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Abstract 8 
Reliability improvement of wind turbine power generation is the key issue that can turn the wind power into one of 9 
the main power sources to respond to the world power demands. The likelihood of fault occurrence on wind turbine 10 
components is unavoidable, especially for large rotor modern wind turbines, operating in harsh offshore environments. 11 
Accordingly, the maintenance need increases due to unanticipated faults, which in turn, leads to higher energy cost 12 
and less reliable power generation. In this regard, model-based fault detection and fault tolerant control techniques 13 
have been extensively investigated in the last decade, for achieving good performance. In this way, the reliability, 14 
availability and safety features of the wind turbine power generation are also enhanced. Thus, in this paper a 15 
comprehensive review of the most-recent model-based fault detection and fault tolerant control schemes for wind 16 
turbine power generation is presented, focusing on the advantages, capabilities and limitations. Note that the so-called 17 
data-driven or signal-based methodologies, which rely on the analysis of the signals directly generated from the 18 
monitored system, are not reviewed in this paper. This review is organized in a tutorial manner, to be a suitable 19 
reference for further research for the wind turbine’s reliability improvement.    20 
 21 
Keywords: Wind Turbines; Model-based approaches; Reliability and robustness; Fault Detection and Isolation 22 
(FDI); Fault estimation; Fault Tolerant Control (FTC). 23 
 24 
1. Introduction 25 
Ever increasing energy demand is one of the key factors forming the energy research trends. The decrease in 26 
exploitable sources, huge environmental pollution, and high price, are some of the most reported problems of the 27 
traditional energy resources. As the result of seeking for new resources, the renewable energy resources have been 28 
ascertained as an appropriate alternative to traditional fossil fuel energy generation, among which wind energy has 29 
demonstrated outstanding characteristics and has attracted the world’s attention; therefore, it has been defined as “the 30 
world’s fastest-growing renewable energy source” with 30% growth annually on average throughout the last two 31 
decades [1]. During this time, the planned capacity of wind farms has increased significantly to provide a higher share 32 
of the energy. The global wind power installations are illustrated in Figure 1, which also depicts the growth of captured 33 
wind power. The wind power extraction of some countries has also been summarized in Table 1, which shows the 34 
anticipated growth and demand for wind power. Accordingly, modern wind turbines are designed with a longer blade, 35 
to increase the swept area, with higher towers and also to be located in remote offshore places to encounter higher 36 
wind speeds, and consequently, to increase the captured power e.g. from 75-kW to 20-MW [2], as illustrated in Table 37 
2.  38 

 39 
Fig. 1. Global capacity of wind power plant [1, 3]. 40 

 41 
 42 
 43 
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Table 1. Wind power share of whole power demand for some countries. 44 
Country Wind power share of whole demand Expected year Reference 

United States 30% (300 GW) 2030 [2] 

European Union 
12-14% 2020 

[4, 5] 
25% 2030 

China 15% 2020 [1, 4] 

Portugal, Spain, France, Germany, 

Ireland, Sweden 
9% to 21% 2015 [1, 5] 

Denmark 50% 2020 [6] 

 45 
Table 2. Wind turbine size increase throughout the last three decades [1]. 46 

Blade length (m) Tower height (m) Nominal power (kW) Usage year Location 

8.5 30 75 1980-1990 Onshore 

15 45 300 1990-1995 Onshore 

25 60 750 1995-2000 Onshore 

35 70 1500 2000-2005 Onshore 

40 95 1800 2005-2010 Onshore 

50 100 3000 2010-present Onshore 

62.5 130 5000 2010-present Offshore 

75 160 10000 Future Onshore 

125 220 20000 Future Offshore 

The operation of large offshore wind turbines in harsh environments and in the presence of highly varying stochastic 47 
loads, often leads to the occurrence of faults, requiring increased planned maintenance schedules [7, 8]. This presents 48 
the major problem of the lower reliability of wind power generation [9]. Increased maintenance has double negative 49 
effects, i.e. higher maintenance cost and also, less generated power due to increased downtime [10, 11]. Accordingly, 50 
the cost of the generated energy is generally increased and, consequently, the wind turbine generated power may be 51 
less competitive compared to other traditional resources. For example, the maintenance cost of an offshore wind 52 
turbine is estimated to be 20-25% of the total income [12-14] and 10-15% for an onshore farm for 20 years of operating 53 
life [15]. In Figure 2, the wind turbine failure rates and corresponding downtime are illustrated [8]. It is thus beneficial 54 
to keep the maintenance cost as low as possible, decrease downtime and, consequently increase the captured power, 55 
and finally improve reliability, despite the presence of faults [16]. For this aim, Fault Detection and Isolation (FDI) 56 
and Fault Tolerant Control (FTC) are powerful methods. The fault information captured from FDI units can be used 57 
to optimize the maintenance procedures via remote diagnosis [17]. The use of FTC allows the equipment to achieve 58 
the required robustness with respect to the considered faults and, consequently, keeps the wind turbine performance 59 
at the desired level, despite the presence of faults. So, the maintenance need and downtime are decreased, and the 60 
reliability of power generation will be improved. Therefore, the final cost is kept as cheap as possible [18, 19].  61 
 62 

 63 
 Fig. 2. Wind turbine component failure rate (black color) and downtime (grey color) [8]. 64 

 65 
The FDI and FTC designs for wind turbines have been significantly developed over the last decade. Most of the works 66 
in this field have been motivated by the competitions conducted by KK-electronic a/c and MathWorks from 2009 to 67 
2015 [17]. Accordingly, the number of studies and consequent publications has been increased considerably. In Figure 68 
3, SCOPUS results have been presented to highlight the rapid growth by considering the published journal papers in 69 
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the field of wind turbine FDI and FTC, which implies that it currently represents the subject of intensive worldwide 70 
research [20]. However, there are only a few available review papers in this field [21-24]. So, it is beneficial to have 71 
a well-organized comprehensive overview on the status of recent developments of FDI and FTC techniques for wind 72 
turbine power control, to make a framework for future studies, as the motivation of the current paper. Accordingly, in 73 
Section 2, the wind turbine model including faults is described. Also, modern wind turbine model representations for 74 
FDI purposes are recalled. In Section 3, the different available FDI methods are outlined. Consequently, the FDI 75 
methods for each component of the wind turbine are summarized in Section 4. FTC design techniques for wind 76 
turbines are sketched in Section 5. Finally, the concluding discussion, future trends on this area and conclusions are 77 
given in Sections 6 and 7, respectively. 78 

 79 
Fig. 3. SCOPUS indexed published journal papers in the field of FDI and FTC wind turbine design. 80 

2. Wind turbine model representation for fault detection purposes 81 
The wind turbine modeling framework specifies appropriate FDI methods. Obviously, the nonlinear model provides 82 
the best framework, on which basis it can be used to design the FDI scheme, as it is able to accurately represent the 83 
wind turbine behavior [25]. Nevertheless, it leads to more complicated FDI structures. On the other hand, model-based 84 
FDI methods have been mostly developed for linear models. Consequently, the linearized wind turbine model has 85 
dominated the recent research scope [1, 26-29]. Nevertheless, inconsistency between behaviors of the linearized model 86 
and the highly nonlinear wind turbine is significant. So, to have more accurate model representation as well as to take 87 
advantage of already-developed FDI methods, two modern wind turbine modelling frameworks have been recently 88 
proposed, including linear parameter varying (LPV) and fuzzy Takagi-Sugeno (T-S) prototypes, which are briefly 89 
recalled in this section. It should be noted that several high-fidelity wind turbines model packages already exist, e.g. 90 
the Fatigue, Aerodynamics, Structures, and Turbulence (FAST) tool developed by NREL [21], and the 4.8MW wind 91 
turbine benchmark model developed by KK-electronic A/C and Aalborg University [17]. However, to review the fault 92 
sources and effects, the wind turbine model is briefly introduced.  93 
2.1. Nonlinear model and possible faults 94 
The wind turbine operation can be seen as an interaction between wind speed and blades. Accordingly, due to the 95 
given aerodynamic profile of the blades, aerodynamic torque and thrust are applied to the rotor shaft, i.e. connected 96 
directly to the blades, and nacelle, respectively. The wind speed is usually modelled as the sum of a steady state mean 97 
value, and stochastic perturbation terms, considering turbulence and gusts. The mean wind speed is estimated by 98 
passing a set of measured wind data through a low-pass filter. On the other hand, the stochastic term can be modelled 99 
using Von Karman or Kaimal turbulence models [30]. In addition, the wind shear effect, i.e. variation of wind speed 100 
depending on height, and periodic tower shadow effect, i.e. wind speed reduction for the blade passing in front of the 101 
tower, are two deterministic terms, for which there are accurate mathematical expressions that can be implemented in 102 
the wind speed model [26].  103 
In variable pitch wind turbine types, the aerodynamic performance of the blades can be changed by adjusting the blade 104 
pitch angles. The rotor shaft speed is increased and transferred into the generator shaft using a drivetrain in between. 105 
Finally, the electrical power is produced in the generator. In variable speed wind turbine types, the electrical generator 106 
torque load can be tuned to control shaft speed. All the mentioned components are located in the nacelle at the top of 107 
the tower. The applied aerodynamic thrust leads to a fore-aft oscillation of the tower, which varies the effective wind 108 
speed at the blade plane. Also, a yaw mechanism is used to rotate and keep the wind turbine perpendicular to the wind 109 
direction, measured with a wind vane, although, at the control system level, due to limited yaw rate, i.e. less than 1°/s, 110 
the yaw mechanism is often ignored [22]. 111 
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The blade aerodynamic characteristics can be characterized with 𝐶𝑝(𝛽, 𝜆), 𝐶𝑞(𝛽, 𝜆) and 𝐶𝑡(𝛽, 𝜆), which are power 112 
coefficient, aerodynamic coefficient and thrust coefficient, respectively. These coefficients are functions of  𝛽, i.e. 113 
blade pitch angle and 𝜆, i.e. tip speed ratio, defined as 𝜆 = 𝑅𝜔𝑟/𝑉𝑟 , where 𝑅 is blade length, 𝜔𝑟 is blade rotor angular 114 
speed and 𝑉𝑟  is the effective wind speed at the rotor plane. These coefficients are often available as numerical lookup 115 
tables or empirical equations for a given blade profile. The aerodynamic torque 𝑇𝑎, power 𝑃𝑎 and thrust 𝐹𝑡, are as, 116 

𝑇𝑎 =
1

2
𝜌𝐴𝑅𝑉𝑟

2𝐶𝑞(𝛽, 𝜆), 𝑃𝑎 =
1

2
𝜌𝐴𝑉𝑟

3𝐶𝑝(𝛽, 𝜆), 𝐹𝑡 =
1

2
𝜌𝐴𝑉𝑟

2𝐶𝑡(𝛽, 𝜆), (1) 

respectively, where, 𝜌 is air density and 𝐴 is blade swept area as, 𝐴 = 𝜋𝑅2. Also, the power coefficient can be 117 
represented as 𝐶𝑝(𝛽, 𝜆) = 𝜆𝐶𝑞(𝛽, 𝜆). Considering fore-aft oscillation of the nacelle, due to 𝐹𝑡, the effective wind speed 118 
can be represented as a relative velocity as, 𝑉𝑟 = 𝑉𝑤 − 𝑉𝑛, where 𝑉𝑤 is the free wind speed before encountering the 119 
blades and 𝑉𝑛 is the projected nacelle velocity in the wind direction. Considering modern wind turbines with three 120 
independent pitch actuator mechanisms, the resultant aerodynamic torque can be written as, 121 

𝑇𝑎 =
1

6
∑ 𝜌𝐴𝑅𝑉𝑟

2𝐶𝑞(𝛽𝑖 , 𝜆)3
𝑖=1 , (2) 

where, 𝛽𝑖 is the pitch angle of the 𝑖𝑡ℎ blade.  122 
Long term operation of the wind turbine may lead to debris build-up on the blades, due to dirt or ice, and erosion. This 123 
changes the blades aerodynamic characteristics, as deviation of 𝐶𝑝, 𝐶𝑞 and 𝐶𝑡 mappings from normal ones [29]. The 124 
debris build-up effect is modelled as,   125 

�̃�𝑝 = 𝐶𝑝 + Δ𝐶𝑝, �̃�𝑞 = 𝐶𝑞 + Δ𝐶𝑞, �̃�𝑡 = 𝐶𝑡 + Δ𝐶𝑡. (3) 

In this paper, 𝜒 and Δ𝜒 are the new abnormal value and deviation from the normal parameter 𝜒, respectively. 126 
The rotor speed 𝜔𝑟 is increased and transferred into the generator shaft, rotating at 𝜔𝑔, via the drivetrain, which can 127 
be modelled as a two degree of freedom rotational system. Inertia of rotor and generator shafts are 𝐽𝑟 and 𝐽𝑔, 128 
respectively. Also, the drivetrain speed ratio is 𝑁𝑔 and includes torsion stiffness 𝐾𝑑𝑡  and torsion damping, 𝐵𝑑𝑡 . This 129 
elastic gear meshing results in a torsional angle of twist of the main shaft 𝜃Δ, which is defined as 𝜃𝛥 = 𝜃𝑟 − 𝜃𝑔/𝑁𝑔, 130 
where, 𝜃𝑟 and 𝜃𝑔 are rotation angle of rotor and generator shafts, respectively. Also, viscous frictions for rotor and 131 
generator shaft bearings are considered whose coefficients are 𝐵𝑟  and 𝐵𝑔, respectively. The drivetrain efficiency in 132 
transferring speed is 𝜂𝑑𝑡 [26, 31]. The drivetrain model is then written as, 133 

�̇�𝑟(𝑡) = − (
𝐵𝑟+𝐵𝑑𝑡

𝐽𝑟
) 𝜔𝑟(𝑡) +

𝐵𝑑𝑡

𝐽𝑟𝑁𝑔
𝜔𝑔(𝑡) −

𝐾𝑑𝑡

𝐽𝑟
𝜃Δ(𝑡)+

1

𝐽𝑟
𝑇𝑎(𝑡), 

�̇�𝑔(𝑡) =
𝜂𝑑𝑡𝐵𝑑𝑡

𝑁𝑔𝐽𝑔
𝜔𝑟(𝑡) − (

𝐵𝑔

𝐽𝑔
+

𝜂𝑑𝑡𝐵𝑑𝑡

𝐽𝑔𝑁𝑔
2 ) 𝜔𝑔(𝑡) +

 𝜂𝑑𝑡𝐾𝑑𝑡

𝑁𝑔𝐽𝑔
𝜃Δ(𝑡) −

1

𝐽𝑔
𝑇𝑔(𝑡), 

�̇�Δ(𝑡) = 𝜔𝑟(𝑡) −
1

𝑁𝑔
𝜔𝑔(𝑡). 

