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We present a new family of high order accurate fully discrete one-step Discontinuous 
Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of 
nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic 
terms in order to model dissipative transport processes, like molecular viscosity or heat 
conduction. High order piecewise polynomials of degree N are adopted to represent 
the discrete solution at each time level and within each spatial control volume of the 
computational grid, while high order of accuracy in time is achieved by the ADER approach, 
making use of an element-local space–time Galerkin finite element predictor. A novel 
nodal solver algorithm based on the HLL flux is derived to compute the velocity for each 
nodal degree of freedom that describes the current mesh geometry. In our algorithm the 
spatial mesh configuration can be defined in two different ways: either by an isoparametric
approach that generates curved control volumes, or by a piecewise linear decomposition 
of each spatial control volume into simplex sub-elements. Each technique generates a 
corresponding number of geometrical degrees of freedom needed to describe the current 
mesh configuration and which must be considered by the nodal solver for determining the 
grid velocity.
The connection of the old mesh configuration at time tn with the new one at time tn+1

provides the space–time control volumes on which the governing equations have to be 
integrated in order to obtain the time evolution of the discrete solution. Our numerical 
method belongs to the category of so-called direct Arbitrary-Lagrangian–Eulerian (ALE) 
schemes, where a space–time conservation formulation of the governing PDE system 
is considered and which already takes into account the new grid geometry (including 
a possible rezoning step) directly during the computation of the numerical fluxes. We 
emphasize that our method is a moving mesh method, as opposed to total Lagrangian
formulations that are based on a fixed computational grid and which instead evolve the 
mapping of the reference configuration to the current one.
Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume 
limiter method recently developed in [62] for fixed unstructured grids. In this approach, 
the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme 
is verified against a set of physical and numerical detection criteria, such as the positivity 
of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a 
relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which 
do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at 
the aid of a more robust second order TVD finite volume scheme. To preserve the subcell 
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resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that 
is 2N + 1 times finer compared to the mesh of the original unlimited DG scheme. The 
new subcell averages are then gathered back into a high order DG polynomial by a usual 
conservative finite volume reconstruction operator.
The numerical convergence rates of the new ALE ADER-DG schemes are studied up to 
fourth order in space and time and several test problems are simulated in order to check 
the accuracy and the robustness of the proposed numerical method in the context of the 
Euler and Navier–Stokes equations for compressible gas dynamics, considering both inviscid 
and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type 
flows is considered by solving the Euler equations and the PDE of viscous and resistive 
magnetohydrodynamics (VRMHD).

© 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Lagrangian algorithms have become very popular in the last decades [8,24,25,98,102,103,114] due to to the excellent 
properties achieved by these numerical methods in the resolution of moving material interfaces and contact waves. Since 
the computational mesh is moving with the local fluid velocity, Lagrangian methods are typically affected by much less nu-
merical dissipation compared to classical Eulerian approaches on fixed grids, hence obtaining a more accurate approximation 
of the solution.

As governing equations we consider nonlinear systems of hyperbolic conservation laws combined with parabolic terms, 
which cover a wide range of phenomena, such as environmental and meteorological flows, hydrodynamic and thermody-
namic problems, plasma flows as well as the dynamics of many industrial and mechanical processes. A widespread technique 
for the solution of nonlinear hyperbolic systems of PDE is given by Godunov-type finite volume schemes [74,126]. In this 
approach the numerical solution is stored under the form of piecewise constant cell averages within each control volume 
of the computational mesh, and the time evolution is obtained by considering the integral form of the conservation laws. A 
lot of work has been done in the development of Lagrangian finite volume schemes [31,94,96,97,99,102,111] achieving up 
to second order of accuracy in space and time. Higher order Lagrangian-type schemes based on ENO reconstruction have 
been introduced for the first time by Cheng and Shu in [28,89]. Since all variables are located at the cell barycenter, these 
methods are also referred to as cell-centered Lagrangian algorithms, contrarily to the staggered mesh schemes [90–92], where 
the velocity is defined at the grid vertices and the other variables are considered at the cell center.

Lagrangian methods either directly move the mesh, or they evolve the mapping of a reference configuration onto the 
current one. In any case, they may produce highly distorted elements in the current configuration, depending on the flow 
motion. Problems arise in particular for strong shear flows. This can lead to highly deformed and distorted cells, which 
inevitably lead to very small time steps in the case of explicit schemes due to the CFL stability condition. Even invalid 
elements with negative volume can be generated in the worst case. To overcome this problem, the so-called indirect cell-
centered Arbitrary-Lagrangian–Eulerian (ALE) algorithms have been developed [9,10,85,86,88,111], where the mesh velocity 
can be chosen independently from the local fluid velocity, therefore the grid nodes can be arbitrarily moved. The mesh 
quality is optimized during the simulation using a remeshing strategy, where a new mesh with better quality is gener-
ated, followed by a remapping procedure in which the numerical solution is projected from the old mesh to the new one. 
Multi-phase and multi-material flow problems are typically solved relying on this approach [23,66,77,106,112,114,128].

In a recent series of papers [11,13–16,18,20–22,52,64] a new family of high order accurate ADER finite volume schemes 
has been proposed in the ALE context on moving meshes in one and multiple space dimensions. These methods are 
addressed with direct ALE schemes [12], because the mesh motion is taken into account directly in the numerical flux 
computation of the finite volume scheme, therefore without needing any remeshing plus remapping strategy. High order 
of accuracy in space is achieved either by the use of a WENO reconstruction technique [57,59,60,78,81,130] or by the re-
cent a posteriori MOOD paradigm [21,22,30,41,42], while the schemes are allowed to be high order accurate also in time 
by adopting a local space–time Galerkin predictor method introduced in [57,76], that derives from the ADER approach pro-
posed by Toro et al. [1,27,53,57,101,121,122]. Unstructured curvilinear meshes have been recently considered in [17], while 
in [19] such methods have been successfully applied to the equations of nonlinear hyperelasticity. For direct ALE schemes 
on moving polygonal and polyhedral meshes, see also the very interesting work of Springel [117].

Another option for the numerical solution of hyperbolic conservation laws is given by Discontinuous Galerkin (DG) 
methods, first applied to neutron transport equations [109] and later extended to general nonlinear systems of hyperbolic 
conservation laws in one and multiple space dimensions in a well-known series of papers by Cockburn and Shu and cowork-
ers [32,34–37]. Here, the numerical solution is approximated by polynomials within each control volume, hence leading to 
a natural piecewise high order data representation. Thus, DG schemes do not need any reconstruction procedure, unlike 
high order finite volume schemes. These methods are widely used to solve fluid dynamics problems, even in the Lagrangian 
framework. Finite element algorithms for Lagrangian hydrodynamics and the equations of nonlinear elasto-plasticity have 
been proposed in [43–45,105,113], while Lagrangian DG methods have been presented for the first time in [68–70,87]. In 
[68–70] a so-called total Lagrangian approach was chosen, i.e. the computational grid is kept fixed and the equations of gas 
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dynamics have been written by means of the Lagrangian coordinates related to the initial configuration of the flow. How-
ever, as a consequence, within the governing equations one has to take into account also the time evolution of the Jacobian 
matrix associated with the mapping of the current configuration to the reference configuration. Explicit DG methods as the 
ones listed so far suffer from a very severe time step restriction, therefore a high order implicit time discretization for DG 
schemes has been proposed in [5,6,38,104], while semi-implicit DG schemes can be found in [46–48,73,119,120].

In this paper we present a new family of high order accurate explicit ADER-DG schemes based on the algorithm proposed 
in [14,15], where the computational mesh is moved according to the fluid flow and not mapped to the initial configuration as 
done in [68–70]. The method is designed for moving unstructured triangular and tetrahedral meshes in the ALE framework. 
The use of the local space–time Galerkin predictor naturally permits the development of a one-step algorithm, that is 
more efficient compared to explicit TVD Runge–Kutta schemes typically adopted for the time integration in the DG context 
[32–37]. Since DG schemes need some sort of nonlinear limiting to avoid the Gibbs phenomenon at shock waves or other 
discontinuities, we rely on the recently proposed a posteriori sub-cell limiting procedure [62,65,129] which is based on the 
MOOD paradigm [30,41,42] that has already been used on moving unstructured meshes, see [21,22]. For alternative a priori
subcell finite volume limiters for high order DG schemes, see [26,80,100,115,116].

The main novelty of this paper consists in the development of a new family of high order accurate Discontinuous Galerkin 
schemes for inviscid and viscous compressible flows in the framework of direct ALE methods on moving unstructured meshes 
in two and three space dimensions based on the a posteriori subcell finite volume limiter concept for shock capturing [62,65,
129]. Compared to other relevant work on the subject [70], a moving mesh technique is used instead of a total Lagrangian 
formulation. To the knowledge of the authors, the method presented in this paper is the first of its kind.

The outline of this article is as follows: all the details regarding the proposed numerical method are contained in Sec-
tion 2, while in Section 3 we show numerical convergence rates up to fourth order of accuracy in space and time for a 
smooth problem as well as a wide set of benchmark test problems considering inviscid and viscous compressible flows. An 
application close to Inertial Confinement Fusion (ICF) simulation is also presented at the end of this manuscript and the 
ideal classical and viscous resistive magnetohydrodynamics (MHD) equations are considered. Finally, we give some conclud-
ing remarks and an outlook to possible future work in Section 4.

