Hormonal pathways 
Cells within the ovaries and on their surface are responsive to A, which have antiapoptotic effects and 
induce cells proliferation, thus promoting cell survivability, mutations’ accumulation and, eventually, 
neoplastic transformation. Moreover, once ovarian cells turn malignant, they possess the enzymatic 
capabilities to synthesized A with greater biological effects and tend to overexpress androgen receptors133-

135. Both PCOS and BPA synergically increase not only A levels, but also free A levels, since BPA manages to 
unbind T from SHBG58. BPA plasmatic concentrations positively correlate with T, free T, androstenedione 
and DHEA levels in PCOS women45,46. Considering the above-mentioned premises, this hormonal disruption 
can furthermore increase ovarian cancer growth both directly, acting on A receptors, and indirectly, 
providing weaker A to the tumour enzymatic machinery, which in turn will convert them into more 
biologically active ones52,136. Additionally, elevated A levels impede the hepatic clearance capacity of BPA, 
creating a vicious circle that promotes A production and in the end tumour mass growth137. 
 
Oestrogens effects on ovarian cancer cells are somewhat less clearly defined, considering that OC is 
typically found in postmenopausal women. Still, both ER α and β are found in more than half of all ovarian 
tumours138. Αlfa receptors support cellular growth and are counterbalanced by β receptors. In time, ovarian 
malignant cells that only express α receptors are selected139,140. PCOS patients are usually 
overweight/obese141. The hypertrophic fatty tissue is the production site of estrone, an E with low 
biological effects, but still a proliferative stimulus to ovarian cells. Additionally, the hyperandrogenic 
condition typical of PCOS provides other substrates to the aromatase located in adipocytes, favouring A 
conversion to E. EDCs in general can act either with estrogenic effect or with antiestrogenic effect, 
depending on the substance(s), on its dose and on possible synergic effects with other EDCs142. When the 
net effect tips toward the estrogenic effect, PCOS and EDCs could act directly toward premalignant and 
malignant cells proliferation by binding to ER, while when the net effect is rather antiestrogenic, we may 
occur in a negative feedback at hypothalamic level, with subsequent gonadotropins release, which, in turn, 
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will stimulate gonadal cells proliferation and hormones synthesis, still concurring in tumour 
proliferation92,93,142-144.  
 
Metabolic disruption 
The low-grade systemic inflammation typical of the metabolic syndrome of PCOS women is bolstered by 
EDCs, as stated above. This meta-inflammation promotes tumour growth through, at least, two major 
mechanisms: oxidative stress and IR. 
 
Oxidative stress, a known carcinogenetic stimulus, is a by-product of chronic metainflammation mainly 
sustained by TNF-α and IL-6, powerful cytokines produced by adipose tissue and its residing 
macrophages145,146. TNF-α leads to lipolysis and subsequent IL-6 secretion. In the liver, IL-6 is responsible 
both for acute phase proteins synthesis (further promoting systemic inflammatory response) and, also, for 
IR, not only in hepatic cells but also in peripheral tissues (skeletal muscles cells). EDCs (namely 
organochlorines) increase adipogenesis and maturation of mesenchymal stem cells into adipocytes through 
growth factors expression (BMP, EGF, IGF-1), leading to deposition of fatty tissue, both visceral and 
peripheral147,148. IR comes from EDCs-derived TNF-α activity, which impedes glucose uptake at cellular level 
by downregulating GLUT-4 transporters function149. EDCs exposure (BPA and diethylhexyl phthalate) during 
gestation and during the immediate post-natal period, could cause reduced insulin secretion, hyperglicemia 
and pancreatic insulitis in adult life150-152. In addition, EDCs alter the surrounding environment of pancreatic 
islets, adipose muscle and hepatic cells by affecting the extracellular matrix153. Inflammation, deposition of 
connective tissue and angiogenesis are finally promoted, altering the blood flow in metabolically active 
tissues and causing chronic low grade ischemic damages, further stimulating the inflammatory response 
and decreasing hormonal secretion capability via a multitude of pathways (hormonal receptor, intracellular 
second messenger, growth factors)154-156. The result is an important disruption in the ability of insulin to 
exert its effects favouring hyperglycaemia and compensatory hyperinsulinemia. Hyperglycaemia leads to 
AGEs formation. Considering AGEs pro-inflammatory effects, we circle back to reactive oxygen species 
(ROS) and their oxidative stress, amplified not only as a local ischemic-derived damage to adipose tissue 
and skeletal muscle, but as systemic insults, especially in ovarian pre-malignant and malignant cells, where 
DNA strands get damaged, steroidogenesis is impaired and overall ovarian disfunction is found74. AGEs alter 
insulin sensitivity and glucose uptake directly in granulosa cells68 and in adipocytes67. Finally, PCOS derived 
hyperandrogenism further impairs the body capacity of AGEs clearance, amplifying their effects. 
Hyperinsulinemia (derived from PCOS, EDCs and AGEs) promotes A production in the ovaries, thus 
providing a proliferative stimulus, also sustained by IGF-1, a molecule capable of sustaining cellular mitosis 
and of dampening cisplatin pro-apoptotic effects when neoplastic transformation has already taken 
place157. 
 
