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Abstract 24 

Purpose: The application of organic and inorganic fertilizers to soil can result in increased gaseous emissions, 25 

such as NH3, N2O, CO2 and CH4, as well as nitrate leaching, contributing to climate warming and ground and 26 

surface water pollution, particularly in regions with hot climates, where high temperatures and high soil 27 

nitrification rates often occur. The use of nitrification inhibitors (NIs) has been shown to effectively decrease 28 

nitrogen (N) losses from the soil-plant system. 29 

Materials and methods: Non-disruptive laboratory incubation experiments were conducted to assess the extent to 30 

which temperature (20°C and 30°C) and nutrient source (mineral and organic fertilizers) influence the rate of 31 

carbon (C)- and N-related microbial processes in soil in response to the NI 3,4-dimethylpyrazole phosphate 32 

(DMPP). Furthermore, short-term changes in the ability of microbes to degrade C substrates were evaluated in 33 

disruptive soil microcosms using microbial community-level physiological profiling and the abundance of the 34 

bacterial 16S rRNA gene as a measure of total bacterial population size.  35 

Results and discussion: DMPP reduced net nitrification after two and four weeks of incubation at 30°C and 20°C 36 

by an average of 78.3% and 84.5%, respectively, and with similar dynamics for mineral or organic fertilization. 37 

The addition of labile organic matter with cattle effluent led to a rapid increase in C mineralization that was 38 

significantly reduced by DMPP at both temperatures, whereas no changes could be detected after the addition of 39 

mineral fertilizer. The culturable heterotrophic microorganisms showed metabolic diversification in the oxidation of 40 

C sources, with organic fertilizer playing a major role in the substrate utilization patterns during the first week of 41 

incubation and the DMPP effects prevailing from day 14 until day 28. Furthermore, the copy number of the 42 

bacterial 16S rRNA gene was reduced by the application of DMPP and organic fertilizer after 28 days.  43 

Conclusions: Our results show the marked efficiency of DMPP as an NI at elevated temperatures of incubation and 44 

when associated with both mineral and organic fertilization, providing support for its use as a tool to mitigate N 45 

losses in Mediterranean ecosystems. However, we also observed impaired C respiration rates and bacterial 46 

abundances, as well as shifts in community-level physiological profiles in soil, possibly indicating a short-term 47 

effect of DMPP and organic fertilizers on non-target C-related processes and microorganisms.  48 

 49 

Keywords 3,4-Dimethylpyrazol phosphate (DMPP) • Community-level physiological profiling (CLPP) • 50 

Nitrification • Nitrification inhibitor • N cycle • Soil microbial ecology 51 

 52 

1 Introduction 53 
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Organic and inorganic fertilizers have had a significant impact on food production in the recent past and are 54 

currently an indispensable part of modern agriculture. However, the additional costs to environmental 55 

degradation and affects of human health pose a major limitation on their excessive use; thus, careful design of 56 

their application is needed.  57 

The high rates of fertilizer application to crops, particularly in regions with a Mediterranean climate that 58 

experience high temperatures and thus high nitrification rates, could generate severe environmental 59 

consequences. Up to 30-50% of the nitrogen (N) provided to the soil may be lost to the atmosphere (Kroeze et al. 60 

1999), and up to 30% may be leached (Ishikawa et al. 2003; Zhao et al. 2010) through nitrification and 61 

denitrification processes. Furthermore, increased nitrification rates due to annual N fertilizer inputs and water 62 

irrigation, along with high temperature, can result in significant shifts in the composition and activity of the 63 

microbial community (Lin et al. 2004; Shen et al. 2011; Sheng et al. 2013). 64 

One of the management practices that has been shown to reduce the risk of N leaching and emissions without 65 

necessarily reducing N inputs or crop yield is the use of nitrification inhibitors (NIs), which are natural or 66 

synthetic compounds that delay microbial oxidation of NH4
+ to NO2

-, the first step of nitrification, for a certain 67 

period of time (Zerulla et al. 2001). 3,4-Dimethyl pyrazole phosphate (DMPP) is one of the major commercial 68 

NIs (Subbarao et al. 2006). To a large extent, the efficiency of these compounds largely depends on soil N status, 69 

soil physiochemical and biological factors (texture, temperature, moisture, organic matter, and pH; soil microbial 70 

activity and biomass, respectively) and climate factors (temperature, rainfall intensity and frequency) (Barth et 71 

al. 2001), which, on one hand, determine the size of these losses and, on the other hand, influence the dynamics 72 

of the inhibitors in the soil (Adair and Schwartz 2008).  73 

DMPP has been shown to be effective in inhibiting nitrification in both field (Merino et al. 2005; Li et al. 2008; 74 