(4) 

where, 𝑇𝑔 is generator shaft torque. The wear or tear of drivetrain gears can be considered to be possible faults in this 134 
mechanism, which changes the drivetrain stiffness and damping, considered as, 𝐾𝑑𝑡 = 𝐾𝑑𝑡 + Δ𝐾𝑑𝑡 and �̃�𝑑𝑡 = 𝐵𝑑𝑡 +135 
Δ𝐵𝑑𝑡  [17, 18]. This fault happens very slowly with time, but it leads to total drivetrain breakdown which results in 136 
long and costly downtime [17]. 137 
The pitch actuator is modeled as an underdamped hydraulic mechanism, which is more reliable with little backlash 138 
and larger stiffness than the electrical pitch actuator motor. The hydraulic pitch actuator is thus described as a second 139 
order dynamic system as, 140 

�̈� = −𝜔𝑛
2𝛽 − 2𝜔𝑛𝜉�̇� + 𝜔𝑛

2𝛽𝑟𝑒𝑓, (5) 

where, 𝜔𝑛 and 𝜉 are the natural frequency and damping ratio of the pitch actuator, respectively. Also, 𝛽𝑟𝑒𝑓  is the 141 
reference pitch angle, commanded by the pitch controller and to be followed by blade pitch angle. The operational 142 
ranges of the pitch actuator are considered as �̇�𝑚𝑖𝑛 ≤ �̇� ≤ �̇�𝑚𝑎𝑥 , 𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥. In this paper, 𝜒𝑚𝑎𝑥  and 𝜒𝑚𝑖𝑛 143 
stand for maximum and minimum allowable values of the variable 𝜒, respectively. The pitch actuator may suffer from 144 
dynamic change which leads to slower response and, consequently, poor pitch angle regulation [32]. Three of the most 145 
reported dynamic changes are hydraulic pump wear, pressure drop due to hydraulic leakage and more compressible 146 
oil due to high air content in the hydraulic oil. These dynamic changes deviate the natural frequency and damping 147 
ratio from normal values [24]. It should be noted that hydraulic leakage is considered as an abrupt fault while oil air 148 
content increases slowly. The numerical values of a given pitch actuator dynamic changes presented for a wind turbine 149 
benchmark model, [33], are summarized in Table 3, in which 𝑃𝑊, 𝐻𝐿 and 𝐻𝐴𝐶 stand for pump wear, hydraulic 150 
leakage and high air content situations, respectively. 𝜔𝑛,𝑋 and 𝜉𝑋 are natural frequency and damping ratio, 151 
respectively, in the situation 𝑋. 𝛼𝑓1

 and 𝛼𝑓2
 are fault indicators. 152 

 153 
 154 

Page 4
Preprint, submitted to Renewable Energy,

https://doi.org/10.1016/j.renene.2018.12.066



5 
 

 155 
 156 

Table 3. Numerical values of a given pitch actuator dynamic changes [33]. 157 
  Natural Frequency(𝑟𝑎𝑑/𝑠) Damping Ratio Fault Indicator 

Normal 𝜔𝑛,𝑁 = 11.11 𝜉𝑁 = 0.6 𝛼𝑓1
= 𝛼𝑓2

= 0 

Pump Wear 𝜔𝑛,𝑃𝑊 = 7.27 𝜉𝑃𝑊 = 0.75 𝛼𝑓1
= 0.6316, 𝛼𝑓2

= 0.29688 

Hydraulic Leak 𝜔𝑛,𝐻𝐿 = 3.42 𝜉𝐻𝐿 = 0.9 𝛼𝑓1
= 1, 𝛼𝑓2

= 0.87853 

High Air Content 𝜔𝑛,𝐻𝐴𝐶 = 5.73 𝜉𝐻𝐴𝐶 = 0.45 𝛼𝑓1
= 0.81083, 𝛼𝑓2

= 1 

 158 
The pitch actuator long-term operation may lead to an actuator fault, modelled as an additive bias 𝛽𝑏𝑖𝑎𝑠. Indeed, this 159 
fault deviates the desired pitch actuator 𝛽 to 𝛽 + 𝛽𝑏𝑖𝑎𝑠. Also, the dynamic changes can be considered as a convex 160 
function of normal natural frequency and normal damping ratio. So, the pitch actuator (5) including the dynamic 161 
change and bias can be rewritten as, 162 

�̈� = −𝜔𝑛,𝑁
2 (𝛽 + 𝛽𝑏𝑖𝑎𝑠) − 2𝜔𝑛,𝑁𝜉𝑁�̇� + 𝜔𝑛,𝑁

2 𝛽𝑟𝑒𝑓 + 𝛥𝑓𝑃𝐴𝐷, (6) 

where, 𝛥𝑓𝑃𝐴𝐷 = −𝛼𝑓1
𝛥(�̃�𝑛

2)𝛽 − 2𝛼𝑓2
𝛥(�̃�𝑛𝜉)�̇� + 𝛼𝑓1

𝛥(�̃�𝑛
2)𝛽𝑟𝑒𝑓 , 𝛥(�̃�𝑛

2) = 𝜔𝑛,𝐻𝐿
2 − 𝜔𝑛,𝑁

2  and 𝛥(�̃�𝑛𝜉) =163 
𝜔𝑛,𝐻𝐴𝐶𝜉𝐻𝐴𝐶 − 𝜔𝑛,𝑁𝜉𝑁. 164 
Remark 1: The hydraulic pitch actuator has fast response time, large control effort (torque), and convenient 165 
centralization [34]. The electrical servo motor is another type of pitch actuator, to avoid the frequent hydraulic pitch 166 
actuator oil leakage and maintenance. Also, this type has more efficient and quicker response time than the hydraulic 167 
one [35]. However, this type of pitch actuator may suffer from overheated motor, cooling fan errors, brake damage, 168 
jams in the bearing and short circuits of the winding. Also, the battery system failure is considerable when the charger 169 
is not available [36]. In this case, the battery cannot provide enough power to pitch the blades. The electrical pitch 170 
actuator can be represented as a first order system as �̇�(𝑡) = −𝑎𝛽𝛽(𝑡) + 𝑎𝛽𝛽𝑟𝑒𝑓(𝑡), where 𝑎𝛽 = 1/𝜏𝛽 and 𝜏𝛽 is the 171 
pitch actuator time constant [1, 37]. For example, 𝜏𝛽 is selected as 50 𝑚𝑠 in [38], which is obviously negligible 172 
compared to the slow mechanical response of wind turbines. The mentioned electrical pitch actuator failures can be 173 
augmented in this equation as dynamic change, i.e. change in time constant Δ𝜏𝛽 and pitch angle offset 𝑓𝛽, as, �̇�(𝑡) =174 
−𝑎𝛽(𝛽(𝑡) + 𝑓𝛽) + 𝑎𝛽𝛽𝑟𝑒𝑓(𝑡) + ∆𝑓𝑃𝐴𝐷(𝑡), where, ∆𝑓𝑃𝐴𝐷(𝑡) = −𝛥𝑎𝛽(𝛽(𝑡) + 𝑓𝛽) + 𝛥𝑎𝛽𝛽𝑟𝑒𝑓(𝑡) and 𝛥𝑎𝛽 = −𝛥𝜏𝛽/175 
(𝜏𝛽

2 + 𝜏𝛽 . 𝛥𝜏𝛽). It should be pointed out that both the hydraulic and electrical pitch actuators can be represented as a 176 
first or second order system, though in practice, both are often represented as a second order system. Consequently, 177 
the electromechanical pitch actuator can be considered as fourth order system; two modes for the electric part, and 178 
two modes for the mechanical one [39]. Moreover, as the blade inertia is contributing in the mechanical mode, for the 179 
wind turbines with large blades, the dynamics of the mechanical part are dominant. So, the system can be approximated 180 
as a second order model. For this second order model, the natural frequency and damping ratio are 𝜔𝑛 =181 
11.11 (𝑟𝑎𝑑/𝑠)  and 𝜉 = 0.6, respectively. However, it is stated that for electromechanical pitch systems, which are 182 
more widespread in use, a first-order delay model may be sufficient [37, 39].  183 
The generator converts shaft kinetic energy into electrical energy. Doubly-Fed Induction Generators (DFIG) are one 184 
of the most commonly used generator configurations [30]. In modern wind turbines, the frequency of produced 185 
electricity is adjusted by current control via a converter to enable variable speed operation [33]. Indeed, the converter 186 
acts as an interface between the generator and the grid. The converter is modelled as a first-order system with time 187 
delay 𝜏𝑔 to track the requested generator torque load 𝑇𝑔,𝑟𝑒𝑓  as, 188 

�̇�𝑔 = −𝑎𝑔𝑇𝑔 + 𝑎𝑔𝑇𝑔,𝑟𝑒𝑓 , (7) 

where, 𝑎𝑔 = 1/𝜏𝑔 and 𝑇𝑔 refers to generator shaft torque. The wind turbine internal electronic controller is much faster 189 
than the slow mechanical dynamic behavior. Accordingly, the produced electrical power in the generator 𝑃𝑔 is 190 
approximated as a static relation as 𝑃𝑔 = 𝜂𝑔𝜔𝑔𝑇𝑔 where 𝜂𝑔 is the generator efficiency. Achievable generator torque 191 
and its variation, are considered to be limited as, �̇�𝑔,𝑚𝑖𝑛 ≤ �̇�𝑔 ≤ �̇�𝑔,𝑚𝑎𝑥 , 𝑇𝑔,𝑚𝑖𝑛 ≤ 𝑇𝑔 ≤ 𝑇𝑔,𝑚𝑎𝑥 [33]. Internal electric 192 
faults in the converter, manufacturing defects and initialization of the converter controller, lead to either generator 193 
torque offset 𝑓𝑇𝑔

 or increased converter delay Δ𝜏𝑔 [20, 21, 40]. Although, the converter controller would typically be 194 

able to detect and accommodate Δ𝜏𝑔. So, the converter model (7) is rewritten as, 195 
�̇�𝑔 = −𝑎𝑔(𝑇𝑔 + 𝑓𝑇𝑔

) + 𝑎𝑔𝑇𝑔,𝑟𝑒𝑓 + 𝛥𝑓𝐺𝐶, (8) 

where, 𝛥𝑓𝐺𝐶 = −Δ𝑎𝑔(𝑇𝑔 + 𝑓𝑇𝑔
) + Δ𝑎𝑔𝑇𝑔,𝑟𝑒𝑓 and Δ𝑎𝑔 = −Δ𝜏𝑔/(𝜏𝑔

2 + 𝜏𝑔. Δ𝜏𝑔). 196 

The main available wind turbine measurements are rotor speed, generator speed, pitch angle and generator torque. All 197 
measurements are assumed to contain unavoidable random noise [21]. Different sensor technologies are typically 198 
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adopted on wind turbines, e.g. strain gauge, piezoelectric, encoder, optical and laser sensors [10]. As most of the 199 
control schemes are designed based on the feedback of sensor measurements, sensor noise and faults lead to 200 
performance degradation or even instability. Lightning, moisture, salt spray and corrosion, may cause sensor faults. 201 
Also, blade misalignment at the installation step or during operation, leads to pitch sensor faults. Also, if the encoder 202 
is used for shaft speed estimation, loss of metal pieces on the shaft leads to inaccurately measured speed. Moreover, 203 
malfunctions of the electrical components of the encoders represent another reported source of faults [21]. On the 204 
other hand gearbox resonance frequency content on the generator speed sensor may deviate the sensor output from 205 
accurate readings [41]. In the modern wind turbines, to fulfill the physical redundancy concept, i.e. the most reliable 206 
configuration for FDI, the pitch angle, rotor speed and generator speed are measured with two separate identical 207 
sensors [42]. The sensor faults can be modelled as different fault types as, additive constant bias, gained multiplicative 208 
measurement, fixed and no sensor outputs. The measurement of variable 𝛸 including sensor fault and noise content is 209 
given as, 𝛸𝑠 = 𝛸 + 𝜈𝛸 + 𝛸𝑏𝑖𝑎𝑠 , where 𝛸𝑠 is the measured signal, 𝜈𝛸 is random noise content and 𝛸𝑏𝑖𝑎𝑠 is the additive 210 
time variable bias, to take other sensor fault types into consideration. This fulfils the nonlinear description of wind 211 
turbine models associated with different fault sources. The considered faults in the wind turbine model are summarized 212 
in Table 4, in which the fault characteristics are stated.  213 
2.2. Linearized model associated with faults 214 
The aerodynamic behavior of wind turbines is a highly nonlinear function of blade pitch angle, wind speed and rotor 215 
speed, as (1). So, the nonlinear wind turbine model, i.e. (2), (4), (6) and (8), is usually linearized around different 216 
operation points. Considering the desired operation trajectory as 𝑂𝑃̅̅ ̅̅ = (�̅�𝑟 , �̅�, �̅�𝑟), the linear aerodynamic behavior is 217 
represented via the linearization of (2) as, 218 