2. The ADER Discontinuous Galerkin method on moving unstructured meshes

In this paper we consider nonlinear homogeneous systems of conservation laws of the form

∂Q

∂t
+ ∇ · F(Q,∇Q) = 0, x ∈ �(t) ⊂ R

d, t ∈R
+
0 , Q ∈ �Q ⊂ R

ν, (1)

with Q denoting the vector of conserved variables defined in the space of the admissible states �Q ⊂ R
ν and F(Q, ∇Q) =

(f(Q,∇Q),g(Q,∇Q),h(Q,∇Q)) representing the nonlinear flux tensor which depends on the state Q and its gradient ∇Q. 
The computational domain �(t) is defined in d ∈ [2, 3] space dimensions by the spatial coordinate vector x = (x, y, z) and 
in the ALE framework it is time-dependent, hence continuously changing its configuration. At the current time tn a total 
number NE of non-overlapping unstructured control volumes T n

i is used to discretize the domain �, yielding the current 
mesh configuration T n

� :

T n
� =

NE⋃
i=1

T n
i . (2)

The elements are chosen to be piecewise straight or curved simplex control volumes, i.e. generalized triangles and 
tetrahedra in two and three space dimensions, respectively.

The numerical solution for the state vector Q in (1) is represented within each cell T n
i at the current time tn by piecewise 

polynomials of degree N ≥ 0 denoted by uh(x, tn) and defined in the space Uh . Thus, the discrete representation of the 
solution is written as

uh(x, tn) =
N∑

l=1

φl(x)ûn
l x ∈ T n

i , (3)

where φl(x) is a set of spatial basis functions used to span the space Uh up to degree N . In the rest of the paper we 
will use classical tensor index notation based on the Einstein summation convention, which implies summation over two 
equal indices. The total number N of expansion coefficients (degrees of freedom) ûn

l for the basis functions depends on the 
polynomial degree N and is given by

N = N (N,d) = 1

d!
d∏

m=1

(N + m). (4)

The Dubiner-type basis functions [33,49,82] are used as basis functions φl in (3) and they are defined on the reference element
T E in the reference coordinate system ξ = (ξ, η, ζ ). The reference element is depicted in Fig. 1 and it is the unit triangle 
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Fig. 1. Reference element in 2D (left) and in 3D (right) used to define the Dubiner-type basis functions φl in (3).

in 2D, defined by vertices ξ E,1 = (ξE,1, ηE,1) = (0, 0), ξ E,2 = (ξE,2, ηE,2) = (1, 0) and ξ E,3 = (ξE,3, ηE,3) = (0, 1), or the unit 
tetrahedron in 3D with nodes ξ E,1 = (ξE,1, ηE,1, ζE,1) = (0, 0, 0), ξ E,2 = (ξE,2, ηE,2, ζE,2) = (1, 0, 0), ξ E,3 = (ξE,3, ηE,3, ζE,3) =
(0, 1, 0) and ξ E,4 = (ξE,4, ηE,4, ζE,4) = (0, 0, 1).

The governing equations (1) are solved at the aid of a high order ADER-DG (Discontinuous Galerkin) algorithm [56,
108] which is based on a one-step predictor–corrector method presented in [53]. The ADER predictor step solves system 
(1) locally by considering the space–time evolution of the conservation law within each space–time element, while the 
corrector step is given by directly integrating a weak form of the governing PDE on a set of space–time control volumes. 
The scheme provides high order of accuracy in space and time in one single time step 	t , which is evaluated under the 
following stability condition

	t < CFL

(
(2N + 1) max

T n
i

|λc
max,i|
hi

+ (2N + 1)2 max
T n

i

|λv
max,i|
h2

i

)−1

, ∀T n
i ∈ �n. (5)

The characteristic element size hi is taken to be either the incircle or the insphere diameter for triangles or tetrahedra, 
respectively, while |λc

max,i | is given by the maximum absolute value of the eigenvalues of the convective part of the flux 
tensor F, while λv

max,i is the maximum eigenvalue of the viscous (parabolic) part of the flux tensor F, both computed 
from the current solution Qn

i in T n
i . On unstructured meshes the CFL stability condition requires the inequality CFL < 1

d to 
be satisfied. We refer the reader to [53] for a von Neumann stability analysis of ADER-DG schemes for the linear scalar 
advection equation in 1D. For high order Lagrangian schemes with time-accurate local time stepping (LTS), see [20,52].

It is well known, the DG method needs some sort of nonlinear limiting to avoid the Gibbs phenomenon at shock waves 
or other discontinuities. In our approach we rely on the a posteriori sub-cell finite volume limiter recently developed in 
[62,65,129]. It is based on a low order finite volume scheme that acts on a fine sub-grid onto which the numerical solution 
uh(x, tn) is scattered when needed. First, we illustrate how the sub-grid is built, then we briefly recall the ADER predictor 
step and we present a novel strategy to move the mesh to the next time level. Then, the ADER-DG corrector strategy is 
described and finally we provide an overview of the a posteriori sub-cell limiter adopted in the ALE context on moving 
unstructured meshes.

2.1. Piecewise linear sub-cell element description needed for the limiter

For so-called troubled cells, i.e. for those cells which need limiting, the element shape is described by means of a set of 
sub-cells arising from the splitting of each element edge into Ns = 2N +1 sub-edges, as done in [62]. The sub-grid is built in 
the reference element T E , as shown in Fig. 2, and is composed by a total number of S = (Ns)

d sub-cells which are defined 
by K sub-nodes, whose coordinates κ are provided by the standard nodes of classical high order conforming finite elements 
on triangular and tetrahedral meshes, therefore

κ2D
k,p =

(
k

Ns
,

p

Ns

)
and κ3D

m,k,p =
(

m

Ns
,

k

Ns
,

p

Ns

)
(6)

with

0 ≤ p ≤ Ns, 0 ≤ k ≤ (Ns − p), 0 ≤ m ≤ (Ns − p − k). (7)

The total number of sub-nodes is given by (4), hence K2D = N (Ns, 2) = (Ns + 1)(Ns + 2)/2 and K3D = N (Ns, 3) = (Ns +
1)(Ns +2)(Ns +3)/6. Each sub-cell S2D and S3D is assigned a local connectivity specified in [62] and, to ease the notation, 
k,p m,k,p
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Fig. 2. Sub-grid configuration on the reference element T E for N = 2, 3, 4 (from top to bottom row) in two (left column) and three (right column) space 
dimensions. The types of sub-node (internal, vertex, face and edge sub-node) are highlighted with different colors. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

we will refer to sub-cell Sk,p in 2D or Sm,k,p in 3D of element T n
i simply with Sn

i j . The same applies to the vertexes, thus 
κk,p becomes κ i j .

We emphasize that the subgrid description of the geometry at the aid of a piecewise linear simplex subgrid essentially 
corresponds to the agglomeration approach recently forwarded by Bassi et al. in [3,4]. The use of the sub-grid also allows 
us to introduce an alternative data representation vh(x, tn) given by a set of piecewise constant sub-cell averages vn

i j that are 
computed according to [62] as

vi j(x, tn) = 1

|Sn
i j|
∫
Sn

uh(x, tn)dx = 1

|Sn
i j|
∫
Sn

φl(x)dx ûn
l ∀ j ∈ [1,S], (8)
i j i j
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where |Sn
i j| denotes the volume of sub-cell Sij of element T n

i . The L2 projection operator (8) is defined by vn
h := P(un

h) and 
it can be computed and stored once and for all in the pre-processing step because the sub-grid connectivity as well as the 
spatial basis functions φl(x) are defined on the reference element T E in ξ which does not change in time.

The reconstruction operator is the inverse of the projection (8) and it permits to recover the piecewise polynomial solution 
uh(x, tn) of the DG scheme on the main grid. This is done solving a classical reconstruction problem, where one requires 
the following condition to be satisfied:∫

Sn
i j

uh(x, tn)dx =
∫
Sn

i j

vh(x, tn)dx ∀ j ∈ [1,S]. (9)

Due to the choice of taking Ns = 2N + 1 ≥ N + 1, equation (9) in general leads to an overdetermined linear system that is 
solved using a constrained least-squares technique [61] in which the reconstruction is imposed to be conservative on the 
main cell T n

i , hence yielding the additional linear constraint∫
T n

i

uh(x, tn)dx =
∫
T n

i

vh(x, tn)dx. (10)

The reconstruction operator is shortened by un
h :=R(vn

h) and it is also defined on the reference element T E , so that system 
(9) can be written as

1

|Sn
i j|
∫
Sn

i j

φl(x)dx ûn
l = vi j(x, tn), (11)

and the reconstruction matrix given by the integrals on the left hand side is conveniently computed and stored once at the 
beginning of the simulation.

2.2. Local space–time predictor

The ADER approach is based on the solution of the generalized Riemann problem, which requires the time derivatives, 
that are needed to evolve the solution in time, to be computed from the governing PDE (1) in terms of spatial derivatives. 
Here, the local space–time predictor aims at providing an element-local predictor solution of the PDE without needing any 
neighbor information. This strategy has been successfully developed and applied in the Eulerian framework on fixed grids in 
[53,57,58,76] and subsequently extended to moving meshes in the ALE context [13–15,17,18,20–22,55]. The starting point 
of the local-space time strategy is given by the polynomials which represent the numerical solution at the current time tn

that will be then evolved locally up to the next time level tn+1 within the space–time control volume T̃ i = Ti(t) ×
[
tn, tn+1

]
. 