De Antoni Migliorati et al. 2014) and laboratory (Hatch et al. 2005; Barth et al. 2008; Di and Cameron, 2011; 75 

Huang et al. 2013) conditions when it is added to inorganic (Weiske et al. 2001; Linzmeier et al. 2001) or 76 

organic (Dittert et al. 2001; Macadam et al. 2003) fertilizer. Although its effectiveness is limited at high 77 

environmental temperatures (Irigoyen et al. 2003; Chen et al. 2010; Mahmood et al. 2011).  78 

In soil, DMPP primarily interacts with the ammonia-oxidizing populations on which many other organisms are 79 

dependent. Although reductions in soil ammonia-oxidizing bacterial and, to a lesser extent, ammonia-oxidizing 80 

archaeal gene copy numbers (Kleineidam et al. 2011; Yang et al. 2012; Liu et al. 2015) and transcripts (Florio et 81 

al. 2014) have been reported, less information about presumed DMPP-induced changes in non-target soil 82 

microbial processes and activity is available. Contrasting evidence has been reported on the effect of DMPP on 83 
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soil respiration (Weiske et al. 2001; Menéndez et al. 2012) and on soil enzymatic activity (Tindaon et al. 2012; 84 

Guo et al. 2014). Therefore, non-target side effects of DMPP on general microbial activities in soils should not 85 

be neglected. 86 

Our previous studies attempted to unravel the role of DMPP in both target and non-target processes and its 87 

effects on microorganisms in soil, showing marked inhibition of ammonia-oxidizing bacterial and archaeal 88 

transcriptional activity one week after the application of treatments and moderate non-target influence on the 89 

structure of the soil microbial community (Florio et al. 2014; Maienza et al. 2014). In the present study, we 90 

aimed to assess the extent to which different temperatures (20 and 30°C) and nutrient sources (mineral and 91 

organic fertilizers) influence the rate of Carbon (C)- and N-related microbial processes in soil in response to 92 

DMPP in non-disruptive laboratory incubation experiments. Furthermore, we evaluated short-term changes in 93 

the ability of microbes to degrade C substrates in disruptive soil microcosms using microbial community-level 94 

physiological profiling (CLPP) for 28 days after the amendments on selected treatments, to provide insights into 95 

the diversification of the culturable heterotrophic microbial metabolism. Quantitative PCR (qPCR) assay of the 96 

bacterial 16S rRNA gene was also included as a measure of total bacterial population size in the microcosms at 97 

the end of incubation. 98 

  99 

2 Materials and methods 100 

2.1 Soil, nutrient sources and DMPP formulation 101 

The soil used (Casalotti soil) was collected from a Eucalyptus, short rotation, high-density plantation field 102 

managed by the research unit for intensive wood production (CREA-PLF), located in Rome (Italy) (41°54'N, 103 

12°21'E). The soil is classified as Luvisols (WRB 2006) and has a sandy loam texture. Six samples of soils from 104 

the top 30 cm were collected in June 2009 and stored in sterile plastic bags. The soil was air-dried, homogenized 105 

by sieving (2-mm mesh size), pooled and stored at room temperature. The physico-chemical properties of the 106 

soil were 63% sand, 16% clay, 21% silt, pH (H2O 1:2.5): 7.5, organic C: 10.6 g Kg-1 and total N: 0.6 g Kg-1. 107 

Two types of nutrient sources were applied, ammonium sulfate as the mineral and cattle effluent as an organic 108 

fertilizer. The bovine effluent used was obtained from a dairy farm adjacent to the CREA-PLF. Sampling was 109 

performed in June 2009, and the sample was stored in a PVC barrel at 4°C until further analysis. On day 0, it 110 

was sampled after thorough stirring and blending, and the following physico-chemical properties were analyzed 111 

using standard laboratory methods: moisture (88.9%), dry matter (11.1%), Ntot (0.32%), N-NH4
+ (0.17%), and 112 

TOC (5.97%). 113 
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A liquid formulation of DMPP (25%, provided by K+S Nitrogen, Italy) was added to either the mineral or the 114 

organic fertilizer as a mixed solution at a final concentration of 1%, according to the NH4
+-N content and the 115 

manufacturer’s recommendations (Zerulla et al. 2001). 116 

 117 

2.2 Experimental design 118 

Two non-disruptive laboratory incubation experiments were performed to evaluate the effects of DMPP on soil 119 

potential N mineralization and nitrification and soil C mineralization, as well as the influence of temperature 120 

(30°C or 20°C) and nutrient source (mineral or organic fertilizer). The following treatments, with three 121 

replicates, were compared in these experiments: soil+ammonium sulfate (AS), soil+ammonium sulfate+DMPP 122 