𝑇𝑎 = 𝑇𝑎,𝑉𝑟
�̃�𝑟 +

1

3
∑ 𝑇𝑎,𝛽𝑖𝛽𝑖

3
𝑖=1 + 𝑇𝑎,𝜔𝑟

�̃�𝑟, (9) 

where, 𝑇𝑎,𝑉𝑟
= (𝜕𝑇𝑎/𝜕𝑉𝑟)|𝑂𝑃̅̅ ̅̅ , 𝑇𝑎,𝛽𝑖 = (𝜕𝑇𝑎/𝜕𝛽𝑖)|𝑂𝑃̅̅ ̅̅ , 𝑇𝑎,𝜔𝑟

= (𝜕𝑇𝑎/𝜕𝜔𝑟)|𝑂𝑃̅̅ ̅̅ , �̃�𝑟 = 𝑉𝑟 − �̅�𝑟 , 𝛽𝑖 = 𝛽𝑖 − �̅� and �̃�𝑟 =219 
𝜔𝑟 − �̅�𝑟. Now, the linearized wind turbine model including all considered faults, is summarized as, 220 

�̇� = 𝐴𝒙 + 𝐵𝒖 + 𝐹𝑎𝒇𝒂 + 𝑹𝑉𝑟 , (10) 

where, 𝒙 = [𝜔𝑟 , 𝜔𝑔, 𝜃Δ, 𝑇𝑔, 𝛽1, �̇�1, 𝛽2, �̇�2, 𝛽3, �̇�3]
𝑇
, 𝒖 = [𝑇𝑔,𝑟𝑒𝑓 , 𝛽𝑟𝑒𝑓,1, 𝛽𝑟𝑒𝑓,2, 𝛽𝑟𝑒𝑓,3]𝑇, 𝒇𝒂 =221 

[𝛥𝑓1,𝐷𝑇 , 𝛥𝑓2,𝐷𝑇 , 𝛥𝑓𝐺𝐶 , 𝛥𝑓𝑃𝐴𝐷,1, 𝛥𝑓𝑃𝐴𝐷,2, 𝛥𝑓𝑃𝐴𝐷,3]
𝑇
, 𝑹 = [𝑇𝑎,𝑉𝑟

/𝐽𝑟 , 0,0,0,0,0,0,0,0,0]𝑇 , where, 𝛥𝑓1,𝐷𝑇 = −Δ𝐵𝑑𝑡𝜔𝑟/𝐽𝑟 +222 

Δ𝐵𝑑𝑡𝜔𝑔/𝐽𝑟𝑁𝑔 − Δ𝐾𝑑𝑡𝜃Δ/𝐽𝑟, 𝛥𝑓2,𝐷𝑇 = 𝜂𝑑𝑡Δ𝐵𝑑𝑡𝜔𝑟/𝑁𝑔𝐽𝑔 − 𝜂𝑑𝑡Δ𝐵𝑑𝑡𝜔𝑔/𝐽𝑔𝑁𝑔
2 +  𝜂𝑑𝑡Δ𝐾𝑑𝑡𝜃Δ/𝑁𝑔𝐽𝑔, 𝛥𝑓𝐺𝐶 = −𝑎𝑔𝑓𝑇𝑔

+223 

𝛥𝑓𝐺𝐶, 𝛥𝑓𝑃𝐴𝐷,𝑖 = −𝜔𝑛,𝑁
2 𝛽𝑏𝑖𝑎𝑠,𝑖 + 𝛥𝑓𝑃𝐴𝐷,𝑖, 𝛥𝑓𝑃𝐴𝐷,𝑖 = −𝛼𝑓1

𝛥(�̃�𝑛
2)𝛽𝑖 − 2𝛼𝑓2

𝛥(�̃�𝑛𝜉)�̇�𝑖 + 𝛼𝑓1
𝛥(�̃�𝑛

2)𝛽𝑟𝑒𝑓,𝑖. 𝛽𝑏𝑖𝑎𝑠,𝑖 and 224 

𝛽𝑟𝑒𝑓,𝑖 are pitch actuator bias and reference pitch angle of 𝑖𝑡ℎ blade, respectively. 225 
Table 4. The wind turbines fault characteristics. 226 

Components Symptom Category Consequence Severity 
Deviation 

Time 
Symbol Fault model 

Pitch sensor 
Biased, gained, 

fixed and no 

measurement 
output 

Sensor fault 

Poor power optimization in 

low wind speed and power 

regulation in high wind 
speed. 

Low Medium 

𝛽𝑖,𝑠,𝑗,𝑏𝑖𝑎𝑠 
Time 

variable 

additive 
bias 

Rotor sensor 𝜔𝑟,𝑠,𝑗,𝑏𝑖𝑎𝑠 

Generator sensor 𝜔𝑔,𝑠,𝑗,𝑏𝑖𝑎𝑠 

Generator/ 

Converter 

Offset generator 

torque bias 

Actuator 

fault 

Non-optimum power 

production. 

Medium Fast 

𝑓𝑇𝑔
 

Additive 

constant 
offset  Pitch actuator Pitch angle bias 

Poor power regulation, 
uneven aerodynamic 

torque and excited 

structural modes. 

𝛽𝑏𝑖𝑎𝑠,𝑖 

Generator/ 

Converter 

Increased time 

delay 

System 
fault 

Slow generator torque 
control and non-optimal 

power production. 

High Fast Δ𝜏𝑔 
Added time 

delay 

Pitch actuator Pump Wear 
Slow pitch angle 

adjustment and 
consequently poor power 

regulation. 

High Medium 

𝛥𝑓𝑃𝐴𝐷 

Change in 

natural 

frequency 
and 

damping 

ratio 

Pitch actuator 
High air content 

in oil 
Medium Slow 

Pitch actuator 
Hydraulic 
leakage 

High Medium 
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Drivetrain Wear and tear 
Increased vibrations of 

drivetrain. 
Medium Very slow 

Δ𝐾𝑑𝑡 and 

Δ𝐵𝑑𝑡 

Change in 
stiffness 

and 

damping 

Blade 

aerodynamics 
Debris build up 

Out of designed 

aerodynamic relation 

(Non-optimal power 
production, poor power 

regulation). 

Medium Very slow 
Δ𝐶𝑝 and 

Δ𝐶𝑞 

Aerodynam
ic 

coefficients 

change  

Also, 𝐴 = [

𝐴𝐷𝑇 𝐴𝐺𝐼 𝐴𝐴𝐸

𝟎1×3 𝐴𝐺𝑆 𝟎1×6

𝟎6×3 𝟎6×1 𝐴𝑃𝑆

] , 𝐴𝐷𝑇 = [

𝐴𝐷𝑇11 𝐴𝐷𝑇12 𝐴𝐷𝑇13

𝐴𝐷𝑇21 𝐴𝐷𝑇22 𝐴𝐷𝑇23

1 𝐴𝐷𝑇32 0

], 𝐴𝐺𝐼 = [0 −1/𝐽𝑔 0]𝑇, 𝐴𝐴𝐸 =227 

[
𝑇𝑎,𝛽1/3𝐽𝑟 0 𝑇𝑎,𝛽2/3𝐽𝑟 0 𝑇𝑎,𝛽3/3𝐽𝑟 0

𝟎2×6

], 𝐴𝐺𝑆 = −𝑎𝑔, 𝐴𝐷𝑇11 = −(𝐵𝑟 + 𝐵𝑑𝑡)/𝐽𝑟 + 𝑇𝑎,𝜔𝑟
/𝐽𝑟, 𝐴𝐷𝑇12 = 𝐵𝑑𝑡/228 

𝐽𝑟𝑁𝑔, 𝐴𝐷𝑇13 = −𝐾𝑑𝑡/𝐽𝑟, 𝐴𝐷𝑇21 = 𝜂𝑑𝑡𝐵𝑑𝑡/𝑁𝑔𝐽𝑔, 𝐴𝐷𝑇22 = −𝐵𝑔/𝐽𝑔 − 𝜂𝑑𝑡𝐵𝑑𝑡/𝐽𝑔𝑁𝑔
2, 𝐴𝐷𝑇23 =  𝜂𝑑𝑡𝐾𝑑𝑡/𝑁𝑔𝐽𝑔 , 𝐴𝐷𝑇32 =229 

−1/𝑁𝑔, 𝐴𝑃𝑆 = [

𝐴𝑃𝑆1 𝟎2×2 𝟎2×2

𝟎2×2 𝐴𝑃𝑆2 𝟎2×2

𝟎2×2 𝟎2×2 𝐴𝑃𝑆3

], 𝐴𝑃𝑆1 = 𝐴𝑃𝑆2 = 𝐴𝑃𝑆3 = [
0 1

−𝜔𝑛,𝑁
2 −2𝜉𝑁𝜔𝑛,𝑁

], 𝐵 =230 

[

𝟎3×1 𝟎5×1 𝟎7×1 𝟎7×1

𝑎𝑔 𝜔𝑛,𝑁
2 𝜔𝑛,𝑁

2 𝟎2×1

𝟎6×1 𝟎4×1 𝟎2×1 𝜔𝑛,𝑁
2

], 𝐹𝑎 = [

1 𝟎1×2 𝟎5×2 𝟎2×1

𝟎7×1 𝐹𝑎1 𝐹𝑎1 𝟎7×1

𝟎2×1 𝟎6×2 𝟎2×2 1
] and 𝐹𝑎1 = [

1 0 0
0 0 1

]
𝑇

. The measurement model of 231 

the wind turbine including possible sensor faults and noise contents is written as,  232 
𝒚 = 𝐶𝒙 + 𝐹𝑠𝒇𝒔 + 𝑫,  (11) 

where, 𝒚 = [𝜔𝑟,𝑠,1, 𝜔𝑟,𝑠,2, 𝜔𝑔,𝑠,1, 𝜔𝑔,𝑠,2, 𝑇𝑔,𝑠, 𝛽1,𝑠,1, 𝛽1,𝑠,2, 𝛽2,𝑠,1, 𝛽2,𝑠,2, 𝛽3,𝑠,1, 𝛽3,𝑠,2]𝑇, 𝒇𝒔 =233 
[𝜔𝑟,𝑠,1,𝑏𝑖𝑎𝑠, 𝜔𝑟,𝑠,2,𝑏𝑖𝑎𝑠, 𝜔𝑔,𝑠,1,𝑏𝑖𝑎𝑠 , 𝜔𝑔,𝑠,2,𝑏𝑖𝑎𝑠 , 𝑇𝑔,𝑏𝑖𝑎𝑠 , 𝛽1,𝑠,1,𝑏𝑖𝑎𝑠 , 𝛽1,𝑠,2,𝑏𝑖𝑎𝑠 , 𝛽2,𝑠,1,𝑏𝑖𝑎𝑠, 𝛽2,𝑠,2,𝑏𝑖𝑎𝑠, 𝛽3,𝑠,1,𝑏𝑖𝑎𝑠 , 𝛽3,𝑠,2,𝑏𝑖𝑎𝑠 ]𝑇, 234 
𝐹𝑠 = 𝑰11×11, 𝑫 = [𝜈𝜔𝑟,1

, 𝜈𝜔𝑟.2
, 𝜈𝜔𝑔,1

, 𝜈𝜔𝑔,2
, 𝜈𝑇𝑔

, 𝜈𝛽,1,1, 𝜈𝛽,1,2, 𝜈𝛽,2,1, 𝜈𝛽,2,2, 𝜈𝛽,3,1, 𝜈𝛽,3,2]𝑇, where, 𝜔𝑟,𝑠,𝑗, 𝜔𝑔,𝑠,𝑗 are the 𝑗𝑡ℎ 235 

measurement of rotor and generator speeds, respectively, and 𝛽𝑖,𝑠,𝑗 is the 𝑗𝑡ℎ measurement of the  𝑖𝑡ℎ pitch angle. 236 
𝜔𝑟,𝑠,𝑗,𝑏𝑖𝑎𝑠 and 𝜔𝑔,𝑠,𝑗,𝑏𝑖𝑎𝑠 are time variable sensor biases of the 𝑗𝑡ℎ measurement of rotor and generator speeds, 237 
respectively. 𝑇𝑔,𝑏𝑖𝑎𝑠 is the generator torque sensor time variable bias. 𝛽𝑖,𝑠,𝑗,𝑏𝑖𝑎𝑠 is the time variable pitch bias of the  238 
𝑗𝑡ℎ measurement of the  𝑖𝑡ℎ pitch angle. 𝜈𝜔𝑟,𝑗

 and 𝜈𝜔𝑔,𝑗
 refer to the noise content of the 𝑗𝑡ℎ measurement of the rotor 239 

and generator speeds, respectively. 𝜈𝑇𝑔
 is the noise content of the generator torque sensor. 𝜈𝛽,𝑖,𝑗 is the noise content of 240 

the 𝑗𝑡ℎ sensor of the 𝑖𝑡ℎ pitch angle. Also, 𝐶 = [

𝐶1 𝟎1×2 𝟎3×1 𝟎4×2 𝟎6×2 𝟎8×2

𝟎1×2 𝐶1 1 𝐶1 𝐶1 𝐶1

𝟎8×2 𝟎8×2 𝟎6×1 𝟎5×2 𝟎3×2 𝟎1×2

]