In the finite volume framework, the starting polynomials are obtained via reconstruction from the known cell averages of 
the conserved quantities, while in the Discontinuous Galerkin approach they are directly available from (3). As a result we 
obtain piecewise space–time polynomials qh(x, t) of degree N , which will then be employed in the corrector step described 
in Section 2.4 for computing a numerical flux function (Riemann solver) that provides the coupling between neighbor 
elements.

The local predictor strategy is based on an element-local weak formulation of the governing PDE (1) in space and time, 
which reads

tn+1∫
tn

∫
Ti(t)

θk
∂qh

∂t
dx dt +

tn+1∫
tn

∫
Ti(t)

θk ∇ · F(qh,∇qh)dx dt = 0, (12)

where the time step 	t = tn+1 − tn is given by (5). In the above expression, θk = θk(x, t) are a set of space–time test 
functions of degree N that are also used to approximate the predictor solution qh(x, t), hence

qh(x, t) =
L∑

l=1

θl(ξ̃)q̂n
l,i := θlq̂

n
l,i . (13)

According to [14,15] the basis functions θl(ξ̃) are defined by the Lagrange interpolation polynomials passing through a set 
of space–time nodes ξ̂ l specified in [53], yielding a nodal basis. L represents the total number of degrees of freedom and 
it is given by (4) with d + 1 dimensions, since also time is now considered. The symbol tilde (˜) is used for space–time 
quantities and the space–time basis and test functions as well as the integrals appearing in (12) are conveniently defined 
on the space–time reference element T E × [0, 1] with ξ̃ = (ξ, η, ζ, τ ), shown in Fig. 3.

In order to take into account the initial condition, which is given by the known polynomials uh(x, tn), the first term of 
(12) is integrated by parts in time leading to
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Fig. 3. Physical (left) and reference (right) space–time element in 2D with the corresponding space–time nodes for N = 2. The element configuration as 
well as the predictor solution are approximated using a set of isoparametric basis functions θ(ξ̃) of degree N .

∫
T E

θk(ξ ,1)qh dξ −
∫
T E

θk(ξ ,0)uh dξ −
1∫

0

∫
T E

∂θk

∂τ
qh dξdτ +

1∫
0

∫
T E

θk∇ξ · F(qh,∇qh)dξdτ = 0, (14)

where the integrals are defined in the space–time reference element and are evaluated using multidimensional Gaussian 
quadrature rules of suitable order of accuracy, see [118] for details.

In the ALE context the mesh is moving in time, thus changing the geometry of the space–time control volume T̃ i =
Ti(t) × 	t . The mesh motion is governed by the trajectory equation

dx

dt
= V(x, t), (15)

where V(x, t) = (U , V , W ) is the local mesh velocity. We adopt an isoparametric approach, where the same space–time basis 
functions θl , used for the approximation of the predictor solution qh , are also employed to discretize the element geometry 
configuration as well as the mesh velocity, therefore

x̃h(ξ̃) =
L∑

l=1

θl(ξ̃) ˜̂xn
l,i := θl

˜̂xn
l,i, (16)

Vh(ξ̃) =
L∑

l=1

θl(ξ̃)V̂n
l,i := θlV̂

n
l,i, (17)

where ˜̂xn
l,i and V̂n

l,i are the space–time coordinates and the corresponding velocities which, in the nodal approach, also pro-
vide the degrees of freedom of the expansions (16)–(17). The trajectory equation (15), i.e. the time evolution of the element 
configuration, must be computed together with the space–time predictor solution qh given by the nonlinear equation (14). 
Such coupled system is solved by using an iterative procedure detailed in [53], which stops when the residuals of the two 
systems are less than a prescribed tolerance tol (typically tol ≈ 10−12). According to [53], for linear homogeneous hyperbolic 
PDE, the system (14) admits a unique solution that is obtained after at most N + 1 iterations.

Once the above procedure is performed for all cells, an element-local predictor for the numerical solution qh , for the 
mesh velocity Vh as well as for the element configuration x̃h is available.

2.3. Mesh motion

In the ALE framework the computational mesh changes its configuration T� at each time step, hence requiring a pro-
cedure to determine how the control volumes move in time. The local predictor strategy described in the previous section 
provides a high order predictor solution qh as well as a high order isoparametric description of the element configuration 
x̃h , which has been computed locally. As a consequence, the mesh configuration at the new time level T n+1

� might be dis-
continuous, due to the different local evolution of each space–time control volume T̃ i . In order to recover mesh continuity at 
time tn+1, we rely on a nodal solver algorithm. It is a widespread technique used in Lagrangian numerical schemes [28,29,39,
40,71,89,90,93–95] which aims at evaluating a unique velocity vector V for each geometrical degree of freedom. If elements 
are bounded by straight edges, i.e. a piecewise linear description is adopted, such degrees of freedom are simply given by 
the vertexes of each cell [14,15,18], while if the control volumes are defined by a high order geometry involving curvilinear
boundaries, as done in [17], one has to fix a velocity vector also for all the other corresponding degrees of freedom. In any 
case the velocity vectors V allow the Lagrangian mesh configuration T Lag

� to be determined, that is the geometry of the 
computational domain at the next time level obtained solving locally the trajectory equation (15) and applying globally a 
nodal solver algorithm. Such a configuration might lead to highly compressed, twisted or even tangled control volumes if 
the fluid or the grid motion involves very complex flow patterns as vortexes, shock waves or other discontinuities. This is 
why the Lagrangian phase is typically followed by a rezoning strategy which improves the local and global mesh quality, 
generating the rezoned mesh configuration T Rez . Finally, the new triangulation or tetrahedrization T n+1 is given as a linear 
� �
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combination between the Lagrangian and the rezoned position of the mesh degrees of freedom, where the blending factor 
is evaluated according to the relaxation algorithm proposed in [71].

In the following, we present separately the three steps needed for obtaining the final new mesh configuration T n+1
� , 

namely the Lagrangian phase, the rezoning phase and the relaxation phase. If the local mesh velocity V(x, t) = (U , V , W ) is 
prescribed and known a priori, then we do not need any of the aforementioned strategies and the new mesh configuration 
is simply obtained by

Xn+1
k = Xn

k + V̄k · 	t. (18)

Next, we will discuss the more interesting case in which a Lagrangian-like mesh motion is solved by the trajectory equation 
(15), where the local mesh velocity is chosen to be equal to the local fluid velocity, i.e. V = v.

2.3.1. The Lagrangian step
We rely on two different settings for moving the computational mesh, namely either the isoparametric approach and the 

sub-grid approach. Equation (6) provides the reference coordinates κk = (ξk, ηk, ζk) of the degrees of freedom k needed to 
describe the element geometry. For the piecewise linear subgrid approach, which is very similar to the agglomeration approach
of Bassi et al. [4], we use Ns = 2N + 1 subelements and thus Nn = 2N + 2 subnodes along each element edge in order to 
describe the piecewise linear geometry on the sub-grid level. The basis functions φl(x) that approximate the numerical 
solution (3) are still defined on the reference element T E (see Fig. 1), which is split according to the sub-grid definition 
provided in Section 2.1, and we apply a piecewise linear sub-mapping to each simplex sub-element Sn

i j for the transformation 
from the reference coordinates in ξ = (ξ, η, ζ ) to the physical space in x = (x, y, z), that is

x = Xn
1,i + (Xn

2,i − Xn
1,i

)
ξ + (Xn

3,i − Xn
1,i

)
η + (Xn

4,i − Xn
1,i

)
ζ, (19)

with Xn
k,i = (Xn

k,i, Y
n
k,i, Z

n
k,i) denoting the vector of physical spatial coordinates of the k-th vertex of sub-element Sn

i j , accord-
ing the local sub-grid connectivity given in [62]. In the case of an isoparametric description of curved spatial control volumes 
we use Ns = N + 1 and, for the element configuration, a fully isoparametric mapping is adopted that can be retrieved by 
applying Eqn. (16) at the reference time τ = 0. Fig. 4 shows the two-dimensional degrees of freedom, also called sub-nodes, 
for both settings in the case of N = 2, i.e. leading to Nn = N + 1 = 3 in the isoparametric case and Nn = 2N + 2 = 6 in the 
case of piecewise linear subgrid elements.