(ASD), soil+organic fertilizer (OF), and soil+organic fertilizer+DMPP (OFD). Soil+DMPP (D) and soil-only (C) 123 

control treatments were also included.  124 

Furthermore, the short-term changes in the heterotrophic microbial dynamics in disruptive soil microcosms were 125 

determined in organically amended soils (OF, OFD) and in control soils (C, D) at the temperature of 30°C. In 126 

particular, microbial community-level physiological profiling (CLPP) and the abundance of the bacterial 16S 127 

rRNA gene (quantitative PCR) were investigated. 128 

 129 

2.3 Non-disruptive laboratory incubations for potential N and C mineralization 130 

Nitrogen (250 mg N Kg soil-1) from mineral (ammonium sulfate) or organic fertilizer (cattle effluent) and DMPP 131 

were added as mixed solutions to 50 g of air-dried soil mixed with quartz sand in a 1:1 ratio to determine the 132 

potential N mineralization (Stanford and Smith 1972). The mixture was incubated at a 60% water holding 133 

capacity in the dark at 30°C or 20°C for 12 weeks (Benedetti et al. 1994; Dell’Abate et al. 2003). The amounts of 134 

nitrite-N + NO3
--N and NH4

+-N produced during the incubation were monitored at 1, 2, 4, 8 and 12 weeks. The 135 

soils were eluted with 900 ml of a 0.01 M CaSO4 solution and then with 100 ml of N-free solution [0.002 M 136 

CaSO4, 0.005 M Ca(H2PO4)2, 0.0025 M K2SO4, and 0.002 M MgSO4] to reintegrate the nutrient elements. The 137 

nitrogen forms in the eluate were determined colorimetrically by a continuous flux analyzer (Autoanalyzer 138 

Technicon II), according to the methods described by Wall et al. (1975) for NH4
+-N and Kamshake et al. (1967) 139 

for (NO2
-+NO3

-)-N. Cumulative net nitrification and net N mineralization were expressed as (NO2
-+NO3

-)-N 140 

(milligrams per N kilogram dry soil) and (NH4
++NO2

-+NO3
-)-N (milligrams per N kilogram dry soil), 141 

respectively. 142 
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Soil respiration was measured in separate microcosms for 35 days at 30°C and 20°C, with three replicates for 143 

each treatment in 25 g (oven-dry basis) of moist sample placed in 1 L of stoppered glass jars that were treated 144 

with the same amounts of fertilizers and DMPP reported above. The evolved CO2 was trapped after 1, 2, 4, 7, 10, 145 

14, 21, 28 days of incubation in 5 ml of 1 M NaOH, and the amount was determined by titrating the excess 146 

NaOH with 0.1 M HCl (Badalucco et al. 1992). The CO2 emitted in 35 days of incubation was reported as 147 

cumulative respiration (Ccum). 148 

 149 

2.4 Disruptive microcosm study of the microbial community 150 

The disruptive microcosm experiment was established as previously described (Florio et al. 2014; Maienza et al. 151 

2014); briefly, three replicates per treatment of soil microcosms containing 1.1 Kg of homogenized soil were 152 

incubated at a 60% water holding capacity at 30°C in the dark for 28 days. Three gram subsamples were 153 

removed at days 1, 4, 7, 14 and 28 and used for CLPP analysis; furthermore, 10 g subsamples of the microcosm 154 

were stored at -20°C for qPCR analysis of the bacterial 16S rRNA gene at the end of incubation (day 28). 155 

 156 

2.5 Microbial community-level physiological profiling (CLPP) 157 

The metabolic profiles of the microbial communities were generated by the Biolog® Microstation System 4.2 158 

(Biolog Inc., Hayward, CA, USA) using ECOPlates, which are specifically designed for community analyses 159 

and microbial ecological studies. The ECOPlate contains 31 of the most useful carbon sources for soil 160 

community analyses, and the sources are repeated 3 times to provide more replicates for the data. The oxidation 161 

wells contain a redox indicator, tetrazolium violet, which undergoes a color change (from colorless to dark 162 

violet) whose intensity is proportional to the intensity of microbial metabolism (which in turn is due to the 163 

number and/or species involved). Three gram soil subsamples from each microcosm were mixed with 30 ml of 164 

sterile physiological solution (NaCl 9 g l−1), stirred with 10 g of glass beads for 30 min, and centrifuged at 3,000 165 

rpm for 3 min. Each plate was inoculated with 120 µl of supernatant, according to the method described by 166 