𝑇

, where, 𝐶1 = [1 1]. It 241 

is obvious that the redundancy concept is achieved for rotor speed, generator speed and pitch angle sensors with two 242 
identical sensors. 243 
2.3. Linear parameter varying modelling  244 
The LPV wind turbine modeling framework has emerged in the last decade [43], in which, the wind turbine model is 245 
linearized around several operational points. Accordingly, a set of linearized models is adopted and, according to the 246 
estimated operational point, the proper model is chosen. Indeed, in (2), as wind speed varies, 𝑇𝑎 is also variable, which 247 
leads to variation of the matrix 𝐴 in (10). So, for different wind speeds, different linearized models are obtained. 248 
Consequently, having all possible linearized models as the feasible dynamic descriptor set, leads to the LPV wind 249 
turbine model representation. This provides proper design freedom to achieve robust FDI performance [33, 44]. 250 
Considering (10) and for the operation point 𝑂𝑃(𝑘) = (𝑉𝑟(𝑘), 𝛽(𝑘), 𝜔𝑟(𝑘)), the overall LPV wind turbine model is 251 
stated as, 252 

�̇� = 𝐴(𝜃)𝒙 + 𝐵𝒖 + 𝐹𝑎𝒇𝒂 + 𝑹(𝜃)𝑉𝑟 , (12) 

where, 𝐴(𝜃) = [

𝐴𝐷𝑇(𝜃) 𝐴𝐺𝐼 𝐴𝐴𝐸(𝜃)
𝟎1×3 𝐴𝐺𝑆 𝟎1×6

𝟎6×3 𝟎6×1 𝐴𝑃𝑆

], 𝐴𝐷𝑇(𝜃) = [

𝐴𝐷𝑇11(𝜃) 𝐴𝐷𝑇12 𝐴𝐷𝑇13

𝐴𝐷𝑇21 𝐴𝐷𝑇22 𝐴𝐷𝑇23

1 𝐴𝐷𝑇32 0

], 𝐴𝐷𝑇11(𝜃) = −(𝐵𝑟 + 𝐵𝑑𝑡)/𝐽𝑟 +253 

(𝑇𝑎,𝜔𝑟
/𝐽𝑟)|

𝜃
,  𝐴𝐴𝐸(𝜃) = [

𝑇𝑎,𝛽1/3𝐽𝑟|
𝜃

0 𝑇𝑎,𝛽2/3𝐽𝑟|
𝜃

0 𝑇𝑎,𝛽3/3𝐽𝑟|
𝜃

0

𝟎2×6

] and 𝑹(𝜃) = [𝑇𝑎,𝑉𝑟
/254 

𝐽𝑟|
𝜃

, 0,0,0,0,0,0,0,0,0]𝑇. 𝜃 is the set of all possible operating points such that 𝜃 ∈ Θ𝑘 and Θ𝑘 = {𝑂𝑃(𝑘) ∈255 

ℝ3|𝑂𝑃𝑚𝑖𝑛 ≤ ‖𝑂𝑃(𝑘)‖ ≤ 𝑂𝑃𝑚𝑎𝑥}, where ‖𝜒‖ represents a properly-selected norm operator on variable 𝜒. Indeed, it 256 
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is assumed that the operational points are bounded. The model (12) includes 𝑘 linearized models. It should be noted 257 
that the measurement equation is the same as (11). In (12), �̂�, i.e. the estimation of operating point 𝜃, is needed to 258 
accurately implement the LPV representation of the wind turbine. 259 
2.4. Fuzzy Takagi–Sugeno modelling 260 
In this approach, using multiple linearized models, fuzzy if-then rules are defined based on the expert’s knowledge 261 
which combine all the linear models utilizing the T-S prototype [45-49]. The wind turbine measurements can be used 262 
to estimate fuzzy T-S prototype parameters [50]. The fuzzy variable vector 𝒁 is defined as, 𝒁(𝑡) = [𝜔𝑟 , 𝛽, 𝑉𝑟]. Assume 263 
𝑞 fuzzy rules are defined as, if 𝜔𝑟 is 𝑀1𝑖 and 𝛽 is 𝑀2𝑖 and 𝑉𝑟  is 𝑀3𝑖, then �̇� = 𝐴𝑖𝒙 + 𝐵𝒖 + 𝐹𝑎𝒇𝒂 + 𝑹𝑖, for 𝑖 = 1, … , 𝑞. 264 
𝑀𝑙𝑖  are fuzzy membership functions for 𝑙 = 1,2,3. Also, 𝐴𝑖 and 𝑹𝑖 are the expert-defined dynamic system matrix and 265 
disturbance vector, respectively. The complete fuzzy T-S wind turbine model is represented as, 266 

�̇� = ∑ 𝜇𝑖(𝒁(𝑡))
𝑞
𝑖=1 (𝐴𝑖𝒙 + 𝐵𝒖 + 𝐹𝑎𝒇𝒂 + 𝑹𝑖𝑉𝑟), (13) 

where, 𝜇𝑖(𝒁(𝑡)) = ℎ𝑖(𝒁(𝑡))/ ∑ ℎ𝑖(𝒁(𝑡))
𝑞
𝑖=1  and ℎ𝑖(𝒁(𝑡)) = ∏ 𝑀𝑙𝑖(𝒁(𝑡))3

𝑙=1 . The measurement equation is the same 267 
as (11). In (13), the expert’s knowledge plays a vital role to properly define the fuzzy rules, dynamic matrix 𝐴𝑖 and 268 
disturbance vector 𝑹𝑖. Otherwise, the designed model is not able to represent the wind turbine dynamic response. 269 
3. Fault detection methods applied to wind turbines  270 
FDI can be utilized as a fully/partly automatic scheme to detect and locate the possibly occurring faults on the wind 271 
turbine to optimize the required maintenance procedures, reduce downtime, and to avoid catastrophic failure. The 272 
modern maintenance strategies aim to reduce human intervention by implementing hardware or software redundancy 273 
on the wind turbines to automatically detect the faults based on the collected and analyzed data and, consequently, to 274 
reduce/remove the fault effects.  275 
Hardware redundancy involves equipping the components such as sensors and actuators, with physically identical 276 
counterparts to generate so-called residual signatures which contain the possible fault information. This approach 277 
increases the weight, occupied space, data acquisition complexity and, consequently, final design cost. These issues 278 
are very problematic for offshore wind turbines. In contrast, software redundancy or computer-based FDI techniques 279 
have been developed on wind turbines during the last decade to overcome the aforementioned problems [51], in which 280 
the mathematical model of the wind turbine is used to generate the redundant signals and, accordingly, residuals. 281 
It should be pointed out that there exist other faults in the wind turbine structure which are not mentioned in Table 4. 282 
For instance, degradation of drivetrain lubrication oil which leads to high bearing temperature and, consequently, 283 
lubrication oil ageing. Also, due to wind gusts and consequent temporary misalignment of rotor and generator shafts, 284 
the bearings and gears are damaged [52]. Blade cracks, bearing wear and spalls, gear teeth cracks, generator winding 285 
damage and overheating, are some other reported wind turbine faults. Condition monitoring methods based on 286 
Supervisory Control and Data Acquisition (SCADA), structural health monitoring techniques, frequency spectrum 287 
analysis and vibration signal processing are the main approaches to detect these aforementioned faults [53-55]. Fourier 288 
transformation analysis [56], wavelet methods [57], manifold learning [58], support vector machines [47, 59, 60], 289 
vibration-based condition analysis [57], thermography, strain measurements and acoustic monitoring [18, 61] are some 290 
examples of condition monitoring. All these methods can be categorized as signal-based (or data-driven) fault 291 
detection and there are rich reviews on applying these methods on wind turbines [18, 52, 54, 62-66], so these methods 292 
are not repeated here. On the other hand, yaw actuator faults, whether actuator malfunction or a stuck brake is not 293 
considered, because the yaw mechanism is mostly considered as an on/off actuator and, accordingly, inactive [40]. 294 
The most challenging issue, which should be considered in wind turbine FDI schemes, is that the wind speed is poorly 295 
measured by the anemometer due to spatial/temporal effective wind speed distribution over the blade plane, 296 
turbulence, wind shear and tower shadow effects. So, wind speed is considered as an unknown disturbance as well as 297 
consequent aerodynamic torque. Also, FDI schemes should be robust against the considerable noise content of sensor 298 
measurements [67]. In this section, the wind turbine model-based FDI techniques are reviewed. Also, to have a 299 
comprehensive and fruitful review, the FDI methods are categorized systematically, which are summarized in Figure 300 
4. 301 
3.1. Residual-based approach  302 
The residual-based design represents one of the most common wind turbine FDI techniques to detect different faults. 303 
This approach relies on the residual signal obtained by comparing the wind turbine output and the corresponding 304 
duplicated one, which carries any probable fault information. In model-based residual generation, despite physical 305 
redundancy techniques, the redundant measurements can be obtained via the wind turbine mathematical models (see 306 
Section 2), or via design of an appropriate observer. Finally, by adopting an appropriate residual signal evaluation, the 307 
fault is detected [68]. The most commonly adopted residual-based FDI techniques for wind turbines are the parity 308 
relation method [69] and observer design [70]. Generally, the residual vector is defined as, 309 

𝒅 = 𝒚𝑚 − 𝒚𝑤, (14) 
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where, 𝒚𝑚 is the wind turbine output vector and 𝒚𝑤 is the wind turbine duplicated output vector. In (14), for the sake 310 
of consideration, the vector 𝒅 contains all sensors and duplicated output information. Although, it can be constructed 311 
for one sensor to reduce complexity of the residual evaluation. 312 
The widely-exploited residual evaluation methods are simple geometric logic (e.g.  threshold check), statistical scheme 313 
(e.g. statistical feature extraction), and Bayesian approaches. In the first approach, an adaptive or fixed threshold 𝜎𝑡ℎ 314 
is selected, from which if 𝒅 violates, the faults are detected [71]. Indeed, if ‖𝒅‖ > 𝜎𝑡ℎ, then the fault is detected, 315 
otherwise no fault has occurred. It should be noted that the presence of measurement errors, disturbance and 316 
uncertainty, may lead to false fault detection. Indeed, these effects may cause 𝒅 to be greater than 𝜎𝑡ℎ, when no fault 317 
has occurred [72]. Also, by selecting too large a 𝜎𝑡ℎ, to avoid false detection, some faults with small effect on 𝒅 are 318 
not detected, which may yet cause major operational deficiency, leading to the missed detection problem. So, statistical 319 
analysis of the residual signal can be considered to provide more accurate residual evaluation. Generalized likelihood 320 
ratio test, cumulative variance index and the use of up and down counters, are some statistical analysis methods. These 321 
methods are available e.g. in [51, 73]. The Bayesian approach for residual evaluation will be outlined in Section 3-5. 322 

 323 
Fig. 4. FDI methods applied on wind turbines. 324 

 325 
3.1.1. Parity space approach  326 
The parity residual generation approach can be adopted on the whole or a single part of the wind turbine to achieve 327 
the FDI task. This approach uses the mathematical model of the wind turbine presented in Section 2. This model is 328 
fed with the same inputs as the wind turbine. In the fault-free case, both the wind turbine and the model, generate the 329 
same outputs. Accordingly, by comparing these two outputs the residual signal is constructed, which deviates 330 
considerably from zero in the case of fault occurrence. This approach is sketched in Figure 5 [69, 74]. As an example. 331 
in [75] the parity equations are utilized to detect and isolate faults in the blade pitch actuator and drivetrain. The highly 332 
nonlinear wind turbine dynamics and its variable operation points make a high-fidelity description of the whole wind 333 
turbine behavior difficult. Also, the design of different models for each subsystem may increase the complexity of the 334 
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final scheme. Also, the wind speed is not accurately measurable. Figure 5 highlights that the wind speed is one input 335 
to the wind turbine, which should be identically fed to the model. So, the wind speed should be either accurately 336 
measured or estimated. Different measurement or estimation of wind speed approaches have been reviewed in [76]. 337 
On the other hand, in the case of offshore wind turbines, the unmeasurable sensor noise and environmental disturbance 338 
are considerable and inevitable. So, in [75] an appropriate filter was designed to make the residual robust against noise 339 
and disturbances, while yet being sensitive to the considered faults. Also, in [77] an adaptive threshold is designed to 340 
accurately evaluate the constructed residual signal of the wind turbine to eliminate false detection due to noise content 341 
on the residual. 342 

 343 
Fig. 5. Parity based residual generation approach. 344 

3.1.2. Observer design approach 345 
The most accurate residual generator is obtained by means of an appropriate fault diagnosis observer. Indeed, this 346 
approach relies on residual signals that are decoupled from the unknown inputs, whether wind speed, noises or other 347 
uncertainty effects [10]. In contrast to the parity approach, in the observer design, the observation error is fed back 348 
into the dynamic system to reduce the error, adopting a proper observation gain. Consequently, using the observed 349 
states, the residual signal is constructed. The observer is designed for the fault-free model. So, considering (10), the 350 
observer dynamic system is defined as, 351 

