Bile Acid Binding Protein Functionalization Leads to a Fully Synthetic Rhodopsin Mimic

Katiuscia Pagano, Marco Paolino, Stefania Fusi, Vinicio Zanirato, Claudio Trapella, Germano Giuliani, Andrea Cappelli, Serena Zanzoni, Henriette Molinari, Laura Ragona, and Massimo Olivucci

ABSTRACT: Rhodopsins are photoreceptive proteins using light to drive a plethora of biological functions such as vision, proton and ion pumping, cation and anion channeling, and gene and enzyme regulation. Here we combine organic synthesis, NMR structural studies, and photochemical characterization to show that it is possible to prepare a fully synthetic mimic of rhodopsin photoreceptors. More specifically, we conjugate a bile acid binding protein with a synthetic mimic of the rhodopsin protonated Schiff base chromophore to achieve a covalent complex featuring an unnatural protein host, photoswitch, and photoswitch-protein linkage with a reverse orientation. We show that, in spite of its molecular-level diversity, light irradiation of the prepared mimic fuels a photochromic cycle driven by sequential photochemical and thermal Z/E isomerizations reminiscent of the photocycles of microbial rhodopsins.

Molecular photoswitches are a class of molecules capable of alternating between at least two distinct equilibrium forms via light irradiation with promising application in material science, biological science, and photopharmacology. Photoswitches are also largely used by nature for triggering a plethora of different functions initiated with the transformation of light energy into protein structure modifications, which, in turn, drive complex biological functions. Among natural systems, rhodopsins constitute an ecologically widespread class of membrane photosensitive proteins driving fundamental functions through the action of a natural photoswitch, namely the protonated Schiff base of retinal (rPSB). rPSB triggers the rhodopsin photocycles by undergoing a unidirectional and regioselective clockwise or counterclockwise double-bond photoisomerization and, ultimately, activating functions such as vision, pupillary reflexes, chromatic adaptation, ion-gating, and ion pumping. In spite of their different functions, rhodopsins are characterized by a remarkably common architecture featuring seven α-helices forming a cavity hosting rPSB chromophore covalently bound to a lysine residue located in the protein cavity. Furthermore, the functions of the protein are always initiated by the photoisomerization of rPSB. The fact that the functionality of rhodopsins can be modulated by variations in the amino acid sequence appears to be important for the design of protein-based molecular devices. With such target in mind, it is hoped that the development of a fully synthetic rhodopsin mimic can provide the necessary prototype system.

In recent years, rhodopsin mimics have been developed using intracellular lipid binding protein (iLBP), such as CRABPII, as scaffolds capable of binding all-trans rPSB. The engineered protein/iLBP covalent constructs could be useful as research tools useful for understanding the mechanisms of light exploitation at the molecular level. The target was to use such easy to engineer and crystallize systems to study, through a bottom-up approach, fundamental aspects of protein−rPSB interactions and reveal how photoswitching could be effectively implemented in nature. However, in spite of their interest for mechanistic studies, the reported rhodopsin mimics are semisynthetic as they incorporate the natural photoswitch. Thus, they do not offer the variability of a synthetic construct where both the protein and the Schiff base of a photoswitch are unnatural. To the best of our knowledge, such fully synthetic rhodopsin mimics have not been reported.

Received: January 23, 2019
Accepted: April 15, 2019
Published: April 15, 2019
In the past, we have carried out extensive work on the design, synthesis, and characterization of unnatural photo-switches capable of mimicking the photophysics of bovine rhodopsin (Rh), a widely studied dim-light visual pigment. These fully organic compounds were based on N-alkylated or N-protonated indanylidene pyrroline Schiff bases (NAIP or NHIP, respectively) in which the indene moiety, representing the stator, and the pyrroline portion, working as a rotor, are connected by an isomerizable double bond. In fact, NAIP and NHIP perform a regioselective subpicosecond double bond photoisomerization comparable to that observed for the 11-cis rPSB chromophore embedded in the Rh pocket. Moreover, NAIP and NHIP derivatives undergo, in solution, an ultrafast photoisomerization with a 20% quantum yield and displaying low-frequency (60 to 80 cm⁻¹, i.e., ~500 fs period) oscillatory features similar to those observed in visual pigments and light-sensing pigments featuring a 11-cis or 13-cis rPSB chromophore, respectively. Furthermore, NAIPs and NHIPs represent prototypes of light-driven single-molecule molecular rotors of the Feringa type. In fact, they share with such hydrocarbon rotors a skeleton with a single exocyclic isomerizable double bond, but, due to their cationic nature and protonated imine moiety, they mimic the functional group of the retinal chromophore. The photochemical properties of NAIPs and NHIPs can be compared with those of the Feringa type rotors, which, however, display excited state lifetimes ranging from 0.2 to 3 ps and a quantum yield typically below 2% without showing coherent vibrational oscillations.