Torsvik (1995). The absorbance values corresponding to color changes were read by the E-MAX reader at 590 167 

nm three times per day for 10 days. Each well of the ECOPlate contains the redox dye tetrazolium, which is 168 

reduced by the NADH produced by the respiration pathways. The rate and extent of color formation indicate the 169 

rate and extent to which respiration occurs with the substrate present in that well (Garland and Mills 1991; 170 

Garland 1996a, b). 171 

 172 
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2.6 Quantification of gene abundance using qPCR  173 

DNA was extracted from 0.25 g of each soil sample using a DNA PowerSoil® Total DNA Isolation Kit (Mo Bio, 174 

Carlsbad, CA, USA) according to the manufacturer’s instructions, with a slight modification, in which the 10 175 

min shaking on a flatbed vortex was replaced by a 30 s bead beating step (5.5 m s-1, Fastprep). The DNA 176 

concentrations were determined using the Qubit quantification platform with a Quant-iTTM dsDNA high 177 

sensitivity (HS) Assay Kit (Invitrogen UK). The DNA was diluted to 5 ng/μl and stored in an -80°C freezer prior 178 

to qPCR analysis. 179 

The abundance of the bacterial 16S rRNA gene in the soil samples was quantified by real-time PCR using the 180 

primers Muyzer for/Muyzer rev (Nadkarni et al. 2002; Muyzer et al. 1993) and the conditions described by Clark 181 

et al. (2012). The standards were generated from PCR products that had been obtained from soil DNA extracts, 182 

gel purified, quantified, and diluted accordingly (Töwe et al. 2010) to give a concentration range from 0 to 109 183 

gene copies μl-1. All DNA preparations were checked for the absence of inhibitors prior to PCR, and all results 184 

were analyzed using the LinRegPCR program version 11.1 (Ramakers et al. 2003; Ruijter et al. 2009) to confirm 185 

the efficiency of amplification and the absence of inhibition. 186 

 187 

2.7 Data analysis 188 

Significant differences between the treatments during the experiment were detected using one-way ANOVA and 189 

a post hoc (Duncan) test at a level of P<0.05. Statistical analyses were performed using the SPSS 11 software 190 

package. 191 

CLPP results were organized with Biolog MicroLog System 4.2 software. The raw OD data were corrected by 192 

blanking each response well against its own first reading (immediately after inoculation). The absorbance profile 193 

obtained for each trial at each reading time was transformed into the average well color development (AWCD) 194 

index (Garland 1997) with the formula AWCD = ∑abt/96 (abt is the absorbance value at a certain reading time, 195 

calculated as previously described, and 96 is the total number of wells), and the temporal evolution of these 196 

profiles was plotted as AWCD curves. Data analysis has been further elaborated by calculating the area under 197 

the curve for each well OD for the entire period of incubation and by estimating the kinetic parameters (K, r, s) 198 

by fitting the curve of OD versus time into a density dependent logistic growth equation Y = OD592 = K/(1 + e−r 199 

(t−s)), where K is the asymptote (or carrying capacity), r determines the exponential rate of OD change, t is the 200 

time after the inoculation of the microplates, and s is the time when the midpoint of the exponential portion of 201 
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the curve (i.e., when y = K/2) is reached (Insam and Goberna 2004), using STATISTICA 6.0 (StatSoft Inc., 202 

Italia).  203 

Principal component analysis (PCA) was performed on the correlation matrix of the variables, and the kinetic 204 

parameter s was used for well comparison. Single data points were corrected using the blank cell divided by the 205 

AWCD of the respective plate and then log-transformed according to the method described by Weber et al. 206 

(2007). The principal component data were analyzed using ANOVA. 207 

 208 

3 Results 209 

3.1 Potential N mineralization and nitrification 210 

The values of net nitrification and the cumulative percentages of N mineralization recorded after the addition of 211 

DMPP and either mineral or organic fertilizer to the soil at both 30°C and 20°C are reported in Fig. 1. The N 212 

sources applied to the soil similarly influence the ammonium oxidation dynamics throughout the incubation 213 

period. DMPP significantly reduced nitrification starting from the second week of incubation (Fig. 1a); at 14 214 

days, lower net nitrification was observed in ASD and OFD (1.6±0.1 and 1.4±0.3 mg N Kg-1 dry soil, 215 

respectively) than in AS and OF (7.2±0.1 and 10.4±5.7 mg N Kg-1 dry soil, respectively). A similar trend was 216 

recorded at 28 days (7.9±0.1 and 6.7±0.8 mg N Kg-1 dry soil in ASD and OFD, respectively, vs 37.7±0.5 and 217 