The physical coordinates Xn
k(κk) := Xn

k of each sub-node k at the current time level tn can be conveniently computed 
using the expansion (16) with ξ̃ = (κk, 0). Please note that at time tn the mesh is continuous by definition, thus we can use 
either the local isoparametric description (16) or the piecewise linear subgrid mapping to evaluate the spatial coordinates of 
the degrees of freedom for the entire computational mesh, ensuring its continuity. This is the starting point for computing 
the corresponding Lagrangian positions XLag

k .
For each sub-node let Vk and Wk represent its associated main grid and sub-grid Voronoi neighborhood, respectively, 

composed by all corresponding neighbor cells T j and sub-cells S j that share the common sub-node k. Let furthermore 
b j denote the MOOD indicator associated with each main cell T j : it is allowed to assume only two values, either bn

j = 0
or bn

j = 1. As discussed later in Section 2.5, if bn
j = 0 the element does not need any limiting procedure, while bn

j = 1 is 
used to mark the so-called “problematic cells” that are affected by the limiter. Therefore, we have to consider the effective 
neighborhood Gk of sub-node k which is built by adding either the main neighbor element T j in Vk if bn

j = 0 or the Voronoi 
sub-cells S j of T j in Wk when bn

j = 1, that is

Gn
k =
{

T j ∈ Vk if bn
j = 0

S j ∈ Wk if bn
j = 1

. (20)

Neighborhood Gn
k , depicted in Fig. 5, is composed by a total number Nn

g neighbor elements T g and it is time-dependent, 
since the MOOD indicator bn

j may change in principle for all cells at each time step. The local velocity contribution Vk,g to 
sub-node k from the effective neighbor T g is extracted from the corresponding state Qk,g , that is given by

Qk,g =

⎧⎪⎨
⎪⎩
(

1∫
0

θl(κm(k), τ )dτ

)
q̂n

l,g if bn
g = 0

vS j (x, tn) if bn
g = 1

, (21)

where m(k) denotes a mapping from the global sub-node number k defined in T n
� to the local sub-node number in element 

T j . In other words, we take the time integral of the high order extrapolated state at sub-node k if the neighbor cell is not 
marked as problematic, otherwise we rely on the projector operator (8) applied to element T g for getting a robust low order 
state. In this way, we guarantee the sub-node state Qk,g to be always valid, i.e. physically and numerically acceptable. The 
corresponding velocity vector Vk,g is extracted from the state Qk,g according to the governing equations (1).

For each sub-node a unique velocity vector Vk must be computed. The sub-nodes can be classified into four different 
types, as depicted in Fig. 2:
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Fig. 4. Element geometry description with the isoparametric approach (top row) and the sub-grid setting (bottom row) with the corresponding degrees 
of freedom highlighted in red and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 5. Neighborhood Gn
k of sub-node k: the left element is assigned with bn

j = 1, hence the states Qk,g are given by the sub-cell finite volume solution 
vS j (x, tn), while the right cell does not need any limiting procedure and the corresponding velocity vector Vk,g is extracted from the high order extrapolated 
state at sub-node k.

1. vertex sub-nodes coincide with the vertexes of cell Ti on the main grid. The associated velocity vector Vk is extracted 
from the corresponding state Qk which is simply computed as the arithmetic average among the local contributions 
coming from the neighborhood of sub-node k, hence
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Qk = 1

Nn
g

∑
T g∈Gn

k

Qk,g; (22)

2. edge sub-nodes appear only for the three-dimensional case and they are aligned along each edge of the tetrahedron. 
For these sub-nodes the velocity is computed in the same manner used for the vertex sub-nodes, thus relying on (22);

3. face sub-nodes belong to the faces of the main element. Here, we propose to evaluate the HLL state [75] at sub-node k
in order to obtain the associated velocity, since in the neighborhood Gn

k only two main elements are involved, i.e. the 
right T R and the left T L neighbor. Let nn = (nx, ny, nz)

n denote the outward pointing unit normal vector of the face of 
cell T L where sub-node k is lying and let Qk,L and Qk,R be the left and right state computed with (21). The sub-node 
HLL state Qk := Qk,H LL is evaluated according to [125] as

Qk,H LL = sR Qk,R − sLQk,L + (F(Qk,L) − F(Qk,R)
) · nn

sR − sL
. (23)

The signal speeds sL and sR are defined as usual,

sL = min (0,
L,
R) sR = max (0,
L,
R) , (24)

with 
L and 
R denoting the diagonal matrix of eigenvalues of the Jacobian matrix of the flux in normal direction 
A = ∂F/Q · n, computed from the corresponding left and right states, respectively;

4. internal sub-nodes are located in the inner part of Ti and their velocity vectors are determined by solving a local Laplace 
equation within each element, that is

	V = 0, (25)

with Dirichlet-type boundary conditions given by the velocities previously computed for vertex, edge and face sub-
nodes. Equation (25) is solved by a classical implicit second order finite element method on the local sub-grid level.

Once the sub-node velocity vector Vk is known, the evaluation of the Lagrangian position is straightforward and reads

XLag
k = Xn

k + 	t · Vk ∀k ∈ T n
�. (26)

2.3.2. The rezoning step
After the Lagrangian phase, coordinates XLag

k might yield a complex mesh configuration, with highly compressed or 
twisted control volumes which could degenerate even to tangled elements. As a consequence, the time step would become 
very small according to (5), or the computation would blow up due to the presence of invalid cells, i.e. computational 
elements with negative volume. To improve the mesh quality, a so-called rezoning strategy is usually applied [71,84] in 
order to improve the mesh quality. Rezoning algorithms do not take into account any physical aspect, but they are based and 
developed on geometrical considerations. Here we use the same strategy described in [15,18] for triangular and tetrahedral 
elements: it consists in optimizing a goal function which is defined locally for each control volume. The crucial point in our 
approach is that the entire rezoning procedure is carried out on the sub-grid level, which is composed by simplex elements 
defined by straight boundaries that perfectly match the requirements needed to perform the rezoning algorithm detailed in 
[15,18]. Therefore, once the goal function has been optimized, the rezoned coordinates XRez

k are available for each sub-node 
of the computational mesh.

2.3.3. The relaxation step
The final mesh configuration T n+1

� is then given by a weighted linear combination between the Lagrangian coordinates 
XLag

k and the rezoned position vectors XRez
k of each sub-node k, hence

Xn+1
k = XLag

k + ωk

(
XRez

k − XLag
k

)
, (27)

with ωk representing a sub-node coefficient bounded in the interval [0, 1]. According to [71], ωk is associated to the defor-
mation of the Lagrangian grid over the time step 	t , that is

F = ∂XLag

∂Xn
, (28)

where F denotes the deformation gradient tensor. Since the sub-elements, on which the mesh motion procedure is carried 
out, are simplex elements, one can rely either on the original technique given in [71] or on the variant recently proposed 
in [17] to compute the tensor F and subsequently to extract the blending factor ωk . All the details can be found in the 
aforementioned references.

After completion of the mesh motion algorithm, the mesh configuration at the new time level tn+1 is known and con-
tinuous, hence allowing the space–time control volumes to be uniquely defined within the time step 	t = tn+1 − tn . To 
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Fig. 6. Space–time evolution of element T n
i within one time step 	t . The physical space–time sub-volumes S̃ i j (left) are mapped onto a reference element 

(right) defined in χ̃ at the aid of a set of linear basis functions.

maintain algorithm simplicity, the old mesh configuration is connected to the new mesh configuration by straight lines, thus 
obtaining a linear description in the time evolution of the control volumes. The mapping in time is linear and simply reads

t = tn + τ	t. (29)

Now, a direct high order Arbitrary-Lagrangian–Eulerian DG scheme can be applied to solve the governing equations (1).

2.4. ADER-DG scheme on moving unstructured meshes

A fully discrete one-step ADER-DG scheme is derived starting from the predictor solution qh(x, t), available from the 
local predictor strategy described in Section 2.2, and the space–time control volumes T̃ i = Ti(t) ×

[
tn, tn+1

]
, which ensure a 

continuous mesh configuration in space and time thanks to the mesh motion procedure illustrated in Section 2.3. The PDE 
system (1) is written in a more compact space–time divergence form as

∇̃ · F̃ = 0 ∇̃ =
(

∂

∂x
,

∂

∂ y
,

∂

∂z
,

∂

∂t

)T

, (30)

with ∇̃ representing a space–time divergence operator and F̃ = (f, g, h, Q) the corresponding space–time flux tensor. Mul-
tiplication of (30) by test functions φk , which are taken to be identical with the spatial basis functions used in (3), and 
subsequent integration over the four-dimensional space–time control volume T̃ i yields∫

T̃ i

φk∇̃ · F̃ dxdt = 0. (31)

Application of Gauss’ theorem allows the above expression to be reformulated as∫
∂ T̃ i

φkF̃ · ñ dSdt −
∫
T̃ i

∇̃φk · F̃ dxdt = 0, (32)

where ñ = (ñx, ̃ny, ̃nz, ̃nt) is the outward pointing space–time unit normal vector on the space–time face ∂ T̃ i , that is given 
by the evolution of each face of element Ti within the timestep 	t . Specifically, a total number of five or six space–time 
faces are needed to bound the space–time volume T̃ i for d = 2 or d = 3, respectively. Fig. 6 shows the two-dimensional 
case: the lateral space–time faces of element Ti involve the Neumann neighborhood Ni , which is the set of directly adjacent 
neighbors T j that share a common face ∂Tij with element Ti , then volume T̃ i is closed by the cell configuration at the old 
and at the new time level, that is

∂ T̃ i =
⎛
⎜⎝ ⋃

T̃ j∈Ni

∂ T̃ i j

⎞
⎟⎠ ∪ T n

i ∪ T n+1
i . (33)

The boundary integral appearing in (32) is replaced by a numerical flux function that provides the coupling between 
neighbor elements, which was not considered in the predictor step presented in Section 2.2. The numerical flux, also 
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known as Riemann solver, is written in space–time normal direction as G((q−
h , ∇q−

h ), (q+
h , ∇q+

h )) · ñ and it involves the 
left (q−

h , ∇q−
h ) and right (q+

h , ∇q+
h ) high order boundary-extrapolated data and gradients. Using approximation (3) and the 

predictor solution qh , the arbitrary high order direct ALE one-step ADER-DG scheme reads⎛
⎜⎜⎝
∫