�̇� = 𝐴𝒙 + 𝐵𝒖 + 𝑹�̂�𝑟 + 𝑯𝒆, 

�̂� = 𝐶𝒙, 

𝒆 = 𝒚 − �̂�, 

(15) 

where, 𝒙 is the estimated wind turbine states vector, �̂�𝑟  is estimated wind speed, �̂� is estimated outputs vector, 𝒆 is 352 
observation error and 𝑯 is the observer gain matrix. The only condition for the design of the observer is that the 353 
considered wind turbine model (or a part of it) must be observable, i.e. 𝑟𝑎𝑛𝑘([𝐶 𝐶𝐴 … 𝐶𝐴𝑛−1]𝑇) = 𝑛, where 𝑛 =354 
𝑙𝑒𝑛𝑔𝑡ℎ(𝒙). If the 𝑯 is designed properly, 𝒆 converges to zero. This approach is depicted in Figure 6, where the 355 
estimation of wind speed, i.e. �̂�𝑟  is still required. 356 

 357 
Fig. 6. Observer based residual generation approach. 358 

The wind turbine observer design mostly includes various types of Kalman filter [51, 78, 79] and unknown input 359 
observer (UIO) schemes [70, 80]. For example, using the Kalman filter, as the optimal observer, the reduction of wind 360 

Page 10
Preprint, submitted to Renewable Energy,

https://doi.org/10.1016/j.renene.2018.12.066



11 
 

turbine sensor noise on the observed states, is optimally guaranteed [51, 78, 79, 81]. The main disadvantage of the 361 
observer based FDI methods is that the whole linearized wind turbine model should be used to take advantage of well-362 
developed linear observer design theories [3]. Recently the sliding mode observer has shown interesting results to be 363 
implemented on the whole nonlinear model of the wind turbine [82, 83]. In [84] the observer design is conducted on 364 
the wind turbine LPV model, which shows acceptable FDI performance for different fault scenarios. In [3], an 365 
extended observer on the wind turbine LVP model was designed to estimate system states and fault signals 366 
simultaneously. Also, via H∞ optimization the robustness of the observer is improved against additive disturbances. 367 
Similarly, in [51], for disturbance decoupling and, meanwhile, to generate the optimal residual signal with respect to 368 
sensor noise, the Kalman filter is augmented with observers. A bank of several observers was proposed in [85], each 369 
of them being sensitive to only one fault and robust against the other faults. So, via the fault signature analysis, the 370 
fault detection as well as isolation are achieved at the same time. In [79] the performance of the Kalman filter, bank 371 
of observers and parity based residual generation are compared. It should be noted that in [27, 86] a new observer 372 
design scheme is proposed for wind turbine fault detection, known as interval observer design, for a set of valid models 373 
using the so-called set-membership approach. 374 
UIO represents an improvement of the ordinary observer scheme to eliminate the need for wind speed estimation.  In 375 
UIO, the observer dynamic system is totally decoupled from external unknown disturbances, i.e. wind speed, by 376 
adopting a proper observer structure, which is given as, 377 

�̇̂� = 𝑭𝒛 + 𝑻𝑩𝒖 + 𝑲𝒚, 

𝒙 = 𝒛 + 𝑮𝒚, 
�̂� = 𝐶𝒙, 

(16) 

where, 𝒛 is the observer states vector, 𝑭, 𝑻, 𝑲and 𝑮 are matrices to be designed for achieving the decoupling 𝑹. 378 
Necessary and sufficient conditions for design of UIO are, 𝑟𝑎𝑛𝑘(𝐶𝑹)  =  𝑟𝑎𝑛𝑘(𝑹) and (𝐶, 𝐴1) is a detectable pair, 379 
where 𝐴1 = 𝐴 − 𝑹((𝐶𝑹)𝑇𝐶𝑹)−1(𝐶𝑹)𝑇𝐶𝐴. In this scheme, the disturbance effect on the residual signal is decoupled. 380 
In [70, 80], the wind turbine sensor faults are detected with the UIO based approach. 381 
3.2. Fault estimation approach 382 
This approach relies on a proper fault estimator that is used for fault detection purposes. Also, an estimator bank can 383 
be designed to isolate the faults affecting different wind turbine components [42]. Each estimator of the bank is 384 
designed for a specific fault. The general estimator structure can be represented as, 385 

�̇̂� = 𝑔(�̂�, 𝒚, 𝒖, �̂�𝑟), (17) 

where, �̂� is an estimated fault and 𝑔 is a nonlinear function to be designed. Despite the observer approach, in the 386 
estimation techniques, the fault function is directly obtained. The main step in the estimator design is the selection of 387 
design parameters. Indeed, in the case of proper design parameter selection, the need for the threshold is eliminated 388 
[42]. In Figure 7, the fault estimation is illustrated schematically. The estimator structure is designed as a dynamic 389 
system or static estimator such as the least squares filter [3, 87]. It should be noted that considering the nonlinear 390 
dynamics of wind turbines and different sources of disturbance, adaptive filters are mainly addressed by the most 391 
recent studies [32, 82]. The advantage of the adaptive estimator concerns its robustness, which can be theoretically 392 
guaranteed. This feature leads to reduction in the false and missed detection rates [29, 88]. The most recent fault 393 
estimator designs exploit fuzzy sliding mode estimators, whose application for wind turbines FDI is addressed in [82, 394 
89, 90]. 395 
3.3. Neural networks and fuzzy inference system approaches 396 
Neural networks and fuzzy inference systems can be used for wind turbine FDI designs, and they are mainly divided 397 
into two different approaches, namely input-output representation and fault feature generators (classifiers), analyzed 398 
in the following sections.  399 
3.3.1. Input-output representation 400 
Neural networks provide one of the best tools to represent the nonlinear and partially known behaviour of wind 401 
turbines [48]. This approach is illustrated in Figure 8, in which the designed neural network is fed with the 402 
actual/estimated inputs, i.e. the same as the wind turbine, to generate the redundant outputs. It should be noted that 403 
the wind speed can be estimated in the neural network as well as the duplicated outputs [91, 92]. 404 
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 405 
Fig. 7. Fault estimation diagram. 406 

The multi-layer perceptron networks and radial basis function neural networks are the most commonly adopted 407 
structures for FDI purposes. The main step in this approach is the offline training to tune the neuron weights to the 408 
optimal ones. Adaptive neuro fuzzy interface system is an online fast learning adaptive training approach, which takes 409 
advantage of the neural network robustness, the learning and training capabilities, and the fuzzy inference system 410 
interpretability. In both offline and online schemes, a properly large dataset should be available as a-priori knowledge 411 
to train the network in the fault-free case. Accordingly, some works proposed a data-driven learning scheme [93]. The 412 
application of this approach on wind turbines FDI has recently been addressed in [94] and applied on different wind 413 
turbine components e.g. gearbox and generator faults [95, 96] and pitch faults [95]. 414 

 415 
Fig. 8. Neural network input-output based FDI. 416 

3.3.2. Fault signature generator 417 
In contrast to the previous approach, the fault information can be directly extracted/inferred in this method, which 418 
relies on the design of an accurate a-priori knowledge-based network, e.g. Adaptive Neuro-Fuzzy Inference System 419 
(ANFIS) or Fuzzy Inference System (FIS), as illustrated in Figure 9. Accordingly, the expert knowledge is needed to 420 
be included in the design, whether as the numerical rules or fuzzy if-then linguistic rules. For example, the rule ‘‘If 421 
generated power is high at low wind speed region, it may imply possible sensor fault’’ can be used. These rules are 422 
also known as classifiers [97]. One of the advantages of fuzzy logic and fuzzy membership representation is that the 423 
uncertain measurement of the wind speed provided by the anemometer can be directly used [98]. In [99], classification 424 
methods are utilized for rotor imbalance/aerodynamic asymmetry fault detection. 425 
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 426 
Fig. 9. Fuzzy fault feature generation diagram. 427 

3.4. Set-membership approach 428 
This scheme relies on a set of mathematical models of the wind turbine that are exploited for system consistency 429 
checking. Model uncertainties and noises are assumed to be unknowns, but with known upper and lower bounds. Due 430 
to unmodeled dynamics, noise and uncertainty of the wind turbine, the input/output data can be consistent with more 431 
than one model [100, 101]. So, an active model diagnosis is adopted in which, at each time step taking model 432 
falsification concepts into consideration, an auxiliary input signal is fed into both wind turbine and model sets, to find 433 
the correct model out of the predefined set. Then, the consistency of the current input/output data and the model is 434 
checked to detect the possible faults [71]. 435 
This method guarantees that the valid model of the wind turbine is never falsified. Additionally, the set-membership 436 
approach can be used only for one subsystem to check only one parameter, i.e. the feasible parameter set is defined 437 
instead of the valid model set [87, 102], assuming the wind speed and measurement noise are bounded as |𝑉𝑟| ≤ 𝑉𝑟,𝑚𝑎𝑥  438 
and 𝑫 ∈ �̅� in (10) and (11). Also, initial conditions can be given in a compact set 𝒙(0) ∈ 𝚾0. In every iteration of the 439 
set-membership algorithm, a consistent set, S𝑐(𝑡) is defined which contains all the states that are consistent with the 440 
wind turbine model, considering 𝚾0, 𝑉𝑟,𝑚𝑎𝑥  and �̅�. The control input 𝒖 can be used for FDI purposes, but here, to 441 
significantly excite the wind turbine, assume that an auxiliary input 𝒖𝑎(𝑡) is applied to the wind turbine. The predicted 442 
set S𝑝 at time step 𝑡 can be defined as  S𝑝(𝑡) = {𝐴𝒙(𝑡 − 1) + 𝐵𝒖𝑎(𝑡 − 1) + 𝑹�̂�𝑟(𝑡 − 1)|𝒙(𝑡 − 1) ∈ S𝑐(𝑡 − 1), �̂�𝑟(𝑡 −443 
1) ≤ 𝑉𝑟,𝑚𝑎𝑥  }. Also, the updated set S𝑢 at time step 𝑡 can be defined as S𝑢(𝑡) = {𝒙(𝑡)|𝐶𝒙(𝑡) ∈ 𝒚(𝑡) ⊕ (−�̅�)}, where 444 
⊕ denotes the Minkowski sum. Now the consistent set can be computed as S𝑐(𝑡) = S𝑝(𝑡) ∩ S𝑢(𝑡). A fault can then 445 
be detected at time step 𝑡 if the following relation holds true, 446 

S𝑐(𝑡) = ∅. (18) 

An advantage of the set-membership approach is that the need for thresholds is eliminated while the false alarm and 447 
missed alarm are avoided [86, 100]. The conservatism of this approach, because of uncertainty propagation and over-448 
approximations required in the set computations, is the main drawback. This approach is illustrated in Figure 10. The 449 
combination of set-membership approach and observer design emerges as a new and promising approach for wind 450 
turbine FDI, as proposed in [27, 86]. 451 
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 452 
Fig. 10. Set-membership FDI approach. 453 

3.5. Bayesian approach 454 
This approach has recently been reformulated for model-based wind turbine FDI application [103], in contrast to its 455 
traditional application for signal-based condition monitoring. In this regard, in the Bayesian framework, the residual 456 
signal is evaluated to detect faults. By taking advantage of Bayesian reasoning, the expert knowledge about the wind 457 
turbine operation can be directly included in the FDI scheme [104]. Indeed, the residual evaluation is obtained as the 458 
fault probability extraction in the Bayesian framework as,  P(f|d, x̂, y) i.e. the conditional fault probability having 459 
residual, estimated state and output vectors [105]. Accordingly, the need for threshold evaluation is eliminated. Also, 460 
using the valid measurement, a fault occurrence can be predicted, by considering Bayesian fault probability, e.g. wind 461 
turbine bearing crack prediction [106]. A recent and promising approach for the wind turbine feasible parameter set 462 
determination is addressed in [104] where the set-membership FDI is reformulated in a Bayesian framework. 463 
4. Application of Fault detection methods to wind turbine components 464 
In this section, the methods that have been introduced in Section 3 are analyzed and discussed based on their 465 
application on wind turbine components. The aim is to critically review the methods to enable the readers to choose 466 
appropriate methods for further study. 467 
4.1. Sensor fault detection 468 
As the sensor outputs are mostly utilized in the feedback controller scheme, the required wind turbine performance 469 
may not be maintained due to a fault on the corresponding sensor [10]. Especially in the case of the offshore wind 470 
turbines operating in harsh environment, it is more likely that the sensor measurements are corrupted with faults [68].  471 
The pitch sensor FDI is studied in [10], as the pitch angle control is a vital scheme for power regulation of wind 472 
turbines. The residual signal is generated using the physical redundant sensors and evaluated by considering mean and 473 
variance changes. In the parallel loop, the model-based pitch sensor is utilized to enable parity relation construction 474 
to isolate the detected fault. Indeed, it is aimed to identify which pitch sensor is faulty.  475 
The application of the Kalman filter has been considered on wind turbine sensor FDI, in which it is guaranteed that 476 
the noise effect is minimized when proper conditions are satisfied. For example, in [68] the Kalman filter is designed 477 
for pitch sensor FDI. Similarly, in [51] the Kalman filter is used for the residual generation which is evaluated via the 478 
generalized likelihood ratio test to detect the pitch and drivetrain sensor faults, while the redundant sensor is needed 479 
for fault isolation. Also, the applied aerodynamic torque, i.e. 𝑇𝑎 in (4), is considered as a disturbance and the designed 480 
Kalman filter has proven to be robust against wind speed variation. 481 
The observer design has been analyzed in different modelling frameworks. For example in [44], the power sensor and 482 
generator speed sensors are considered and the observer is designed for the LPV wind turbine model, but the sensor 483 
noise is not considered. In [107, 108] H-/H∞ optimization is addressed to minimize the noise effect on the designed 484 
FDI observer. In [3], the extended observer for the whole wind turbine model is designed in the LPV framework to 485 
estimate the states as well as faults at the same time for pitch and drivetrain sensor faults using the linear matrix 486 
inequality. So, this approach can be considered as an estimation method. Also, the wind speed is considered as an 487 
unknown disturbance and the proposed observer is insensitive to it. The fuzzy T-S framework has been considered in 488 
several papers to design the sensor FDI scheme. In [109] for low wind speed regions and in [29] for high wind speed 489 
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regions, the generator current sensor fault is detected via an observer design in the fuzzy T-S framework. Similarly, 490 
in [110], [111] and [112], the generator voltage sensor, pitch sensor and generator speed/power sensors, respectively, 491 
are considered and fuzzy T-S fault observers are designed. 492 
Regarding the unknown wind speed variation, UIO design is an appropriate choice to remove the need for wind speed 493 
estimation, especially considering drivetrain sensor FDI designs [85]. In this approach, the wind speed variation is 494 
decoupled from the designed observer [80]. For example, in [70, 80, 113] UIO is designed for drivetrain sensor fault 495 
detection including rotor speed and generator speed sensors. Observer bank design is a suitable approach to detect and 496 
isolate the sensor faults, and at the same time, to achieve fault isolation with no need for physical redundant sensors. 497 
Each observer is designed to be sensitive only to one given fault and robust to other faults and disturbances. In [85], 498 
the UIO bank is designed for a set of sensor faults including rotor speed, generator speed and wind speed sensors. 499 
Finally, more accurate evaluation of the residual signal can be conducted with set-membership checks or Bayesian 500 
inferences. In [100], the pitch and rotor sensor faults are considered and, utilizing the set-membership approach, the 501 
need for threshold checking is removed and also, no positive false alarm is produced. In [103] the relationship between 502 
wind turbine failure root causes and symptoms are used with a Bayesian Network for pitch sensor fault detection, 503 
using SCADA data to reduce false alarms and missed fault rates. The available wind turbine sensor FDI methods 504 
associated with different fault sources, are analyzed comprehensively in Table 5. 505 