29.5±2.5 mg N Kg-1 dry soil in AS and OF, respectively, P<0.05). After 8 and 12 weeks, the net nitrification 218 

values for each treatment were not different from the control (Fig. 1a), and inhibition decreased.  219 

The cumulative mineral N concentrations in soil did not vary significantly among treatments throughout the 220 

incubation period (Fig. 1b), and, at the end of incubation, 201.8±13.8 and 188.1±10.6 mg N from mineral 221 

fertilizer per Kg-1 dry soil were mineralized (AS and ASD, respectively), whereas 155.0±15.3 and 138.2±10.8 222 

mg N from organic fertilizer per Kg-1 dry soil were mineralized (OF and OFD, respectively) (Fig. 1b). No 223 

differences were detected between the control and DMPP-only treatment, and the values of both N 224 

mineralization and nitrification were consistently lower than those of the amended treatments (data not shown). 225 

The cumulative N mineralization and net nitrification dynamics at 20°C varied similarly to those at 30°C (Fig. 226 

1c, 1d), with gradually increasing N mineralization throughout the incubation period. At the fourth week of 227 

incubation, the nitrification rates were significantly reduced by the presence of DMPP (4.5±1.0 and 3.8±0.7 mg 228 

N per Kg-1 dry soil in ASD and OFD, respectively, vs 29.2±3.9 and 24.9±3.7 mg N per Kg-1 dry soil in AS and 229 

OF, respectively, P<0.05) (Fig. 1c), confirming the trend at 30°C. 230 

 231 
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3.2 Microbial respiration 232 

Cumulative C mineralization was computed by adding the amount of respired C after the addition of DMPP and 233 

mineral or organic fertilizer to the soil over the 35 days of incubation at 30°C or 20°C and is reported in Fig. 2. A 234 

significant increase (P<0.05) in soil respiration rates was observed in the organically amended soils compared to 235 

the mineral amended soils at both temperatures, although it was more pronounced at 30°C (Fig. 2a) and less 236 

evident at 20°C (Fig. 2b). As expected, soil C mineralization increased with increasing temperature; the addition 237 

of DMPP significantly reduced cumulative C mineralization when combined with organic fertilizer (922.1±25.8 238 

and 798.50±27.8 mg CO2-C Kg-1 dry soil in OF at 30°C and 20°C, respectively, vs 546.82±27.1 and 409.11±27.0 239 

mg CO2-C Kg-1 dry soil in OFD at 30°C and 20°C, respectively), but not when combined with mineral fertilizer 240 

(Fig. 2).  241 

 242 

3.3 Microbial heterotrophic metabolism and size of the bacterial community 243 

Table 1 reports the CLPP inflection point (kinetic parameter “s”) as a measure of the potential culturable 244 

heterotrophic metabolism in the microcosms after 1, 4, 7, 14 and 28 days of incubation at 30°C. Significantly 245 

(P<0.05) lower inflection was detected in the organic fertilizer-containing treatments than in the DMPP 246 

treatments during the first 7 days of incubation. Soil microbial communities showed metabolic diversification in 247 

the oxidation of the C sources, as shown in the PCA biplots of the first two principal components (PCs) in Fig. 3. 248 

Overall, the first two PCs accounted for more than 60% of the total variance for bacterial CLPP; PC1 accounted 249 

for approximately 50% of the variance, and PC2 accounted for 9.68% (day 28) to 12.23% (day 14) of the 250 

variance. PC1 did not produce a net separation between the treatments at all sample times, but they were 251 

separated along the PC2 axis. On day 1, no clear differences between the treatments could be detected (Fig. 3a), 252 

but on day 4, the soils amended with cattle effluent grouped well with each other and were separated from the 253 

soils that did not receive organic fertilizer (Fig. 3b). This finding was also confirmed on day 7 (Fig. 3c), although 254 

the DMPP-only soils showed some variability along the PC2 axis. Some separation among soils amended with 255 

cattle effluent, regardless of the presence of DMPP, was observed on day 4 (P<0.05), but not on day 7. On day 256 

14, the soils that did not receive DMPP were significantly and positively affected by PC2 and were separated 257 

from the OF and OFD soils (Fig. 3d). Separation between the DMPP treatments and cattle effluent treatments 258 

was also observed on day 28 (Fig. 3e).  259 

Table 2 shows the relative total bacterial abundance at the beginning and end of the experiment at a temperature 260 

of 30°C, as quantified using qPCR assays. The copy numbers of the bacterial 16S gene were in the range of 4.01 261 
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x 108 to 2.36 x 109 copies g-1 dry soil. On day 0, the copy numbers of the 16S rRNA gene in the organically 262 

amended soils were significantly (P<0.05) higher than those in the non-amended soils. Significantly (P<0.05) 263 

reduced levels of the 16S rRNA were observed in the microcosms in which DMPP was applied at the end of 264 

incubation. 265 

 266 

4 Discussion 267 

Slowing of the nitrification rates is achieved by the addition of NIs to the soil, resulting in a longer-lasting 268 

supply of N for plants and limited N losses through leaching and denitrification. Among soil environmental 269 

parameters, soil temperature is thought to have a marked effect on the persistence of many NIs, including 270 