T n+1
i

φkφldx

⎞
⎟⎟⎠ ûn+1

l =
⎛
⎜⎝∫

T n
i

φkφldx

⎞
⎟⎠ ûn

l −
∫

∂ T̃ i

φkG
(
(q−

h ,∇q−
h ), (q+

h ,∇q+
h )
) · ñ dSdt +

∫
T̃ i

∇̃φk · F̃(qh,∇qh)dxdt. (34)

In this work we rely on a simple and very robust Rusanov flux [110] to evaluate the term G . It has already been applied to 
the ALE context [14,15] and, following [51], it includes both the convective and the viscous terms, hence

G
(
(q−

h ,∇q−
h ), (q+

h ,∇q+
h )
) · ñ = 1

2

(
F̃(q+

h ,∇q+
h ) + F̃(q−

h ,∇q−
h )
)

· ñ − 1

2

(|smax| + 2η|sνmax|
) (

q+
h − q−

h

)
. (35)

Here, |smax| represents the maximum eigenvalue of the ALE Jacobian matrix in space normal direction, which is

AV
n(Q,∇Q) :=

(√
ñ2

x + ñ2
y + ñ2

z

)
[A · n − (V · n) I] , n = (ñx, ñy, ñz)

T√
ñ2

x + ñ2
y + ñ2

z

, (36)

where I is the identity matrix, V · n denotes the local normal mesh velocity and A = ∂F(Q,∇Q)
∂Q . Then, |sνmax| is the maximum 

eigenvalue of the Jacobian matrix of the viscous operator given by D = ∂F(Q,∇Q)
∂(∇Q·n)

·n. Finally, the factor η is estimated according 
to [51,72,76] from the solution of the generalized Riemann problem (GRP) for the diffusion equation as

η = 2N + 1

hν
, (37)

where the characteristic size hν is given by the sum of the distances between the barycenter of the adjacent elements (Ti
and T j) and the barycenter of the face ∂Tij along which the numerical flux is computed.

At this point we have two different approaches to carry on with the one-step ALE ADER-DG scheme (34), depending on 
the strategy adopted for the mesh motion, namely the piecewise linear or the isoparametric geometry approximation.

In the first case, the mesh motion procedure yields an element configuration in which the cell is bounded by a set of 
linear space–time surfaces, hence leading to a general polyhedral element. As a consequence, the space–time volume T̃ i
is decomposed into a set of S corresponding space–time sub-grid volumes S̃ i j , as shown in Fig. 6. Each space–time sub-
volume S̃ i j is parametrized using a set of linear basis functions α defined on a local reference system χ̃ = (χ1, χ2, χ3, τ ), 
in which the reference time coordinate τ is orthogonal to the reference space coordinates that lie on element T n

i . Such 
parametrization reads

S̃ i j =
Nα∑

a=1

αa(ξ̃a) X̃i j,a, (38)

where the degrees of freedom X̃i j,a are known and are given by the coordinates of the sub-cell vertexes at time tn and tn+1. 
As fully detailed in [14,15], Nα = 2(d + 1) and the positions X̃i j,a are directly available from the corresponding sub-node k
with Xn

k and Xn+1
k . Index k is obtained relying on the local sub-grid connectivity of sub-cell Sij , see [62]. Thus, the direct ALE 

ADER-DG scheme (34) with piecewise linear sub-cell representation of the geometry looks very similar to the corresponding 
finite volume scheme presented in [14,15] and it can be formulated as⎛

⎜⎜⎝
S∑

s=1

∫
Sn+1

i j

φkφldx

⎞
⎟⎟⎠ ûn+1

l =

⎛
⎜⎜⎝

S∑
s=1

∫
Sn

i j

φkφldx

⎞
⎟⎟⎠ ûn

l +
S∑

s=1

∫
S̃ i j

∇̃φk · F̃(qh,∇qh)dxdt

−
S∑

s=1

∫
∂ S̃ i j

φkG
(
(q−

h ,∇q−
h ), (q+

h ,∇q+
h )
) · ñ dSdt. (39)

Expression (38) allows the evaluation of the space–time normal vectors ñ as well as the Jacobian of the transformation, as 
done in [14,15].

If the isoparametric approach is employed to approximate the element geometry, the whole space–time volume T̃ i is 
parametrized to the space–time reference element T̃ E using a set of high order basis functions β , therefore



W. Boscheri, M. Dumbser / Journal of Computational Physics 346 (2017) 449–479 461
T̃ i =
Nβ∑

b=1

βb(ξ̃b) X̃i j,b. (40)

In this case, the total number of degrees of freedom Nβ is given by (4) with d + 1 dimensions and for both approximations 
(38) and (40) the basis functions αa and βb are defined by the Lagrange interpolation polynomials passing through the 
space–time nodes ξ̃a and ξ̃b , respectively. The degrees of freedom X̃i j,b are known: those ones defined at time tn are given 
by the current mesh configuration, the ones at time tn+1 are provided by the mesh motion algorithm, then the time linear 
mapping (29) gives the element configuration at all intermediate time levels needed for evaluating the missing degrees of 
freedom of order N + 1. Here, we are dealing with curvilinear elements that are approximated by a set of high order basis 
functions and the integrals appearing in (34) are evaluated following the approach recently proposed in [17], where high 
order finite volume schemes have been applied to curvilinear simplex elements.

For the sake of clarity all the integrals which are present in (34) are computed on the space–time reference element 
T E × [0, 1] employing Gaussian quadrature rules of sufficient precision, see [118] for details.

Finally, we point out that even for the direct ALE ADER-DG algorithm presented in this paper, the scheme provided by 
(39) automatically satisfies the geometric conservation law (GCL) for all test functions φk , since according to Gauss’ theorem 
it follows that∫

∂ T̃ i

φkñ dSdt −
∫
T̃ i

∇̃φk dxdt = 0, (41)

see the appendix of [15] for a detailed derivation of the classical GCL condition from the above relation in the context of 
finite volume schemes. Note, however, that the method presented in this paper is not a pure Lagrangian scheme, since we 
deliberately allow the flexibility to choose any nodal solver for the mesh motion and any Riemann solver for computing the 
numerical flux across element interfaces. This flexibility in general leads to a non zero mass flux across element interfaces 
even when choosing the mesh velocity identical to the local fluid velocity, i.e. if V = v.

2.5. A posteriori sub-cell finite volume limiter on moving unstructured meshes

The numerical scheme presented in the previous section needs a nonlinear limiting procedure to avoid the Gibbs phe-
nomenon at shock waves or other discontinuities, which typically occur while solving nonlinear hyperbolic systems of the 
form (1). In our approach, we rely on the very recent technique developed in [62,65,129] based on the MOOD paradigm 
[30,41,42], where an a posteriori limiter is applied in order to stabilize the numerical solution. All the details can be found 
in the aforementioned references, hence we limit us to briefly recall the main features of the limiter that makes use of a 
robust second order TVD finite volume scheme on the sub-grid level.

The unlimited ALE ADER-DG scheme (34) generates a so-called candidate solution u∗
h(x, tn+1), which is checked against a 

set of detection criteria that must be fulfilled in order to accept the discrete solution at the new time level. If the candidate 
solution does not satisfy all the requirements, the numerical solution is locally recomputed using a second order direct ALE 
ADER finite volume scheme, based on a TVD reconstruction with Barth & Jespersen slope limiter, as done in [21,22].

The a posteriori sub-cell limiter procedure can be summarized as follows:

• compute the candidate solution u∗
h(x, tn+1) for each cell T n

i by means of (34);
• use the projection operator (8) to obtain the candidate solution v∗

h(x, tn+1) on the sub-grid level for each sub-cell Sij of 
element T n

i ;
• check the candidate solution v∗

h(x, tn+1) against the detection criteria: according to [62], the first criterion is given by 
requiring physical positivity for some quantities related to the governing system (1), such as density and pressure, if the 
compressible Euler equations for gas dynamics are considered. In practice we require both density and pressure to be 
greater than a prescribed tolerance εp = 10−12. Then, a relaxed discrete maximum principle (RDMP) is applied in the 
sense of polynomials, hence verifying

min
m∈Vi

(vh(xm, tn)) − δ ≤ v∗
h(x, tn+1) ≤ max

m∈Vi

(vh(xm, tn)) + δ ∀x ∈ T n
i , (42)

where Vi represents the Voronoi neighborhood of cell T n
i and δ is a parameter which, according to [65,129], reads

δ = max

[
δ0, ε ·

(
max
m∈Vi

(vh(xm, tn)) − min
m∈Vi

(vh(xm, tn))

)]
, (43)

with δ0 = 10−4 and ε = 10−3. If a cell passes the detection criteria in all its sub-cells, then the cell is marked as “good” 
using the MOOD indicator bn

i = 0, otherwise the cell is “problematic” or troubled with bn
i = 1. Such indicator is also 

employed for determining the local velocity contribution (20) in the Lagrangian phase of the mesh motion procedure;
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• at this point the numerical solution at the new time level uh(x, tn+1) must be determined: if bn
i = 0 then we simply 

have uh(x, tn+1) = u∗
h(x, tn+1). In the case of a troubled cell, i.e. bn

i = 1, the new numerical solution is first computed on 
the sub-grid level for each sub-cell Sij , hence obtaining vh(x, tn+1). To this purpose, we propose to use a second order 
direct ALE ADER finite volume scheme which exactly follows the algorithm fully detailed in [14,15]: the only difference 
with the aforementioned references is that here the finite volume scheme is applied to each sub-cell and we do not 
use a WENO reconstruction, but a simple and robust TVD reconstruction with Barth & Jespersen slope limiter [2]. The 
piecewise polynomial solution of the DG scheme is now recovered from the robust and stable solution on the sub-grid 
level by applying the reconstruction operator (9), thus uh(x, tn+1) =R(vh(x, tn+1)).