Table 5. Wind turbines sensor FDI methods. 506 
Fault 

Source 
FDI Method Reference Advantage Disadvantage 

Pitch 

Sensor 

Physical 

Redundancy/ Parity 

Equation 

[10] 
Accurate fault detection. No need 

for wind speed estimator. 
Need for extra physical pitch sensors. 

Observer (H-/H∞ 

Optimization) 
[108] 

Noise effect reduction on 

residual. 

Need for wind speed estimation. Complex and timely 

numerical algorithm. 

LPV Extended 

Observer 
[3] 

Estimation of the states as well as 

faults at the same time. 

Sensitive to design parameters. Complex procedure for 

computer simulation. 

Kalman Filter Design [51, 68] 
Minimization of noise on 

residual. 

Wind speed estimation. Complex and timely numerical 

algorithm. Need for an extra sensor for isolation. 

Fuzzy T-S Observer [111] 

More accurate wind turbine 

model. The reduction of 

modelling uncertainty on the 

fault detection. 

The effective design of fuzzy rules and set-

memberships. 

Set-Membership 

Approach 
[100] 

Threshold check is not needed. 

No positive false alarm is 

produced. 

Wind speed estimation. Need for implementable and 

simplified numerical algorithm to calculate the valid 

models set. 

Bayesian Inference 

using SCADA data 

to generate fault 

symptoms 

[103] 
Reduced false alarm and missed 

fault rates. 

Considerable sensor noise effect. Low sample rate of 

SCADA data. 

Drivetrain 

Sensors 

Kalman Filter 

Observer 
[51] 

Aerodynamic torque is 

considered as disturbance. 

Minimization of noise on 

residual. 

Complex and timely numerical algorithm. Need for an 

extra sensor for isolation. 

LPV Extended 

Observer 
[3] 

Estimation of the states as well as 

faults at the same time. No need 

for wind speed estimation. 

Sensitive to design parameters. Complex procedure on 

digital computer. 

UIO 
[70, 80, 

113] 
One-step calculation design 

procedure. Too simplified modelling assumptions in the design 

which make it less practical. 
UIO Bank [85] 

Fault detection and isolation at 

the same time. 

Set-Membership 

Approach 
[100] 

Threshold check is not needed. 

No positive false alarm is 

produced. Less complex 

computational procedure. 

Need for wind speed estimation. 

Generator 

Voltage 

and 

Current 

Sensors 

Observer [114-116] 
No need for any extra redundant 

sensor. 

Effect of sensor noise content on the observation 

performance is not considered. Need for wind speed 

estimator. 

Fuzzy T-S Observer 
[29, 109, 

110, 112] 

More accurate wind turbine 

model. The reduction of 

modelling uncertainty on the 

fault detection. 

The effective design of fuzzy rules and set-

memberships. 

Power 

Sensor 

Observer (H-/H∞ 

optimization) 

 

[107] 
Noise effect reduction on 

residual. 

Wind speed estimation. Complex and timely numerical 

algorithm. 

LPV observer [44] 
Observer design for whole wind 

turbine. 
No noise/disturbance consideration. 
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4.2. Pitch actuator fault detection 507 
The power regulation of wind turbines is essential for high wind speed situations, i.e. to retain the generated power at 508 
nominal power, by adjusting the blade pitch angle to control the applied aerodynamic torque and consequently, rotor 509 
speed [34]. Also, in dangerous wind speed situations, it is aimed to feather the wind turbine by pitching the blades 510 
into the desired orientation to bring the wind turbine to a stop, to avoid mechanical brake engagement, which may 511 
induce considerable stress on the rotor shaft. So, the pitch actuator plays a vital role to accurately tune the blade pitch 512 
angle at 𝛽𝑟𝑒𝑓 . Accordingly, the pitch actuator faults lead to deviation of the pitch angle from 𝛽𝑟𝑒𝑓 . As the pitch actuator 513 
fault-free dynamic behavior (5) is represented as a linear and known relation, the parity equation can be used to 514 
generate the residual. As the measured pitch angle, to be used in the parity equation, is corrupted by measurement 515 
noise, in [117] the least square residual evaluation with sliding data window is exploited to evaluate the residual signal 516 
and detect 𝛥𝑓𝑃𝐴𝐷 while minimizing noise effects. On the other hand, 𝛥𝑓𝑃𝐴𝐷 can be considered as the model uncertainty 517 
and accordingly, in [75] the robust residual filtering and parity equations are combined to accurately detect the pitch 518 
actuator dynamic change for each blade. Also, the pitch sensor fault effect is distinguished from 𝛥𝑓𝑃𝐴𝐷, utilizing the 519 
fault-end-effect, i.e. fault signature. 520 
The pitch sensor noise, dynamic change and bias are challenging effects to be separated at the same time, which 521 
motivates many recent studies, for which observer design is a potentially suitable approach. In [118] the Kalman filter 522 
observer is designed to detect the pitch actuator bias. Also, in [108], the H-/H∞ optimization method is augmented in 523 
the observer design to generate the optimal residual, i.e. minimizing the noise effect. Regarding pitch sensor effects, 524 
in [84] an observer is designed with adaptive gains to detect dynamic change, distinguished from sensor noise and 525 
sensor faults. In a similar manner, in [32], the sliding mode observer is designed to detect dynamic change with an 526 
adaptive hierarchical method to facilitate the real-time implementation. In [82], the sliding mode observer is designed 527 
for the wind turbine fuzzy T-S model to detect any increased time delay in the electrical pitch actuator. 528 
The application of soft computing using SCADA data to detect pitch actuator faults have shown promising results to 529 
avoid complicated FDI schemes. In [95] using neural networks, a pattern recognition structure was proposed to detect 530 
pitch actuator faults. On the other hand, in [94] the Bayesian fault probability was obtained to evaluate the SCADA 531 
alarm data and detect potential pitch actuator dynamic change. To this end, pitch actuator FDI methods are elaborated 532 
in Table 6. 533 

Table 6. Pitch actuator FDI methods. 534 

Fault Type Fault Symbol in (6) Fault Detection 

Method Reference Characteristic Advantage Disadvantage 

Pitch Actuator 

Dynamic 

Change 
𝛥𝑓𝑃𝐴𝐷 

Parity 

Equation 

[117] 

Least square 

residual 

evaluation with 

sliding data 

window. 

Minimizing noise 

effect and accurate 

fault size 

estimation. 

Pitch sensor fault effect 

and pitch bias are not 

considered. 

[75] 
Robust residual 

filtering. 

Considering both 

pitch sensor and 

pitch actuator 

dynamic change. 
No sensor noise is 

considered. 

Observer 

Design 
[108] 

H-/H∞ 

optimization 

method. 

Optimal residual 

sensor noise 

attenuation. 

Observer 

Design 

[84] 
Adaptive observer 

gains. 

Sensor noise and 

sensor faults are 

considered. 

Adaptive observer 

is only sensitive to 

dynamic change. 

Sensitive to design 

parameters. Complex 

procedure using computer 

simulation. 

[32] 
Sliding mode 

observer. 

Facilitate the real-

time 

implementation. 

No sensor noise is 

considered. 

Bayesian 

fault 

probability 

[94] 
Evaluation of the 

SCADA alarm 

data. 

Reduced false 

alarm and missed 

fault rates. 

Sensor noise and faults 

are not considered. The 

low sample rate of 

SCADA data. 

Neural 

networks 
[95] 

A pattern 

recognition 

structure. 

Robustness 

against sensor 

noise and model 

uncertainty. 

No sensor fault is 

considered. 

Pitch Actuator 

Bias 
𝛽𝑏𝑖𝑎𝑠 

Observer 

Design 

[118] 
Kalman filter 

observer. 

Good sensor noise 

attenuation 

Pitch actuator uncertainty 

and dynamic change are 

not considered. 

Electrical Pitch 

Actuator Time 

Delay Change 

- [82] 
Sliding mode 

observer fuzzy T-

S model. 

More accurate 

wind turbine 

model. The 

reduction of 

modelling 

The effective design of 

fuzzy rules and set-

memberships. Sensitive to 

design parameters. 
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uncertainty on the 

fault detection. 

4.3. Generator and converter fault detection 535 
The Maximum Power Point Tracking (MPPT) of variable speed wind turbines is achieved by regulating the electrical 536 
generator torque using converter current control. The generator torque control leads to adjustment of the generator 537 
and rotor speeds to the desired values such that consequently, the power coefficient 𝐶𝑝 is maintained at the maximum 538 
possible one. Accordingly, the generator faults including bias 𝑓𝑇𝑔