DMPP. Nitrification rates increase linearly with temperatures, reaching an optimum from 25 to 35°C (Justice 271 

and Smith 1962; Stark 1996); however, the efficiency of most NIs has been shown to decrease with temperature. 272 

The inverse relationship between temperature and the effectiveness of DMPP has been reported at different 273 

temperatures ranging from 5 to 25°C (Zerulla et al. 2001; Irigoyen et al. 2003; Chen et al. 2010). Incubation 274 

experiments at constant soil temperatures have shown that at 5°C, there was practically no nitrification of the 275 

NH4
+ from the ammonium nitrate to which DMPP had been added (Zerulla et al. 2001), whereas at 10°C, the 276 

addition of DMPP stabilized the NH4
+ content in soil over a period of more than 100 days (Irigoyen et al. 2003). 277 

At 20°C and moreso at 25°C, NH4
+ degradation markedly accelerated, with half-lives of NH4

+-N of 18 and 8 278 

days, respectively (Chen et al. 2010), and the inhibitory effect lasted 2-3 weeks at temperatures ≥ 25°C (Zerulla 279 

et al. 2001). Under a warm climate regime, some NIs other than DMPP have been shown to even increase N 280 

losses (Mahmood et al. 2011). In this study, DMPP strongly inhibited nitrification at 20°C and even at 30°C after 281 

14 and 28 days of incubation by an average 84.5% and 78.3%, respectively (Fig. 1a, 1c). There were no 282 

significant differences in nitrate concentrations between the fertilizer and fertilizer+DMPP treatments after 8 and 283 

12 weeks, and the inhibitory effect decreased. Because the optimum temperature for nitrification in soil is a 284 

function of the native environment of the ammonia oxidizing community, ranging from 25°C in temperate 285 

regions to 30-35°C in Mediterranean and tropical climate soils (Justice and Smith 1962; Myers 1975), the 286 

temperatures of 30 and 20°C were chosen to represent the temperatures in the spring and summer in most 287 

Mediterranean ecosystems, respectively, when high nitrification rates are experienced, and the use of 288 

nitrification inhibitors is recommended to guarantee that the plant will have an adequate N supply throughout the 289 

entire vegetative cycle and to reduce NO3
- leaching and N2O emissions.  290 
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As expected, carbon mineralization increased with raising temperatures over the 35 days of incubation because 291 

high soil temperatures accelerate C degradation rates (Lloyd and Taylor 1994; Davidson et al. 1998; Bond and 292 

Thomson 2010). Moreover, C mineralization was reduced by DMPP by an average of 15.9% and 12.6% at 20 293 

and 30°C, respectively. The influence of DMPP on soil respiration has previously been addressed in some 294 

studies using incubation at different temperatures. Nevertheless, the results of those studies are highly variable, 295 

which leads to substantial discrepancies in their subsequent conclusions. For example, Menéndez et al. (2012) 296 

did not observe any reduction in CO2 release at temperatures ranging from 10 to 20°C, whereas a 10-28% 297 

decrease in CO2 release was reported in other studies (Weiske et al. 2001; Maienza et al. 2014).  298 

Nitrogen supplied as mineral or organic fertilizer would be expected to affect N mineralization and nitrification 299 

by increasing the availability of N for these microbial processes. In our experiment, the dynamics of N 300 

mineralization and nitrification in the presence or absence of DMPP were highly comparable between the two 301 

fertilizers used. These findings agree with previous studies (Weiske et al. 2001; Macadam et al. 2003), 302 

confirming the suitability of DMPP as a nitrification inhibitor in both inorganic and organic fertilizers. After 12 303 

weeks of incubation, averages of 80.7% and 75.3% of the total N added as mineral fertilizer were mineralized 304 

(AS and ASD, respectively), whereas 62.0% and 55.3% of N from organic fertilizer were mineralized (OF and 305 