Remark. In order to be strictly conservative, in a good cell T n
j with bn

j = 0 which is a neighbor of a troubled cell T n
i with 

bn
i = 1, the numerical solution uh(x j, tn+1) is also recomputed. Indeed, the numerical flux on the common boundary face 

∂ T̃ i j , shared by elements T n
j and T n

i , has been evaluated on the sub-grid level with the second order TVD direct ALE finite 
volume scheme and it must be taken into account also in cell T n

j .

3. Test problems

In this paper we focus on the Euler equations of compressible gas dynamics, which can be cast into form (1) with

Q =
⎛
⎝ ρ

ρv
ρE

⎞
⎠ , F(Q) =

⎛
⎝ ρv

ρ (v ⊗ v) + pI
v(ρE + p)

⎞
⎠ , (44)

where ρ and p are the fluid density and pressure, respectively, while v = (u, v, w) denotes the velocity vector and E
represents the total energy density. The d × d identity matrix is addressed with I and the system is closed using the 
equation of state of a perfect gas with adiabatic index γ , i.e.

p = (γ − 1)

(
ρE − 1

2
ρv2
)

. (45)

If viscous flows with heat conduction are considered, the flux term in (44) becomes

F(Q,∇Q) =
⎛
⎝ ρv

ρ (v ⊗ v) + σ (Q,∇Q)

v · (ρEI + σ (Q,∇Q)) − κ∇T

⎞
⎠ , (46)

hence obtaining the compressible Navier–Stokes equations. We note that the explicit DG scheme for viscous compressible 
flows on moving unstructured meshes presented here closely follows the discretization outlined in [51] for general P N P M
schemes on fixed unstructured grids, but using only the special case N = M (pure DG). The stress tensor σ (Q, ∇Q) is 
computed under Stokes’ hypothesis as

σ (Q,∇Q) =
(

p + 2

3
μ∇ · v

)
I − μ

(
∇v + ∇vT

)
, (47)

with μ denoting the viscosity. T represents the temperature and the heat conduction coefficient κ is linked to the viscosity 
through the Prandtl number Pr, thus

κ = μγ cv

Pr
. (48)

The specific heat at constant volume is given by cv = R/(γ − 1) with R being the gas constant which is assumed to be 
R = 1, if not stated differently. In the case of viscous phenomena, the time step restriction is more severe and equation (5)
is modified into

	t <
CFL

2N + 1
min

T n
i

hi

|λmax,i| + 2|λν
max,i| 2N+1

hi

, ∀T n
i ∈ �n, (49)

where, according to [51], the maximum viscous eigenvalue is |λν
max,i | = max

(
4
3

μ
ρ ,

γμ
Prρ

)
.

In our ALE framework we choose to set the local mesh velocity equal to the local fluid velocity for each of the test cases 
shown in this paper, hence

V = v. (50)

Furthermore, we employ by default the piecewise linear mesh motion and the corresponding DG scheme, therefore the 
usage of the isoparametric approach will be explicitly declared when adopted. Finally, the initial condition might also be 
given in primitive variables U = (ρ, u, v, w, p).
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Table 1
Numerical convergence results for the compressible Euler equations using the direct ALE ADER-DG schemes from second up to fourth order of accuracy. 
The error norms refer to the variable ρ (density) at time t = 0.1.

2D O2 (N = 1) O3 (N = 2) O4 (N = 3)

h(�(t f )) εL2 O(L2) εL2 O(L2) εL2 O(L2)

3.26E−01 1.0004E−02 – 7.5703E−04 – 8.2888E−05 –
2.48E−01 5.4550E−03 2.2 3.1513E−04 3.2 1.8413E−05 5.5
1.63E−01 2.4121E−03 2.0 9.7362E−05 2.8 4.1320E−06 3.6
1.28E−01 1.3399E−03 2.4 4.1703E−05 3.5 1.3910E−06 4.5

3D O2 (N = 1) O3 (N = 2) O4 (N = 3)

h(�(t f )) εL2 O(L2) εL2 O(L2) εL2 O(L2)

5.92E−01 6.5631E−02 – 9.7555E−03 – 1.5405E−03 –
3.62E−01 2.6576E−02 1.8 2.4926E−03 2.8 3.3902E−04 3.1
2.31E−01 1.1667E−02 1.8 7.5848E−04 2.7 3.8998E−05 4.8
1.81E−01 6.5522E−03 2.3 3.8457E−04 2.8 1.2356E−05 4.7

3.1. Numerical convergence studies

The numerical convergence of the direct ALE ADER-DG schemes presented in this article is studied considering a test case 
proposed in [79], which involves a smooth isentropic vortex flow that is furthermore convected on the horizontal plane x– y
with velocity vc = (1, 1, 0). The initial computational domain is the square �(0)2D = [0; 10] × [0; 10] in 2D and the box 
�(0)3D = [0; 10] × [0; 10] × [0; 5] in 3D with periodic boundary conditions set everywhere. The initial condition is given 
by some perturbations δ that are superimposed onto a homogeneous background field U0 = (ρ, u, v, w, p) = (1, 1, 1, 0, 1), 
assuming that the entropy perturbation is zero, i.e. S = p

ργ = 0. The perturbations for density and pressure read

δρ = (1 + δT )
1

γ −1 − 1, δp = (1 + δT )
γ

γ −1 − 1, (51)

with the temperature fluctuation δT = − (γ −1)ε2

8γπ2 e1−r2
. According to [79], the vortex strength is ε = 5 and the adiabatic 

index is set to γ = 1.4, while the velocity field is affected by the following perturbations:⎛
⎝ δu

δv
δw

⎞
⎠= ε

2π
e

1−r2
2

⎛
⎝−(y − 5)

(x − 5)

0

⎞
⎠ . (52)

The exact solution Qe can be simply obtained as the time-shifted initial condition, e.g. Qe(x, t f ) = Q(x − vct f , 0), and the 
error is expressed in the continuous L2 norm as

εL2 =
√√√√
∫

�(t f )

(
Qe(x, t f ) − uh(x, t f )

)2
dx. (53)

Table 1 reports the convergence rates from second up to fourth order of accuracy for the vortex test problem run on a 
sequence of successively refined unstructured meshes. h(�(t f )) is the mesh size at the final time of the simulation t f = 0.1, 
which is taken to be the maximum diameter of the circumcircles or the circumspheres among all the control volumes of 
the final grid configuration �(t f ). The optimal order of accuracy is achieved both in space and time for d = 2 as well as for 
d = 3. Fig. 7 plots the two-dimensional mesh configuration at output times t = 0.5, t = 1.0, t = 1.5 and t = 2.0 for N = 3.

3.2. The explosion problem

The first test case considered in this work is the multidimensional explosion problem. It represents a useful sanity 
check because it involves a rarefaction wave moving towards the center of the computational domain as well as a contact 
discontinuity and a shock wave that are traveling to the opposite direction. The initial computational domain is a circle or a 
sphere of radius R = 1 and the initial condition is composed by two different states separated at radius Rs = 0.5. The inner 
state Ui and the outer state Uo read

U(x,0) =
{

Ui = (1,0,0,0,1), if ‖r‖ ≤ Rs

Uo = (0.125,0,0,0,0.1), if ‖r‖ > Rs
, (54)

with r = √
x2 representing the generic radial position. Transmissive boundaries have been set on the external side and the 

domain is paved with NE = 17,340 triangles. We set γ = 1.4 and, at the final time of the simulation t f = 0.25, the fifth 
order accurate numerical solution is compared against the reference solution, whose derivation can be found in [14,123]. In 
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Fig. 7. Two-dimensional isentropic vortex test problem. Mesh configuration at output times t = 0.5, t = 1.0, t = 1.5 and t = 2.0 from top left to bottom 
right. A fourth order of accuracy is used to approximate the element geometry.

Fig. 8 one can note an excellent resolution of the contact wave and the sub-cell limiter map shows that the limiter is active 
only across the shock wave.

Fig. 9 shows the results obtained running a third order three-dimensional simulation of the explosion problem. A total 
number of NE = 1,469,472 tetrahedra has been used to discretize the sphere. The discontinuity between internal and ex-
ternal state is located again at Rs = 0.5. Also in this case the limiter well detects the region around the shock and a good 
agreement with the exact solution is achieved.