Epigenetics 
EDCs can cause epigenetic modifications, especially during pre- and peri-natal exposition158. These “subtle” 
epigenetic alterations accompany the individual throughout its life and can concur to carcinogenesis. The 
data available on epigenetic changes and ovarian cancer mainly show that ER are involved, particularly 
downregulating suppressor receptors (ER β), through gene promoter hypermethylation, resulting in 
silencing gene activity109. In the context of PCOS and EDCs exposure, the shift toward ERα-only expression 
may be included in a pro-estrogenic milieu granted by abundant adipose tissue (PCOS), xenoestrogens 
(EDCs) and a spontaneous receptor selection already undertaken by the ovarian neoplasm striving to grow. 
Many xenoestrogen can only exert a modest estrogenic effect, but they have greater bioavailability (almost 
complete) when compared to endogenous oestrogens. Moreover, xenoestrogens of different kind can work 
synergically with one another and with endogenous oestrogens159-162.  
 
CONCLUSION 
In conclusion, the molecular similarity of environmental toxins to endogenous steroids hormones may lead 
to hormonal and metabolic disruption, favouring both PCOS and OC development. In addition, patients  
diagnosed with PCOS who are exposed to environmental toxins may be at higher risk of OC. Several 
mechanisms seem to play a role in this process: 

Acc
ep

te
d 

M
an

us
cr

ipt



 
 

• hyperandrogenism, a key feature of PCOS patients, seems to be further boosted by EDCs 
exposure, finally promoting cells proliferation and in the end tumour mass growth;  

• some EDCs show estrogenic properties and especially in overweight/obese patients with PCOS 
(where the hypertrophic fatty tissue represents the production site of estrone and the 
conversion site of A to E) may promote tumour proliferation by binding to ERα present in more 
than half of all ovarian tumours; 

• the low-grade systemic inflammation typical of the metabolic syndrome of PCOS women is 
bolstered by EDCs by two major mechanisms, oxidative stress and insulin-resistance,  which 
may lead to DNA strands damage and impaired steroidogenesis, finally providing a 
proliferative stimulus;  

• EDCs may be responsible for epigenetic modifications, in particular for the shift toward ERα-
only expression, which may intensify the pro-estrogenic milieu granted by abundant adipose 
tissue, typical of PCOS women, favouring carcinogenesis. 

 
From a public health perspective a possible association between PCOS, EDCs exposure and OC would be 
highly important. Indeed, it would allow to recognise women at risk, to monitor them properly and to offer 
preventive treatment(s). This lack of recognition further delays the diagnosis of pre-malignant/malignant 
ovarian diseases (which is already delayed in OC because of the nature of the cancer itself). However 
important, the association between PCOS, EDCs and OC remains challenging for several reasons:  

 PCOS still has a poorly understood aetiology and it is often encased in patient with other 
metabolic abnormalities;  

 the list of EDCs is growing, and a single EDC can exert different effects according to:  

‣ timing of exposure (pre-natal life/post natal/pre-pubertal…), 

‣ length of exposure,  

‣ total dose,  

‣ latency between exposure and effects,  

‣ possible synergic effects with other molecules. 
 
Further research, although difficult, is needed in this field. The identification of possible cancerogenic 
molecules would allow to prevent further diffusion of these substances in the environment, or at least to 
provide adequate information to the population considered at risk. 
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Figure Legend 
 
Figure 1: Mechanisms by which EDCs/AGEs exposure may favor PCOS (PPARγ: peroxisome proliferator-
activated receptors; IR: insulin resistance; CVD: cardiovascular disease; T2DM: diabetes mellitus type 2; 
HPO axis: hypothalamic-pituitary-ovarian axis; SHGB: sex hormone-binding globulin) 
 
 

 
 
Figure 2: Mechanisms by which EDCs/AGEs exposure may favor OC 
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