OFD, respectively) (Fig. 1b). Because there were no significant differences in total mineral N leaching between 306 

the two treatments (Fig. 1b, 1d), the reduction in the nitrate concentration in the presence of DMPP can be 307 

attributed to the inhibition of nitrification rather than the stimulation of denitrification. During the first 7 days, 308 

nitrification was not inhibited (Fig. 1a, 1c), and relatively low nitrification rates were recorded, regardless of the 309 

presence of DMPP. In this experiment, the addition of mineral or organic nutrients to low fertility soil may have 310 

stimulated an initial proliferation of the microbes in the soil and thus the immobilization of N compounds in the 311 

soil microbial biomass because the nutrients provided by the fertilizer may have been insufficient to fulfill N 312 

needs for the formation of cellular organic N constituents during growth of soil microbial populations (Jarvis et 313 

al. 1996). With certain amounts of nutrients added to the soil, the reproductive rates of the microbes were 314 

expected to increase; thus, high competition for the nutrients and subsequent immobilization occurred.  315 

DMPP had no influence on soil respiration when added in combination with mineral fertilizer (Fig. 2a, 2b); 316 

conversely, the addition of labile organic matter in cattle effluent led to a rapid increase in C mineralization that 317 

was significantly (P<0.001) reduced by DMPP by an average of 19% (Fig. 2a, 2b). There have been only a few 318 

studies that determined the differential effects of DMPP in combination with organic and inorganic fertilization on 319 

soil CO2 production. Nevertheless, either no effect (Ménendez et al. 2006) or an inhibitory effect (Weiske et al. 320 
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2001) was observed. It is known that the incorporation of organic matter in soil can increase microbial activity and 321 

biomass (Gonzales et al. 2010; Marinari et al. 2000) after both long- and short-term applications, even when applied 322 

in small quantities (Arancon et al. 2006; Florio et al. 2015). However, the reduction of soil respiration induced by 323 

DMPP raises questions about the specificity of the target process of the molecule in the soil. Considering that 324 

DMPP may have an indirect effect on soil respiration by affecting the consumption and/or production of CO2 by 325 

ammonia oxidizers, it would be unlikely that we would observe any effect of DMPP on overall soil respiration 326 

because this microbial group represents only a very small proportion of the total soil microorganisms. For this 327 

reason, the physiological profiling of soil microbial communities capable of degrading C sources and the bacterial 328 

population size were determined in a study using organic fertilization as a sole nutrient source and incubation at a 329 

temperature of 30°C. 330 

Cattle effluent and DMPP induced rapid changes in culturable microbial heterotrophic metabolism, even after 24 331 

h of incubation. A significantly lower inflection (“s” value, Tab. 1) was detected in the organic fertilizer-332 

containing treatments than in the DMPP treatments during the first 7 days of incubation, indicating that 333 

heterotrophic culturable microorganisms were significantly more active in treatments in which cattle effluent 334 

was added. Furthermore, PCA of the CLPP data showed a shift in the pattern of C sources used by the 335 

heterotrophic microbial community, which was evident on day 4 and, to a lesser extent, on day 7 (Fig. 3). On 336 

day 14, we observed a significantly lower inflection in soils where DMPP was added, suggesting that the NI, 337 

rather than the organic fertilizer, was the main driver of heterotrophic culturable microbial metabolism. This 338 

trend was also observed at the end of the incubation (day 28), although it was not significant (Tab. 1); however, 339 

clear differences across treatments could be detected in the PCA patterns on both day 14 and 28, and a separation 340 

between the DMPP treatments and cattle effluent treatments occurred. There are still some criticisms about the 341 

utilization of the Biolog method because it does not reflect the functional abilities of the entire soil microbial 342 

community but only those of a limited subset of microbial genera (Smalla et al. 1998). Moreover, incubating soil 343 

extracts with high concentrations of readily decomposable organic substrates may favor the growth of a few 344 

copiotrophic microbes that are able to grow rapidly and explosively (Buyer et al. 2002), thus outcompeting the 345 

slow-growing oligotrophic species in the wells. However, it has proven to be a useful tool to differentiate 346 

disturbances in soil microbial functional diversity and communities in response to different environmental 347 

stresses (Du Plessis et al. 2005; Hayyis-Hellal et al. 2009; Lupwayi et al. 2009). 348 

The copy numbers of the bacterial 16S rRNA gene were used as a measure of bacterial community size in the 349 

microcosms and decreased after 28 days of incubation in the presence of DMPP (Tab. 2), confirming a 350 
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generalized non-target effect of DMPP on microbial abundance and function. Therefore, although the copy 351 

numbers of the soil bacterial 16S rRNA were reduced following the addition of DMPP, it is not possible to 352 

determine if DMPP differentially affected the organisms in the original soil and in the effluent itself. 353 