3.3. The Saltzman problem

The Saltzman test case describes the motion of a piston which is impinging on a fluid at rest contained in the initial 
computational domain given by �(0) = [0; 1] × [0; 0.1]. This is a challenging test problem used in literature [50,89,94] to 
assess the robustness of any Lagrangian algorithm. The piston moves with velocity vp = (1, 0) and generates a strong shock 
wave that is traveling along the main direction of the computational domain. The cells which lie near the piston are highly 
compressed during the simulation. Wall boundaries are considered everywhere except for the piston, on which we impose a 
moving slip wall boundary condition. The computational mesh is composed by NE = 2000 triangles and the grid is initially 
distorted applying a skewness that makes no sides of the mesh aligned with the main fluid flow, as fully explained in [50]. 
At time t = 0 the domain is filled with a perfect gas at rest with γ = 5

3 , uniform density ρ = 1 and pressure p = 10−4, 
according to [89]. The final time of the simulation is t f = 0.6 and the exact solution is given by a one-dimensional infinite 
strength shock wave with a post shock density of ρe = 4.0 and the shock front located at x = 0.8, see [14] for further details. 
Fig. 10 shows the two-dimensional results, highlighting the excellent agreement between the fifth order accurate numerical 
solution and the exact solution. Note that even the well-known wall heating effect close to the moving piston [124] almost 
disappears in this case, without any specific treatment. Furthermore, we also plot the sub-cell limiter map that marks in 
red those cells in which the limiter is active and in blue the unlimited elements.
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Fig. 8. Two-dimensional explosion problem at output time t = 0.25 with N = 4. Top: three-dimensional view of density distribution (left) and sub-cell 
limiter map (right). Bottom: 1D cut of density distribution (left) and pressure (right) compared against the reference solution.

Next, we propose to solve the Saltzman problem with physical viscosity, hence considering the compressible Navier–
Stokes equations (46). The setting of the problem is the same one used for the inviscid case, but the initial computational 
mesh counts a total number of NE = 2220 fully unstructured triangles, that have been skewed according to the transforma-
tion explicitly given in [50]. Slip-wall boundaries have been imposed on the lateral side of the domain in order to avoid the 
generation and the growth of the boundary layer. Fig. 11 shows the numerical results obtained with a viscosity coefficient 
of μ = 10−2, hence leading to a Reynolds number of Re = 100, while we plot a fourth order simulation of the Saltzman 
problem with Re = 1000 in Fig. 12. The physical viscosity spreads the shock wave induced by the piston, so that the sub-
cell limiter is not needed for Re = 100, or it becomes active in very few cells with Re = 1000. For both viscous simulations 
we have used the isoparametric version of our ALE ADER-DG schemes with a CFL number of CFL = 0.1. The results are 
compared against the exact solution obtained in the inviscid case.

3.4. The Kidder problem

This is a smooth test case proposed in [83] that considers the isentropic compression of a portion of a shell filled 
with an ideal gas. According to [25,94], the initial computational domain is bounded by ri(t) ≤ r ≤ re(t), where ri(t), re(t)
represent the time-dependent internal and external radius, respectively, and r = √

x2 denotes as usual the generic radial 
coordinate. Sliding wall boundaries are imposed everywhere apart from the internal and external frontiers, where we set a 
space–time dependent state computed according to the self-similar analytical solution R(r, t), available in [83]. The gas is 
initially assigned a uniform entropy s0 = p0

γ = 1 with the adiabatic index γ = 2 and the initial condition

ρ0
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Fig. 9. Three-dimensional explosion problem at output time t = 0.25 with N = 2. Top row: sub-cell limiter map (left) and final mesh configuration (right). 
Middle row: three-dimensional view of density distribution (left) and 1D cut of density distribution (right). Bottom row: 1D cut of horizontal velocity (left) 
and pressure (right) distribution compared against the reference solution. (For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)
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Fig. 10. Saltzman problem in 2D with N = 4. Top: scatter plot of the cell density (left) and horizontal velocity (right) as a function of cell horizontal 
coordinate x versus the exact solution. Bottom: sub-cell limiter map (left) and final mesh configuration (right).

Table 2
Kidder problem. Absolute error for the inter-
nal and external radius location between exact 
(rex) and numerical (rnum) solution.

rex rnum |err|
0.450000 0.45014 1.4e−4
0.500000 0.50041 4.1e−4

⎛
⎝ ρ0(r)

v0(r)
p0(r)

⎞
⎠=

⎛
⎜⎜⎝
(

r2
e,0−r2

r2
e,0−r2

i,0
ρ

γ −1
i,0 + r2−r2

i,0

r2
e,0−r2

e,0
ρ

γ −1
e,0

) 1
γ −1

0
s0ρ0(r)γ

⎞
⎟⎟⎠ , (55)

where ρi,0 = 1 and ρe,0 = 2 denote the initial values of density at the time-dependent internal and external frontier, re-

spectively. The final time is taken to be t f =
√

3
2 τ with the focalization time τ = 0.217944947177 computed according to 

[14,15,83]. The exact location of the shell at the final time is bounded by 0.45 ≤ R ≤ 0.5, therefore the absolute error |err|
between analytical and numerical solution is easily computed and reported in Table 2. Since the Kidder problem does not 
involve any discontinuity, no cells are affected by the sub-cell limiter. The temporal evolution of the computational domain 
of the Kidder problem is shown in Fig. 13.

3.5. The Sedov problem

Here, we consider the evolution of a strong shock wave induced by a very high energy deposit, initially located at the 
origin O = (x) = (0) of the computational domain, which is given by �(0) = [0; 1.2]d . The mesh is composed by NE = 30d

control volumes, each of them split into two triangles, according to [15,18]. The Sedov problem constitutes a benchmark 
in literature [92,94,99] since it allows the algorithm to be tested against strong element compressions produced by the 
diverging shock wave. The initial condition in primitive variable simply reads U0 = (1, 0, 0, 0, p0), where the initial pressure 
is p0 = 10−6 everywhere except for the cell cor containing the origin of the domain where we assign

por = (γ − 1)ρ0
Etot

α · Vor
with Etot = 0.244816, (56)

where the ratio of specific heats is γ = 1.4 and Etot represents the total energy density. Furthermore, α is a factor which 
takes into account the cylindrical symmetry, hence becoming α = 4 for the two-dimensional case. The final time of the 
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Fig. 11. Viscous Saltzman problem in 2D with N = 3 and μ = 10−2. Top: scatter plot of the cell density (left) and horizontal velocity (right) as a function 
of cell horizontal coordinate x versus the exact solution for the inviscid flow. Bottom: sub-cell limiter map (left) and final mesh configuration (right).

simulation is t f = 1.0 and the exact solution is a symmetric cylindrical shock wave located at radius R = √
x2 = 1 with a 

density peak of ρ = 6. Fig. 14 demonstrates that the fourth order ALE ADER-DG scheme approximates very well the density 
distribution, although the computational mesh is highly distorted. The sub-cell limiter is active only at the shock front, as 
expected. To obtain a better quality in the final mesh configuration we have also run the Sedov problem with N = 4 and a 
constant relaxation parameter ωk = 0.7 in Eqn. (27), so that the computational mesh is strongly rezoned. The corresponding 
results are depicted in the bottom panels of Fig. 14.

Finally, in order to assess the robustness of the scheme presented in this paper, we run again a fourth order accurate 
simulation of the Sedov problem by setting the initial pressure very close to zero, i.e. p = εp = 10−12, as done in [127]. 
Fig. 15 shows that the numerical results quite well preserve the quality and the accuracy of the previous ones. Moreover, 
the subcell limiter is again active only along the shock wave and the almost vacuum pressure zone is not affected by the 
MOOD decrementing procedure.

3.6. Viscous shock problem

The test problem described in the following is concerned with physical viscosity, therefore in this case we are solving the 
compressible Navier–Stokes equations (46). Specifically, an isolated viscous shock wave is propagating into a fluid at rest in 
the supersonic regime, i.e. with a shock Mach number of Ms > 1. The setup of this test problem starts from the analytical 
solution of the compressible Navier–Stokes equations derived in [7] for the particular case of a stationary shock wave at 
Prandtl number Pr = 0.75 with constant viscosity. According to [19,63], a constant velocity field u = Msc0 is superimposed 
to the previous stationary shock wave solution, hence obtaining a non-stationary shock wave initially traveling at Ms = 2
with a Reynolds number of Re = 100. The fluid before the shock is assigned with constant density ρ0 = 1, velocity u0 = 1.25
and pressure p0 = 1/γ with γ = 1.4. The physical viscosity is μ = 2 × 10−2 and the final time of the simulation is chosen 



W. Boscheri, M. Dumbser / Journal of Computational Physics 346 (2017) 449–479 469
Fig. 12. Viscous Saltzman problem in 2D with N = 3 and μ = 10−3. Top: scatter plot of the cell density (left) and horizontal velocity (right) as a function 
of cell horizontal coordinate x versus the exact solution for the inviscid flow. Bottom: sub-cell limiter map (left) and final mesh configuration (right).

Fig. 13. Initial and final computational domain (left) and evolution of the internal and external radius of the shell and comparison between analytical and 
numerical solution (right). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
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Fig. 14. Sedov problem. Two-dimensional mesh configuration at the final time t f = 1 with sub-cell limiter map (left) and scatter plot of cell density (right). 
Top: fourth order accurate numerical results. Bottom: fifth order accurate simulation with strong rezoning.