Here, we design, prepare, and characterize a first, fully synthetic rhodopsin mimic. To achieve this result we decided to combine an unnatural N-protonated indanylidene pyrroline Schiff bases (NHIP) photoswitch, capable to mimic the photochemical behavior of the rPSB, with a bile acid binding protein (BABP). BABP has been selected as our reference framework for three different reasons. First, BABP and CRABPII belong to the same intracellular lipid binding protein (ILBP) family with sequences sharing 31% identity and 47% similarities and resulting in a structural alignment displaying a RMSD of 1.6 Å. This indicates that, like CRABPII, BABP could be employed in the engineering of rhodopsin mimics. This conclusion is further supported by BABP structural stability to mutagenesis, its dynamics, allowing promiscuous ligand binding and, finally, its high expression levels resulting in the production of high protein quantities (>90 mg L⁻¹). Second, in the past some of us have investigated the interactions of BABP cavity (defined by a β-barrel fold) and several ligands. Such background appears to be instrumental in determining whether the BABP cavity could be suitably functionalized to build biomimetic host–guest complexes. Third, BABP was shown to bind bile salts with a 1:2 stoichiometry and accommodate two bile salts in two distinct sites (generally defined as Site 1 and Site 2) of the internal cavity with high affinity. Thanks to this peculiarity, the photoisomerization of NHIP, which fully occupies Site 2 in the presented construct, could alter the affinity for the bile salt hosted in Site 1, potentially generating a photoresponsive delivery system to be constructed/investigated in the future. The above reasons indicate that BABP-based fully synthetic rhodopsin mimics could be prepared by following the general strategy employed for CRABPII based semisynthetic constructs. Accordingly, our effort starts with NMR and experimentally driven docking studies of the noncovalent complex formed by incorporation of the rigid NAIP framework into the BABP β-barrel fold defining a binding cavity. As detailed further, after showing that the photoswitch can penetrate the protein cavity, we demonstrate that the orthogonal addition of a cysteine SH group, located at the bottom of the BABP pocket, with the propargyl maleimide double-bond, provides a monoproargylated protein capable to covalently link a tailored NHIP photoswitch bearing a tail terminating with an azido group. Finally, by employing extensive NMR analysis, we show that the obtained mimic displays a type-T photochromism (i.e., where the E → Z stereoisomer conversion is light-driven and the Z → E back conversion is thermally driven).

CAVITY PENETRATION

The N-alkylated indanylidene pyrroline Schiff bases (MeO-NAIP) photoswitch of Scheme 1 was titrated into different BABB isomers, 15N-BABP or 15N-BABP/SS (with and without a free thiol group), and a series of 1H−15N heteronuclear single quantum coherence (HSQC) NMR spectra were recorded. These experiments are widely employed in protein–ligand interaction studies because chemical shifts are indicators of binding events or conformational rearrangements. HSQC spectra recorded for both 15N-BABP and 15N-BABP/SS in the absence and presence of MeO-NAIP at different protein/Schiff base ratios, together with the weighted average of 1H and 15N chemical shift perturbation (CSP) and changes observed in peak intensity upon MeO-NAIP addition are reported in Figure S1. For both proteins, the titration progress displays binding events occurring on fast exchange on the NMR time scale with a distribution of residues affected by the binding similar to that obtained with the putative ligands (bile acids). These results show that MeO-NAIP enters the protein pocket (a Kd in the mM range was estimated on the basis of CSPs, see Figure S2).

The less sterically hindered MeO-NHIP (Scheme 1), lacking the methyl group on the nitrogen atom, was also tested. The analysis of the weighted average of 1H and 15N CSP and of the intensity changes indicated that BABP/SS residues involved in the interaction with MeO-NHIP are the same observed for MeO-NAIP (Figures 1A–D and S3) and that the switch is internalized in the protein β-barrel. Data fitting carried out using eq 1 in the Supporting Information, suggested a slightly improved affinity (Kd in the range 700–900 μM) for the N-protonated photoswitch with respect to the N-methylated one.