Organic fertilizers and NIs are used to improve plant growth, increase C inputs to soil and limit N losses from 354 

the soil-plant system but can have indirect effects on the microbial community, as well as specific impacts on N-355 

cycling microorganisms. However, to date, there is no clear evidence indicating whether NIs have a negative 356 

effect on non-target processes and microbes in soil. Little or no significant effects on soil microbial C and N 357 

levels nor on the abundance of bacteria and archaea were observed using dicyandiamide (DCD) as an NI 358 

(O’Callaghan et al. 2010; Guo et al. 2014). However, the mechanism of action of DMPP has been shown to 359 

differ from that of DCD (McCarty 1999) and has not been completely elucidated; thus, it presumably has 360 

different impacts on soil microbial processes and microbes. While Tindaon et al. (2012) failed to detect 361 

inhibitory effects on general soil microbial activity in soils, Maienza et al. (2014) found decreased bacterial and 362 

fungal growth, but not decreased soil microbial biomass, in the microcosms after the application of DMPP and 363 

bovine effluent, but the inhibitory effects disappeared after 28 days of incubation. However, Florio et al. (2014) 364 

found that the application of DMPP and organic fertilizer inhibited bacterial transcriptional activity but did not 365 

decrease the copy numbers of the 16S rRNA gene during the first 7 days of incubation. Together, these results 366 

indicate that the cattle effluent played a major role in substrate utilization patterns during the first 7 days because 367 

its own microbiota may have provided specific strains responsible for the degradation of C sources, whereas 368 

from day 14 onwards, the effect of DMPP prevailed, and the influence of the organic fertilizer became less 369 

evident, suggesting that the compound may affect the metabolism of microbes that degrade the C substrates and 370 

decrease the soil respiration rates and the size of the bacterial community. 371 

 372 

5 Conclusions 373 

This laboratory study shows that NI DMPP inhibited nitrification in the experimental conditions tested using 374 

both mineral and organic fertilizers at 20°C and even 30°C, thus providing support for the use of DMPP as a tool 375 

to mitigate N losses in Mediterranean ecosystems. However, the labile organic matter in cattle effluent led to a 376 

rapid increase in C mineralization that was significantly reduced by DMPP at both temperatures. Furthermore, 377 

both culturable-dependent and -independent techniques revealed a moderate short-term effect on heterotrophic 378 

metabolism, as well as on the size of bacterial populations, at the temperature of 30°C, providing evidence of a 379 

non-target effect of DMPP on microbial activity and abundance over 28 days. However, because DMPP 380 
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performance is highly site-specific and primarily depends on the soil biotic and abiotic statuses, as well as the 381 

environmental conditions, further studies using soils with different properties, longer incubation periods and 382 

different field conditions in the presence of plants are needed to better understand whether the changes in the 383 

activity and abundance of the soil microbial community induced by DMPP and organic fertilization will be 384 

maintained. Therefore, the present study highlights the importance of evaluating the overall soil microbial 385 

response to the application and design of this agricultural practice, which merits further investigation and should 386 

not be neglected. 387 
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Figure Captions 567 

 568 

Fig. 1. Weekly net nitrification and cumulative net N mineralization as mg of nitrites+nitrates-N or total mineral 569 

N leached (as the sum of ammonium+nitrites+nitrates-N) per Kg of dry soil after incubation at 30°C (a, b) and 570 

20°C (c, d). Significant effects of the inhibitor are indicated by asterisks, Duncan's test, P<0.05. Post hoc 571 

comparisons were performed to determine the effect of DMPP at each temperature. Treatments: ammonium 572 

sulfate (AS), ammonium sulfate plus DMPP (ASD), cattle effluent as organic fertilizer (OF), and cattle effluent 573 

plus DMPP (OFD). 574 

 575 

Fig. 2. Cumulative soil respiration as mg of CO2-C per Kg of dry soil over the 35 days of incubation at 30°C (a) 576 

and 20°C (b). Significant effects of the inhibitor are indicated by asterisks, Duncan's test, P<0.05. Post hoc 577 

comparisons were performed to determine the effect of DMPP at each temperature. Treatments: ammonium 578 

sulfate (AS), ammonium sulfate plus DMPP (ASD), cattle effluent as organic fertilizer (OF), and cattle effluent 579 

plus DMPP (OFD). 580 

 581 

Fig. 3. Principal component analysis of the absorbance data at the inflection point of the AWCD curve after (a) 582 

1, (b) 4 (c) 7, (d) 14 and (e) 28 days of incubation at 30°C. Treatments: ●, soil only (C); ○, soil + DMPP (D); ▲, 583 

soil + cattle effluent (OF); and ∆, soil + cattle effluent + DMPP (OFD). Principal components marked with an 584 

asterisk indicate a significant treatment effect as determined by ANOVA, P<0.05. 585 

 586 