Fig. 15. Sedov problem with initial pressure p = 10−12. Two-dimensional mesh configuration at the final time t f = 1 with sub-cell limiter map (left), 
pressure distribution (middle) and scatter plot of cell density (right). (For interpretation of the colors in this figure, the reader is referred to the web 
version of this article.)

to be t f = 0.2. The initial computational domain is the rectangular box �(0) = [0; 1] × [0; 0.2], which is discretized by an 
unstructured computational mesh with characteristic mesh size h = 1/100, yielding a total number of NE = 4462 triangles. 
Periodic boundaries are imposed in the y-direction, a no-slip wall is placed at x = 1 while the left side of the domain is 
moved with the local fluid velocity. The shock wave is initially centered at x = 0.25 and we use the fourth order version 
of our ALE ADER-DG schemes to run the simulation with the isoparametric approach for the mesh motion. Fig. 16 shows 
a comparison of the numerical results against the analytical solution, where an excellent matching can be appreciated. 
Furthermore, the sub-cell limiter is correctly not active in the whole computational domain as expected, since the solution 
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Fig. 16. Viscous shock problem at final time t = 0.2. We show the comparison between numerical and analytical solution for density, velocity and pressure 
as well as a three-dimensional view of the density distribution with the corresponding sub-cell limiter map.

does not involve any discontinuity (the shock structure is fully resolved here). Finally, Fig. 17 depicts the density distribution 
as well as the mesh configurations at output times t = 0.0, t = 0.1 and t = 0.2.

3.7. Taylor–Green vortex

We solve the Taylor–Green vortex problem on the two-dimensional computational domain �(0) = [0, 2π ]2, where pe-
riodic boundaries are set everywhere. The final time of the simulation is t f = 1.0 and the mesh is composed by a total 
number of NE = 5630 triangles with characteristic mesh size of h = 2π/50. An exact solution is available solving analyti-
cally the two-dimensional incompressible Navier–Stokes equations and it reads

ρ(x, y, t) = ρ0,

u(x, y, t) = sin(x) cos(y)e−2νt,

v(x, y, t) = − cos(x) sin(y)e−2νt,

p(x, y, t) = C + 1

4
(cos(2x) + cos(2y))e−4νt, (57)

with the kinematic viscosity ν = μ
ρ , the density ρ0 = 1, the ratio of specific heats γ = 1.4 and the initial additive constant 

for the pressure field C = 100/γ . The analytical solution gives also the initial condition and the physical viscosity is chosen 
to be μ = 10−1. We use a fourth order ALE ADER-DG scheme to carry out the numerical simulation solving the compressible 
Navier–Stokes equations (46), where the mesh motion is again driven relying on the isoparametric version of our algorithm. 
Results are depicted in Fig. 18 and compared against the exact solution, showing an excellent agreement both for velocity 
and pressure. Since no discontinuities are involved in this test problem, the sub-cell limiter is not active in any cell.
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Fig. 17. Density distribution and mesh configuration for the viscous shock problem at output times t = 0.0, t = 0.1 and t = 0.2. (For interpretation of the 
colors in this figure, the reader is referred to the web version of this article.)

3.8. Spherical implosion

The last test case describes an implosion, which is quite similar to what happens in Ignition Confinement Fusion (ICF) 
simulations. According to [67] the initial computational domain is given by the circle of radius R = 12, that is split into an 
internal and an external region at radius Rs = 10. The inner zone is filled by a light gas with initial density and pressure 
(ρl, pl) = (0.05, 0.1), while in the outer shell there is a heavy fluid with (ρh, ph) = (1.0, 0.1). Both fluids are initially at rest 
and the ratio of specific heats is set to γl = γh = 5/3. On the external boundary we impose the pressure

p∗(t) =
{

10, if t ∈ [0,0.5]
12 − 4t, if t > 0.5

, (58)

which drives the implosion. Initially, the shell is collapsing towards the center of the domain, while after t ≈ 2.5 the pressure 
of the highly compressed light fluid becomes bigger than the one imposed externally, hence leading to an expansion of the 
shell. The final time of the simulation is chosen in such a way that the external radius is located at re = 4 with the generic 
radial position r = √x2 + y2. Fig. 19 shows the density distribution as well as the mesh configuration at output times 
t = 0.0, t = 1.5 and t f = 2.77 obtained running a fourth order direct ALE ADER-DG scheme.

As evident from Fig. 19, Rayleigh–Taylor phenomena arise along the interface between light and heavy fluid, generating 
vortex-like patterns as well as mesh rolling up that destabilize the fluid flow. In order to limit and reduce such instabilities, 
we apply a magnetic field B (measured in Gauss [G]) acting on the horizontal plane x–y and we solve the ideal equations 
for magnetohydrodynamics (MHD) in our direct ALE framework. We refer the reader to [15,18] for more details on the MHD 
system and its implementation in the ADER context with moving meshes. In the following, we solve the spherical implosion 
problem applying a magnetic field of intensity B0 to the fluid, that is

B = (Bx, B y, Bz) = ω × x, ω = (0,0, B0). (59)

We set B0 = 1, B0 = 2, B0 = 3 and Fig. 20 plots the corresponding density distributions obtained at final times t f ,1 = 2.70, 
t f ,2 = 2.63 and t f ,3 = 2.55, respectively. For comparison purposes we also report the result computed with B0 = 0 and one 
can note that the higher is the intensity of the magnetic field the smaller are the Rayleigh–Taylor instabilities, as expected. 
Moreover, in Fig. 21 the evolution of the external and the interface radii are shown for the case with B0 = 0 and B0 = 3, up 
to a final time of t f = 3.0.

Finally, we include physical viscosity in the governing equations, hence we run again a fourth order simulation of this 
test case with a viscosity coefficient of μ = 10−3 until the final time t f = 2.7. The results are depicted in Fig. 22, where 
density as well as temperature are shown. We have solved the inviscid Euler equations for compressible gas dynamics (44)
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Fig. 18. Taylor–Green vortex with physical viscosity μ = 10−1 at final time t f = 1.0. Top: velocity vector field (left) and mesh configuration with density 
distribution (right). Bottom: comparison between exact and numerical solution for the horizontal velocity components (u, v) (left) and for pressure (right). 
(For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

(left panels), the compressible Navier–Stokes equations (46) (middle panels) and the viscous resistive MHD equations [54]
with a Lundquist number of Lu = 103 (right panels). One can note that the physical viscosity plays an important role for 
the stabilization of the fluid.

4. Conclusions

In this paper we have presented a new family of high order ADER Discontinuous Galerkin (DG) finite element schemes 
in the framework of direct Arbitrary-Lagrangian–Eulerian (ALE) methods on moving unstructured multidimensional meshes. 
The numerical solution is represented by high order spatial polynomials of degree N in each cell that are evolved in time 
by a one-step explicit DG scheme, based on a high order space–time predictor computed relying on the ADER methodology.

Two different strategies have been developed for moving the mesh in time, namely a piecewise linear decomposition of 
the control volumes into simplex sub-cells and a curved high order isoparametric approximation of the element geometry. 
For the sub-nodes lying on an element face, a new nodal solver based on the HLL state is used to evaluate the mesh 
velocity. The new geometry configuration is directly taken into account in the computation of the fluxes. The proposed 
explicit one-step ALE ADER-DG scheme is based on a space–time conservation formulation of the governing PDE system, 
hence satisfying by construction the geometrical conservation law (GCL).

Convergence studies demonstrate the space–time accuracy of the new schemes and a wide range of test cases have been 
run in order to assess the validity and the robustness of the ALE ADER-DG method. The Euler equations of compressible 
gas dynamics as well as the compressible Navier–Stokes equations with heat conduction have been considered, solving a 
set of test problems with strong shock waves and other discontinuities. Finally, a cylindrical implosion problem has been 
studied and a magnetic field has been applied to the fluid in order to stabilize the Rayleigh–Taylor instabilities arising in 
this problem. For this purpose the ideal classical and viscous resistive magnetohydrodynamics equations have been used 
within the framework of the new algorithm illustrated in this paper.
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Fig. 19. Density distribution (left column) and mesh configuration (right column) for the spherical implosion problem at output times t = 0.0, t = 1.5 and 
the final time t f = 2.77 with the external radius located at re = 4.0. (For interpretation of the colors in this figure, the reader is referred to the web version 
of this article.)
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Fig. 20. Density distribution for the spherical implosion problem solved using the ideal MHD equations with a magnetic field of intensity B0 applied on the 
horizontal plane x–y. From top left to bottom right: B0 = 0 at output time t f = 2.77, B0 = 1 at output time t f ,1 = 2.70, B0 = 2 at output time t f ,2 = 2.63
and B0 = 3 at output time t f ,3 = 2.55. All simulations stop when the external radius of the domain reaches re = 4.

Fig. 21. Time evolution of the external radius and the interface position between light and heavy fluid for B0 = 0 and B0 = 3 up to the final time t f = 3.0.
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Fig. 22. Density (top row) and temperature (bottom row) distribution at final time t f = 2.70 for the spherical implosion problem solved using the Euler 
equations of compressible gas dynamics (left column), the compressible Navier–Stokes equations with viscosity μ = 10−3 (middle column) and the viscous 
and resistive MHD equations with a magnetic field of intensity B0 = 1 applied on the horizontal plane x–y and a viscosity coefficient of μ = 10−3 (right 
column). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

We plan to extend the presented approach to non-conservative systems and stiff source terms in order to apply it to the 
Godunov–Peshkov–Romenski model of nonlinear hyperelasticity [19,63,107].
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