 and dynamic change 𝛥𝑓𝐺𝐶 cause the deviation of 539 

operation from the intended one. So, it is important to detect and isolate the generator faults. The large variety of wind 540 
turbine manufacturers inevitably results in different manufacturer-specific wind turbine generator technology [119]. 541 
Accordingly, it is fruitful to consider the generator FDI methods in the system control level, for the various different 542 
electrical generator topologies, as outlined in this section. The available FDI methods for the generator bias are 543 
summarized in Table 7. 544 
In [44], a wind turbine LPV model, including uncertainty, uses a LPV observer designed to generate the residual, and 545 
adopting the adaptive threshold method the generator torque bias is detected. In [79] three different generator FDI 546 
schemes are considered. In the first scheme two cascade Kalman filters are utilized for mitigation of the nonlinear 547 
aerodynamic torque effect. In the second scheme, a bank of dedicated observers is exploited. The third scheme is 548 
designed using a H∞ filter with parity equations, by considering the nonlinearity as a bounded disturbance. Also, in 549 
[120], by adopting interval observers and considering the noise and modelling errors as bounded unknowns, the 550 
generator fault is detected using online analysis of observed fault signatures and comparing them with the theoretical 551 
ones obtained using structural analysis. The fault size is estimated based on the batch least squares approach.  552 
The parity relation, using analytical redundancy relations and interval observers, for uncertain wind turbine model, 553 
was developed in [27]. On this basis, using the set-membership approach, the generator bias is accurately detected. 554 
Similarly, in [100, 121], a consistent set with measurements is generated using the set-membership approach. Model-555 
reality mismatch, noise, and uncertainties on the torque coefficient and generator fault are included in the wind turbine 556 
model. An effective wind speed estimator is proposed. For representing the consistent set of models with 557 
measurements, a matrix zonotope is used, which results in a computationally efficient scheme. The results confirm 558 
the effectiveness of the proposed method compared to other methods for the same fault scenario. The approach does 559 
not need to use threshold design, which is an outstanding advantage of the proposed method. 560 
In [14], the fuzzy theory is exploited to manage uncertain models and  noisy data. The residual signals, which are only 561 
sensitive to generator faults, are generated using fuzzy T-S prototypes. The data-driven diagnosis strategy, based on 562 
fuzzy T-S prototypes is proposed in [45] for converter FDI with generator and sensor faults. The reliable regulation 563 
of the generator torque, including both generator uncertainties and faults, is studied in [20], and two different schemes 564 
are developed. Firstly, a FIS is proposed for parameter adaptation, without any prior knowledge of the generator faults. 565 
In the second approach, the fuzzy T-S identification approach was exploited, to develop an integrated FDI scheme to 566 
detect potential generator faults using online diagnostic information. The adaptive fault estimation is exploited in [42] 567 
for generator and converter FDI. Also, in [29] a two-dimensional polynomial is suggested to estimate the power 568 
coefficient in an analytical form. Consequently, the adaptive filter is obtained via the nonlinear geometrical approach 569 
to detect the generator faults. 570 
4.4. Drivetrain fault detection 571 
The drivetrain can be subjected to changes in its dynamics modeled as  ΔKdt and  ΔBdt in (4), which may happen very 572 
slowly. It causes undesirable oscillations, which may lead to total breakdown which causes long and costly downtime 573 
[17]. So, it is important to detect this fault in time. It should be noted that most of the developed FDI methods applied 574 
to the drivetrain are considered as signal-based approaches [95], where significant literature reviews can be found in 575 
[4, 21-24, 65]. Accordingly, this section considers only the model-based FDI methods. In [75] the parity relation is 576 
designed on the drivetrain to generate the residual signal and, via robust filtering the residual signal is evaluated to 577 
detect changes in drivetrain dynamics. Also, the wind speed is used in the structure of parity relation assuming that 578 
the wind speed estimation is separately available, and it is not affected by the fault occurrence which is generally not 579 
true. On the other hand, the measurement noise is not considered. Accordingly, in [81] the Kalman filter is utilized to 580 
minimize the noise effect and detect the drivetrain efficiency loss due to wear and increased gear friction. The dynamic 581 
change may be considered as the change in the resonance frequency and damping ratio of the drivetrain. In this regard, 582 
in [41], this change is detected by designing a filter and using only the generator speed measurement. The uncertainties 583 
of the drivetrain dynamic response, i.e. unknown aerodynamic torque Ta in (4), and high sensor noise, have led to the 584 
development of more advanced FDI solutions. In [96], a neural network was designed for drivetrain FDI by training 585 
the network with a large amount of fault-free data to attenuate uncertainty and noise effects. Also, in [90, 122], utilizing 586 
fuzzy T-S prototype modelling, the drivetrain fault was detected by designing a sliding mode observer with adaptive 587 
gain. Also, the fault size was identified using an equivalent output injection method. 588 
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4.5. Aerodynamic characteristic change detection 589 
Debris build-up and blade erosion reduces the blade aerodynamic efficiency, as can be seen in (3). As a result, the 590 
captured aerodynamic torque and power are decreased. Also, the uneven oscillation of blades is a reported issue of 591 
this change [123]. Furthermore, the power regulation by blade pitch angle adjustment is not satisfactorily achieved. 592 
So, it is very important to foresee the aerodynamic characteristic change in the controller design and to detect this 593 
potential change. This change is difficult to detect because it is challenging to determine if reduced power generation 594 
is due to the blade debris/erosion, or if the wind speed has dropped [124]. Also, as debris build-up happens slowly, it 595 
is mostly assumed that this change lies within the annual wind turbines maintenance/inspection and the blades are 596 
cleaned/replaced. So, the literature focusing on this change is still limited. In [100], the blade aerodynamic change is 597 
described as the uncertainty on the torque coefficient. Accordingly, a consistent set of models is generated using 598 
measurements and the nominal wind turbine representation, which includes uncertainties and noise, and by means of 599 
the set-membership approach. This set includes all possible states consistent with the fault-free system. If the current 600 
measurement is not consistent with this set, a fault is detected. Also, it is stated that when the torque coefficient change 601 
is introduced, some faults are not detectable. Consequently, in [25, 125] instead of the individual wind turbine FDI, 602 
the blade debris build-up and erosion are detected at the wind turbine farm level and it is shown that this change is 603 
easier to be detected at this scale. This is achieved by comparing the output powers of the wind turbines operating 604 
under almost the same wind conditions. The nonlinear wind turbine model is obtained by fuzzy T-S modelling. Also, 605 
the FDI scheme comprises a rule-based threshold test logic for residual evaluation.  606 

Table 7. Generator bias FDI methods. 607 
Fault Detection Method Reference Characteristic Advantage Disadvantage 

LPV observer based 

residual generation 
[44] 

LPV model of wind turbine including 

uncertainty and adopting the adaptive threshold. 

Missed/false alarms are 

reduced. 

Sensitive to design 

parameters. Complex 

procedure on 

Simulation. 

Cascade Kalman filters/ 

observers bank/ H∞ 

filtering using parity 

equations 

[79] Three different detection schemes are compared. 

Nonlinearity is considered, 

and bounded uncertainty is 

attenuated. 

Generator sensor fault 

is not considered in the 

proposed scheme. 

Interval observers 

design. 
[120] 

Observed fault signatures are matched with 

theoretical ones using structural analysis. Fault 

size estimation using batch least squares. 

Unknown and bounded 

noise and modelling errors 

are considered. 

Overly simplified 

modelling assumptions 

in the design which 

makes it less practical. 

Set-membership 

approach 

[27] 
Analytical redundancy relations and interval 

observers. 

Unknown and bounded 

uncertain wind turbine 

nonlinear model is 

considered 

Complex procedure for 

implementation. 

[100, 121] 
Model of the wind turbine including 

uncertainties, noise, uncertainties on the torque 

coefficient and generator fault. 

Effective wind speed 

estimator is proposed. 

Matrix zonotope is used to 

reduce computational 

complexity. No need for 

threshold design 

The generator sensor 

noise is not considered. 

Fuzzy T-S residual 

generation 

[14] 
Approximating uncertain nonlinear wind turbine 

models with fuzzy theory. 

Managing noisy data. 

Residual is sensitive only to 

generator faults. 

The effective design of 

fuzzy rules and set-

memberships. Sensitive 

to design parameters. 

[45] 
Detection and isolation of 

both generator/converter 

actuator and sensor faults. 

Fuzzy inference 

mechanism/ fuzzy T-S 

identification 

[20] 
Parameter adaptation without any knowledge of 

generator faults. Integrated fault detection. 

Considering both 

uncertainties and faults on 

the generator. 

Adaptive fault 

estimation 
[29] Nonlinear geometric approach 

A two-dimensional 

polynomial is suggested to 

estimate the power 

coefficient analytically. 

The sensor noise is not 

considered. 

5. Fault-tolerant control of wind turbines 608 
FTC schemes are designed to maintain acceptable performance and stability of the wind turbines as close as possible 609 
to the fault-free conditions when faults occur, and to reduce the need for unplanned costly maintenance and unwanted 610 
shut downs. FTC techniques are divided into two different schemes, i.e. active and passive. The main difference is 611 
that active FTC needs the timely and accurate FDI information to be fed into the controller structure. Also, FDI 612 
information can be used in subsequent prescheduled maintenance plans. In contrast, in passive FTC, the controller is 613 
designed to be robust against a set of presumed faults. The benefit of the passive approach is that the controller is 614 
fixed and neither fault detection nor controller update are needed. However, some performance degradation in faulty 615 
conditions is tolerated. Stability is not necessarily guaranteed for the faults other than the considered ones  [34].  616 
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The wind turbine power control objectives are defined based on the wind speed, which should be considered in FTC 617 
design. For the wind speed less than a given lower value, i.e. cut-in wind speed Vr,cut-in, the available wind power is 618 
not economical enough to overcome the operational cost, so the wind turbine is not put into operation. Also, for the 619 
wind speed greater than a given upper value, i.e. cut-out wind speed Vr,cut-out, the wind turbine is pitched-to-feather 620 
or braked to protect it structurally, despite the high available wind power. The region from 𝑉𝑟,𝑐𝑢𝑡−𝑖𝑛 to the rated wind 621 
speed, i.e. at which wind turbine starts producing its rated power, is called the partial load region. Also, the region 622 
from the rated wind speed to 𝑉𝑟,𝑐𝑢𝑡−𝑜𝑢𝑡  is called the full load region. In the partial load region, it is aimed to capture 623 
as much power as possible from the wind by controlling the generator torque, i.e. design of Tg,ref in (8) and keeping 624 
the pitch angle at its optimal value, at which the Cp(β, λ) curve is maximized. In the full load region, the aim is to 625 
make the wind turbine produce only its rated power, by controlling blade pitch angle, i.e. design of βref in (6) and 626 
fixing the generator torque at its rated value. In both regions it is desirable to minimize mechanical stress and actuator 627 
usage [21]. Also, a scheme is needed for bumpless switching between the controllers in the partial load and full load 628 
regions, due to possible inconsistency between controller signal magnitude at the switching time. Otherwise, a bump 629 
in the control signal may cause oscillations between the two controllers and consequently, make the wind turbine 630 
unstable. Finally, it is crucial to mitigate the structural loads in the design of the baseline controller. Indeed, the loads 631 
considerably reduce the wind turbine’s lifespan. The most harmful loads appear in the full load region, in which drag 632 
and thrust loads on the wind turbine’s structure are considerable, including the tower fore-aft vibration and the blades 633 
flap-wise oscillation. The aerodynamic torque variation leads to considerable torsional vibration of the drivetrain shaft. 634 
So, it is very useful to implement a drivetrain/tower stress damper module to dampen torsional/fore-aft vibrations, 635 
respectively. For instance, the filtered generator speed and power can be added to the generator torque and the pitch 636 
angle, respectively, to filter out the resonant frequency of the drivetrain/tower. Also, the asymmetrical torsional 637 
torques can be reduced via the individual blade’s pitch control [20]. Note finally that a comprehensive review on the 638 
wind turbines baseline controllers design are available in [35, 126] and not reviewed here. 639 
5.1. Passive fault tolerant control methods 640 
In passive FTC design the controller is optimized for the fault-free case and some degraded performance is guaranteed 641 
when some presumed faults occur. The problem is formulated in the following form: 642 

 u(t) = arg Opt
u∈U 

( H
f∈F,D∈D̅,Vr,cut-in≤Vr≤Vr,cut-out 

), 
(19) 

where,  H is the operational objective index, to be optimized, e.g. maximizing the extracted power, minimizing induced 643 
structural stress, drivetrain oscillation and actuation effort. So, this optimization problem involves finding the 644 
appropriate control  u(t) which belongs to the achievable control U. The considered faults f are in the given presumed 645 
faults set F and the applied disturbances  D is bounded by D̅. 646 
In [33, 43, 127], a wind turbine LPV model in the full load region is considered, whilst the controller is designed to 647 
be robust against parameter variations, caused by nonlinear aerodynamics and against pitch actuator faults. Also, it is 648 
shown that the designed passive FTC has better performance than an industrial PI controller. In [128] a fuzzy-based 649 
framework including if-then rules, is presented to regulate both pitch angle and generator torque while adding fault 650 
tolerance features to the wind turbine in a passive way. Pitch and generator sensor faults, pitch dynamic change and 651 
generator torque bias were considered. In [129] a novel adaptive PID-based fault-tolerant controller with a Nussbaum-652 
type function is proposed to be insensitive against unexpected pitch actuator faults, including pitch actuator bias and 653 
effectiveness loss. 654 
5.2. Active fault tolerant control methods 655 
Active FTC can be solved via the Virtual Sensor and Actuator (VSA) approach or the Controller Reconfiguration 656 
(CR) scheme. In VSA, the fault information identified from the FDI scheme, is fed into a virtual (software) 657 
sensor/actuator module, which is placed between the actual sensor/actuator and the baseline controller, to correct 658 
signals in the virtual sensor/actuator such that the fault effect is removed. In VSA, the baseline controller is still in 659 
operation, which is an interesting industrial aspect because the existing baseline controller needs no modification [87]. 660 
For some faults, e.g. system faults in Table 4, the fault effects cannot be accommodated via VSA. Accordingly, in the 661 
CR approach the whole/part of the baseline controller is reconfigured to an alternative controller to guarantee stability 662 
and satisfactory performance. The CR is obtained by either modification of the current baseline controller parameters, 663 
switching a new controller, or using the available hardware/software redundant components [130, 131]. CR approach 664 
has less industrial acceptability due to its complex implementation, but it shows promising performance for the severe 665 
faults. The VSA and CR fault accommodations are illustrated schematically in Figure 11. 666 
 667 
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 668 
Fig. 11. VSA and CR fault accommodation (grey line) on the wind turbine (black line). 669 