Scheme 1. Structure of MeO-NAIP and MeO-NHIP Photoswitches Employed for Investigation of Noncovalent Host–Guest Complexes with BABP

![Scheme 1. Structure of MeO-NAIP and MeO-NHIP Photoswitches Employed for Investigation of Noncovalent Host–Guest Complexes with BABP](image)

“In both cases, we only display the Z-stereoisomer.
To test whether MeO-NHIP is buried inside the protein and investigate its preferred orientations, a structural model of the complex BABP/SS-MeO-NHIP has been built employing the data driven HADDOCK docking software. \(^52,53\) The best solutions confirmed that MeO-NHIP is completely embedded in the BABP-SS \(\beta\)-barrel, exhibiting different poses (Figure 1E).

FUNCTIONALIZATION OF BABP CAVITY

In spite of its low value, the photoswitch binding affinity observed in noncovalent BABP/MeO-NHIP complexes point to a stability large enough to allow for a conjugation reaction. Because of their lower frequency in natural proteins, SH groups of cysteine residues were targeted for conjugation as they are effective reactants in thiolo-ene click chemistry.\(^54−56\) BABP has a single cysteine residue (C80), located at the bottom of the \(\beta\)-barrel with its SH group exposed in the protein pocket, and it is an ideal candidate for conjugation. As summarized in Scheme 2, a combination of two click chemistry couplings was chosen to prepare a covalent complex with chemical selectivity. First, a propargyl group anchored to maleimide was introduced in BABP by thiolo-ene coupling. Subsequently, well-known copper catalyzed Azido-Alkyne click reaction was optimized to conjugate an azido functionalized NHIP derivative (\(^{13}\)C-NHIP-N\(_3\)).\(^58,59\)

The N-propargyl-maleimide reagent was selected to functionalize the cysteine residue with the required alkyne moiety. The reaction conditions were optimized using unsubstituted maleimide, the same reaction conditions were successfully employed for the functionalization of unlabeled (U) and \(^{15}\)N labeled BABPs (enriched 90−95% in \(^{15}\)N) with N-propargyl-maleimide, yielding U-BABP-Prop and \(^{15}\)N-BABP-Prop. Reaction completion was checked by mass spectrometry (Figure S4) and protein correct fold by NMR (Figure S5).

To covalently combine the photoswitch inside the protein pocket, through a CuAAC (1,3-dipolar copper(I)-catalyzed azide–alkyne cycloaddition) reaction (Scheme 2),\(^58,59\) we noticed that the previously discussed HADDOCK structures (Figure 1) showed favored solutions with the MeO-NHIP methoxy group located in the proximity of the C80 thiol group. Thus, the methoxy group of MeO-NHIP was replaced by an azido terminated ethoxy chain. The compounds NIH1, \(^{13}\)C-NHIP-N\(_3\) and its labeled analogue \(^{13}\)C-NHIP-N\(_3\) were prepared as detailed in the SI and summarized in Scheme S1. The noncovalent binding of such derivative was verified by NMR exploiting the

Figure 1. (A) Graphical representation of the combined \(^{1}\)H and \(^{15}\)N CSP upon MeO-NHIP addition at a protein/MeO-NHIP 1:7.5 molar ratio, as observed for BABP/SS at pH 5.5. CSP average value (\(\langle\text{CSP}\rangle\)), (CSP) + 1\(\sigma\), and (CSP) + 2\(\sigma\) values are indicated as straight, dashed, and dotted lines, respectively. (B) \(^{1}\)H−\(^{15}\)N HSQC cross peaks intensities ratio profiles (defined as normalized holo cross-peak volume/apo cross-peak volume) upon MeO-NHIP addition to BABP-SS. The horizontal dashed lines mark intensity changes higher/lower than 50% (C) BABP/SS residues showing CSP higher than (\(\langle\text{CSP}\rangle\) + 1\(\sigma\)) upon MeO-NHIP addition are highlighted in red on the structure. Residues showing significant intensity decrease (>50%) upon MeO-NHIP addition are highlighted as dotted spheres. (D) Chemical shift perturbation of \(^1\)H frequencies of residues T72 (circle) and C80 (diamond) as a function of MeO-NHIP concentration, as derived from a titration experiment of a protein sample 0.65 mM. Data fitting is represented using a dashed line. (E) Superposition of the first structures of the best three clusters obtained with HADDOCK. BABP-SS is shown as a green cartoon, MeO-NHIP is shown in yellow sticks. F62, G65, T71, T72, C80, S93, S97, set as active residues in docking calculation, are shown as purple sticks.
presence of 13C labeled methyl groups on 13CNHIP-N_3 (Figure S6).

NHIP-N_3 and its labeled analogue 13C-NHIP-N_3 were employed for CuAAC reaction with both U-BABP-Prop and 15N-BABP-Prop. Although CuAAC has been described as an excellent method for bioconjugation, many precautions had to be taken to obtain an exhaustive monoderivatization of the proteins, avoiding oxidative degradation and protein unfolding (see reaction conditions in the Supporting Information). The mass spectra of the final BABP-NHIP functionalized protein are displayed in Figure S7. The 15N-BABP-13CNHIP sample was analyzed by NMR, exploiting nitrogen and carbon labeling to observe the protein and the bound photoswitch (Figure S8). The increase of the protein line width is indicative of conformational exchange, in line with the coexistence of different conformations of the NHIP chain in the pocket possibly affecting backbone flexibility (vide infra). NHIP localization within the protein cavity was further investigated by binding experiments performed treating U-BABP-13CNHIP with sodium glycochenodeoxycholate (GCDA), the protein putative ligand. BABP was indeed shown to bind bile salts with a 1:2 stoichiometry, simultaneously accommodating two bile salts in its internal cavity with high affinity, thus forming a ternary complex. The addition to unlabeled BABP of 15N-labeled glycochenodeoxycholic acid (GCDA), monitored by heteronuclear 1H–15N HSQC, revealed three distinct sets of signals, corresponding to ligand in the unbound form, and bound to the two binding sites, Site 1 and Site 2, characterized by different chemical environments. Titration of U-BABP-13CNHIP with 15N-GCDA showed that the protein could still bind GCDA in the more superficial Site 1, while the bound photoswitch prevented access to the internal Site 2 (Figure 2). This observation confirms that, upon covalent binding of the photoswitch, the native BABP fold required for GCDA binding is conserved.

SPECTROSCOPIC AND PHOTOCHEMICAL CHARACTERIZATION

The 13NHIP-N_3 chromophore in water solution at pH 7.2 shows an absorption spectrum dominated by a band centered...
Figure 3. Normalized UV−vis absorption spectra of the thermally equilibrated state (TS) of NHIP-N$_3$, registered in water solution at pH 7.2 (dashed green line), and at pH 5.5 (red line), and of its photostationary state (PS) obtained after 16 h irradiation at 400 nm (dotted red line) compared with the normalized UV−vis absorption spectra of the TS of BABP-NHIP registered at pH 5.5 (blue line) and of its PS obtained in the same conditions (dotted blue line).
protein structure, (iii) an unnatural (inverted) orientation of the protonated Schiff base C = NH(+) group, which points toward the cavity exit rather than being located at its bottom and finally (iv) a type-T photochromism similar to the one observed in microbial rhodopsins. These results also represent the first applicative example of NAIP/NHIP photoswitchable molecules to the design and construction of a prospective functional molecular device. Excited state dynamics and photoisomerization quantum efficiency of our construct will be investigated by carrying out the same time-resolved studies reported for MeO-NAIP and MeO-NHIP and for microbial rhodopsins to enhance its understanding and future applicability. Furthermore, as anticipated above, our BABP-NHIP construct could provide the basis for the development of novel light-triggered delivery systems.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpclett.9b00210.

Figure 4. Difference between time evolution of E and Z stereoisomers of free (A) 13CNHIP-N$_3$ and (C) 15N-BABP-13CNHIP, after illumination. The normalized cross peak volume of the methyl resonances of the two stereoisomers, as measured in 1H−13C HSQC spectra recorded at variable times after switching off the irradiation, are reported: E and Z stereoisomers are indicated as full circle and diamonds, respectively. The volumes measured before light irradiation are labeled as “Dark”, while the estimated populations of the photostationary states are reported as empty circles and diamonds for E and Z stereoisomers, respectively. Panels B and D report selected 1H−13C HSQC spectra of free and covalently bound 13CNHIP, respectively, in the dark state and at different elapsed times after switching the irradiation off. Notice that the linkage of the cysteine to N-propargyl-maleimide give rise to two diastereoisomers which, may exhibit multiple conformers, reflected in the heterogeneity observed in the BABP-bounded 13CNHIP chromophore.

ingredients to drive systems away from the global thermodynamic formation; materials and methods (PDF)
mutations on the ultrafast photo-isomerization of Anabaena sensory rhodopsin. *Faraday Discuss.* 2018, 207 (0), 55–75.