5.2.1. Virtual sensor/actuator faults accommodation 670 
VSA is mostly applied to the wind turbine sensors, because the actuator signal correction may lead to instability, due 671 
to inaccurate fault size identification [120]. Also, it is easier to implement the virtual sensor module in practice. In 672 
[132] this technique is used to remove the drivetrain sensor faults. Similarly, in [87], VSA is used for pitch and 673 
drivetrain sensor faults, including both biased and gained sensor outputs, in which the set-membership approach is 674 
used to detect faults. Also, the generator torque bias is accommodated. In [133] using a similar approach, the drivetrain 675 
decreased efficiency due to dynamic change is additionally detected and accommodated. Also, in [14], different fault 676 
types, including fixed and gained pitch sensor, drivetrain sensors, generator torque offset, drivetrain changed dynamics 677 
and pitch actuator dynamic change are considered. In [90], a fuzzy T-S sliding mode observer is designed to estimate 678 
and consequently compensate the actuator faults by modifying the controller output via the virtual actuator. In [3] the 679 
pitch sensor fault and pitch actuator dynamic change are estimated through the design of an adaptive extended observer 680 
for an LPV wind turbine model. The PI industrial controller is used as the baseline controller and its output is corrected 681 
with the estimated fault information. Also, the robustness against wind speed variation and model uncertainty is 682 
guaranteed by H∞ optimization. In [134], the fuzzy T-S model is used to design an extended state observer, the 683 
drivetrain sensor bias is detected and accommodated by correction. The corrected signal is fed into a T-S fuzzy 684 
dynamic output feedback controller to maintain the desirable performance. In [29] the proposed scheme exploits a 685 
robust actuator fault estimation approach based on adaptive filters. The considered faults are pitch actuator dynamic 686 
change, bias and generator torque bias. Accordingly, the output of the PI controller is corrected based on the estimated 687 
fault information. Finally, in [25], through the use of expert-generated fuzzy if-then rules, the generated power of each 688 
wind turbine in the farm is evaluated to detect the possible debris build-up. Accordingly, the generator torque is 689 
corrected in the VSA module to compensate for the debris build-up effect and to keep the generated power at the 690 
desirable value. It is worth noting that in the VSA the sensor faults are reasonably accommodated better than the 691 
system and actuator faults [26]. 692 
5.2.2. Controller reconfiguration 693 
Considering the available CR methods, it can be stated that the process and actuator faults are better accommodated 694 
[26]. In [135] a group of model predictive controllers are designed to accommodate the pitch actuator dynamic change. 695 
A Kalman filter is used to identify the faults, and when detected, an alternative predefined controller is used to 696 
compensate for their effects. In [130], modified Ziegler-Nichols rules are applied to the online adaptive controller, 697 
relying on the least squares method with adaptive directional forgetting factors, to recursively adjust the PI baseline 698 
controller parameters to remove both generator and pitch actuator fault effects. In [136], a FTC scheme is proposed 699 
as a combination of model reference adaptive control with neural network compensation. Although, the fault is 700 
considered as a bounded additive actuation signal, however, no physically meaningful fault is considered. In [131], a 701 
proportional multiple integration observer is designed in the fuzzy T-S framework to estimate the generator sensor 702 
faults. Also, a robust estimation of effective wind speed is given. These estimations are used to compensate for the 703 
fault effects using a fuzzy T-S dynamic output feedback controller. In [112, 122], by deploying a robust fuzzy 704 
scheduler and  multi fuzzy observers, a nonlinear wind turbine controller is designed to attenuate the sensor faults, 705 
actuator faults and parameter uncertainties on the overall performance. It is desirable to reconstruct and compensate 706 
several actuator faults with one observer. In this regard, the sliding mode controller design technique is advantageous. 707 
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An adaptive sliding mode observer is designed in [32] to estimate the pitch actuator dynamic change and to modify 708 
the traditional PI baseline controller for fault effect compensation. In [34] by combining a disturbance compensator 709 
with a controller in the discrete-time domain, pitch actuator FTC is developed. Fault estimation and discrete-time 710 
controller designs are simultaneously fulfilled using the disturbance compensator. In [127], the additional redundant 711 
pitch, rotor and generator sensors are considered in the proposed controller, to be deployed when fixed/no 712 
corresponding sensor outputs are detected. Recently, adaptive control has been used to deal with the faults, as a 713 
category of the active/passive combination method. Although, it may be dangerous practically, since this method may 714 
mistakenly accommodate faults, for example in critical fault situations, which requires a safety stop of the wind 715 
turbine. Accordingly, if the adaptation laws are designed accurately using expert’s knowledge, the need for CR is 716 
removed to have a simple practical controller similar to passive FTC, and meanwhile, the FDI information is obtained 717 
which can be used to improve the maintenance schedules. On the other hand, no presumed fixed fault sets are needed, 718 
similar to active FTC. In [31, 92] adaptive laws are defined as a part of the proposed controller to be used in the 719 
controller structure and to compensate for the actuator fault effects. In [31] the actuator fault is considered as an 720 
additive bounded disturbance, while in [92], pitch actuator dynamic change, pitch bias and generator torque bias are 721 
considered. To this end, in Table 8 the available FTC techniques are summarized. 722 
6. Discussion and Future studies  723 
Wind turbine FDI and FTC have recently emerged to support reliable wind power generation. Different FDI schemes 724 
are available, which can rely on the accurate modelling, among which fuzzy T-S and LPV are common descriptions. 725 
However, it is always desirable to design FDI schemes for the nonlinear model. Effective fault detection is the main 726 
step in the active FTC, so it should be well matured before practical implementation. This literature survey highlighted 727 
that the focus was on the FDI of the drivetrain and the pitch angle sensors, as these measurements are used in the 728 
feedback control system. Table 5 shows that observer design techniques are often used for sensor FDI. The diagnosis 729 
of pitch actuator and generator faults require FDI techniques outlined in Tables 6 and 7, respectively, which show that 730 
fault observers remain the best solution. Model-based FDI methods applied to the drivetrain are still limited since 731 
signal-based methodologies are mostly exploited. The blade aerodynamic change due to debris build-up and erosion 732 
can be detected more accurately at the farm level, compared to the individual wind turbine scale.  733 

Table 8. Wind turbine FTC techniques. 734 

   Fault Tolerant Control Method 

   
Passive 

Active 

   VSA Approach CR Approach 

F
au

lt
 S

o
u

rc
e 

Sensors 

Pitch sensors 
Fuzzy T-S multimodel and 

fuzzy if-then rule-based 

controller [128]. 

Set-membership approach [87]. 

Residual signal generated via fuzzy T-S 

model [111]. 

Fuzzy T-S residual generation [14]. 

Adaptive extended state observer [3]. 

Robust fuzzy scheduler [112]. 

Multi-observer switching control [122]. 

 

Drivetrain sensors - 

UIO design [132]. 

Set-membership approach [87]. 

Residual signal generated via fuzzy T-S 

model [111]. 

Fuzzy T-S residual generation [14]. 

Fuzzy T-S extended state observer [134]. 

Multi-observer switching control [122]. 

Fuzzy T-S Dynamic Output Feedback 

Controller [131]. 

 

Generator/ 

Convertor sensors 

Fuzzy T-S multimodel and 

fuzzy if-then rule-based 

controller [128]. 

- - 

Pitch actuator 

LPV wind turbine model, 

robust LMI-based 

controller [33, 43]. 

Fuzzy T-S multimodel and 

fuzzy if-then rule-based 

controller  [128]. 

Adaptive PID-based 

controller with Nussbaum-

type function [129]. 

Fuzzy T-S residual generation [14]. 

Fuzzy T-S sliding mode observer [90]. 

Adaptive extended state observer [3]. 

Robust adaptive fault estimation [29]. 

Model predictive controllers and 

Kalman filters are used to identify the 

faults [135]. 

Ziegler- Nichols rules are applied to 

adjust the PI controller parameters 

[130]. 

Robust fuzzy scheduler [112]. 

adaptive sliding mode observer to 

modify traditional PI baseline 

controller [32]. 

Fault estimation via adaptive laws 

within the nonlinear controller [31, 92]. 

Drivetrain - 
Set-membership approach [133]. 

Fuzzy T-S residual generation [14]. 
- 

Generator and Converter 
Fuzzy T-S multimodel and 

fuzzy if-then rule-based 

controller [128]. 

Set-membership approach [87]. 

Fuzzy T-S residual generation [14]. 

Fuzzy T-S sliding mode observer [90]. 

Robust adaptive fault estimation [29]. 

Ziegler- Nichols rules are applied to 

adjust the PI controller parameters 

[130]. 

Fault estimation via adaptive laws 

within the nonlinear controller [31, 92]. 

Aerodynamic characteristic 

change 
- Fuzzy if-then rules at farm level [25]. - 
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The adoption of hardware redundancy is still an effective approach for FDI purposes. On the other hand, the observer 735 
design techniques are significant alternatives. Kalman, H∞, UIO, fuzzy T-S, extended LPV and sliding mode 736 
observers are the main tools, in which the wind estimation is generally needed, especially for drivetrain sensor FDI. 737 
The use of both Kalman and H∞ methods are robustly optimized to minimize the sensor noise effect on the constructed 738 
residual. These methods are usually designed on a linearized model and a threshold logic is required.  Moreover, the 739 
fault isolation task is achieved via fault signature consideration and observer bank design. Regarding the need for 740 
wind speed estimation, the UIO design represents a suitable technique to achieve robust estimation. The wind turbine 741 
states and faults can be estimated simultaneously by using the extended LPV observer with adaptive observer gain. 742 
However, this method is very sensitive to the model accuracy as well as its design parameters. On the other hand, the 743 
fuzzy T-S observer can capture the nonlinear behavior of wind turbines. So, the modelling uncertainty effect on the 744 
observer performance is reduced. However, the expert’s knowledge is needed to be employed to define the proper 745 
fuzzy rules. Finally, the sliding mode observer is applied to the nonlinear model, which represents a viable solution 746 
for practical implementation. However, it is very sensitive to measurement noise and design parameters. The 747 
missed/false fault detection rate is reduced by adopting the set-membership approach in which the threshold need is 748 
removed. Nevertheless, an appropriate computational algorithm is needed. Also, the Bayesian framework can be 749 
utilized to estimate the fault probability, using SCADA data. However, the sample rate of the signals from SCADA is 750 
much too low for general FDI purposes. Neural networks and fuzzy systems are very appropriate for FDI design due 751 
to their robustness against sensor noise, model uncertainties and wind speed variation. However, the training stage 752 
requires a large amount of fault-free data.  753 
For the fault tolerance feature, the VSA approach is more commonly adopted to compensate for the wind turbine 754 
sensor faults. This approach has attracted most of the industrial interest due to its simple implementation. The CR 755 
strategy has been considered for accommodating the wind turbine actuator faults. However, accurate fault information 756 
is needed. In contrast to active FTC, the passive solutions are designed in a conservative manner, to remove the need 757 
for fault detection, and meanwhile to keep the wind turbine working in faulty situations with an accepted performance 758 
level, only in specific considered fault situations. 759 
The mitigation of structural loads is a vital step in the control design before installation as an industrial wind turbine 760 
controller. The main structural loads are blade root bending moments, tower/nacelle bending moments/acceleration  761 
and drivetrain torsion moments [22]. However, most of the designed FTC schemes have been focused on the power 762 
control and satisfying operational objectives [1]. For example, in [68, 137] the blade root moment sensor FDI scheme 763 
is proposed, using Kalman filtering, for the accurate individual pitch control, which, in turn, reduces the blade fatigue 764 
loads. Also, with proper pitch angle regulation, the aerodynamic thrust force can be controlled to reduce the applied 765 
bending moment on the blades [27]. In [20, 111], the fuzzy gained scheduled PI controllers are proposed to remove 766 
the actuator and sensor faults, respectively, while tower-top fore–aft and side-to-side accelerations, deflections, and 767 
moments are investigated and kept at the baseline controller level, which in turn leads to an industrial acceptable 768 
controller. Another promising load mitigation FTC approach is wind farm control to reduce the load on a faulty turbine 769 
with satisfactory overall demanded power generation [124]. In this regard, in [25], using the proportional distribution 770 
algorithm, this objective is met by generator torque correction via FIS, to avoid overloading the remaining healthy 771 
turbines and intense control command. It is shown that the proposed FTC scheme has minimal impact on the structural 772 
loads during fault accommodation. Finally, to lessen the drivetrain torsion, the generator speed can be band-filtered 773 
prior to feeding this signal to the controller, to remove the drivetrain resonant frequency, and consequently, smooth 774 
the drivetrain torsion rate [1]. Also, in [92, 129], the proposed FTC schemes are designed on the reduced drivetrain 775 
torsion trajectory, to guarantee that the drivetrain torsion is kept at the baseline controller level. 776 
Finally, by considering the issues above, future trends on wind turbines FDI and FTC are suggested in the following. 777 
• Expert’s knowledge can be included in the design phase, using soft computing approaches, e.g. fuzzy if-then rules, 778 

neural networks or Bayesian frameworks. 779 
• High-fidelity simulators are required for both wind turbine and wind farm systems. 780 
• More realistic fault scenarios need to be implemented and analyzed. 781 
• Accurate performance analysis, verification and validation tools applied to the developed FDI and FTC strategies 782 

are required. 783 
• The practical implementation of the designed schemes needs to be assessed in experimental-scale wind turbines and 784 

industrial applications. 785 
• Most of the studies have been focused on FDI, rather than FTC design. Moreover, the proposed solutions are mostly 786 

developed for a given operational region of the wind turbine. Accordingly, the focus should be on FTC systems, 787 
since the FDI task is a by-product. Moreover, the requirements of Industry 4.0 lead to consider adaptive and real-788 
time methodologies, working for the whole operational region of the wind turbine. 789 
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• Some faults are better dealt with at the wind farm control level, e.g. blade debris build-up, erosion and slowly 790 
developing faults, but the literature is still scarce. So, new schemes for detection, isolation and accommodation of 791 
faults at the wind farm level should be investigated.  792 

• Some faults, such as the ones affecting the drivetrain, are detected only via signal-based approaches (e.g. vibration 793 
or frequency analysis tools); active schemes should be analyzed for this wind turbine component. 794 

7. Conclusions 795 
In this paper, the most common model-based FDI and FTC techniques for wind turbines and wind farms were outlined 796 
and reviewed, motivated by the need for more reliable wind power generation and lower operational cost. Indeed, 797 
these techniques can improve the wind turbine operation not only in fault-free conditions, but also in faulty situations. 798 
This review paper was prepared in a tutorial fashion to be suitably used for further studies. Firstly, different wind 799 
turbine modelling tools including all possible fault situations are considered. Different FDI methods applied to wind 800 
turbines were introduced and their applications to the most common fault cases were also discussed.  FTC methods 801 
were also outlined as a second step to achieve proper fault tolerance features. Finally, future trends were suggested to 802 
drive further researchers’ studies, which represent viable and effective solutions for industrial applications. 803 
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