Dear author,

Please note that changes made in the online proofing system will be added to the article before publication but are not reflected in this PDF.

We also ask that this file not be used for submitting corrections.
First associated tooth set of a high-cusped Ptychodus (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of northeastern Italy, and resurrection of Ptychodus altior Agassiz, 1835

Manuel Amadori a, Jacopo Amalfitano b,*, Luca Giusberti b, Eliana Fornaciari b, Valeria Luciani c, Giorgio Carnevale d, Jürgen Kriwet e

a Via Pilone 91/A, I-61030 Lucera di Cartoceto, Italy
b Dipartimento di Geoscienze, Università degli Studi di Padova, Via Gradenigo 6, I-35131 Padova, Italy
c Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via G. Saragat 1, I-44100 Ferrara, Italy
d Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy
e University of Wien, Department of Paleontology, Geozentrum, Althanstrasse 14, 1090 Wien, Austria

A R T I C L E I N F O

Article history:
Received 24 May 2018
Received in revised form 17 September 2018
Accepted in revised form 2 October 2018
Available online xxx

Keywords:
Elasmobranchi
High-cusped Ptychodus
Taxonomy
Paleobiogeography
Feeding preferences
Upper Cretaceous

A B S T R A C T

Dental remains of the elasmobranch Ptychodus from the Upper Cretaceous of northeastern Italy are described herein. This material, consisting of two slabs containing a partially associated tooth set and additional detached teeth with similar morphological features, derives from different lithozones of the Scaglia Rossa Formation, known as the ‘lastame’ and ‘Pietra di Castellavazzo’. All of these teeth are characterized by an unusual high and narrow cusp. The tooth set exhibits elements with different morphologies although they are clearly referable to a single taxon. Based on the species-specific characters of the teeth and according to the Principle of Priority of the International Code of Zoological Nomenclature, we propose herein to resurrect the species Ptychodus altior Agassiz, 1835 as a valid taxon that can easily be separated from P. rugosus Dixon, 1850. Moreover, we designate a neotype of Ptychodus altior Agassiz, 1835 since the type series seemingly is lost. Although similarly developed cusps are observed also in the species Ptychodus rugosus Dixon, 1850 and P. whipplei Marcou, 1858, the material described herein is assigned to Ptychodus altior because of the presence of a narrow cusp with smooth lateral cusp faces. The narrow high-cusped morphology characterizing this species probably indicates a different target prey compared to low-crowned congeneric species. Ptychodus altior is solely known from the Turonian-Coniacian of Europe; we review the distribution and paleobiogeography of this species, extending its range to the Angola region. The fossils described herein represent the first record of Ptychodus altior from Italy and significantly contribute to the knowledge of this species and, more generally, of the paleobiodiversity of the genus Ptychodus in the central Tethys area.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Ptychodus Agassiz, 1835 is a Cretaceous elasmobranch genus, belonging to the family Ptychodontidae, whose systematic affinities have been extensively debated up to now and remain controversial. Ptychodontids have been variously interpreted as batoids, hybodontids or, more recently, neoselachian sharks (see Cuny, 2008; Shimada et al., 2009; Shimada, 2012; Brignon, 2015, 2016; Hoffman et al., 2016). Two genera are generally included in this family, namely Ptychodus and Heteroptychodus (Cappetta, 2012). Recently, Hamm (2015) introduced a new genus, Paraptychodus, with the species P. washiatensis, for teeth from the Cretaceous of Texas that previously have been assigned to Ptychodus decurrens.

Ptychodus occurs in Upper Cretaceous marine deposits of North and South America, Europe, Africa and Asia (Cappetta, 2012; Shimada, 2012; Hamm, 2017). Teeth arranged in dental plates in both upper and lower jaws, adapted for crushing or grinding shelled macroinvertebrates (e.g., Kauffman, 1972; Ozanne and

0195-6671/© 2018 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Amadori, M., et al., First associated tooth set of a high-cusped Ptychodus (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of northeastern Italy, and resurrection of Ptychodus altior Agassiz, 1835, Cretaceous Research (2018), https://doi.org/10.1016/j.cretres.2018.10.002
Harries, 2002; Shimada et al., 2009), characterize this durophagous
taxon (Cappetta, 2012; Shimada, 2012; Verma et al., 2012).
Although several associated specimens including skeletal frag-
ments and articulated sets of teeth were previously found
(Williston, 1900; Dibley, 1911; Canavari, 1916; Cigala Fulgosi et al.,
1980; MacLeod, 1982; Shimada et al., 2009, 2010; Hamm, 2010a,b,
2017; Shimada, 2012), the genus Ptychodus is mostly known from
isolated teeth (Cappetta, 2012). The teeth of Ptychodus have
generally a bulky and flat-top cusp rising from a nearly flat and
broad marginal area forming low and broad crowns. A very narrow
and high cusp, conversely, is a character shared by two peculiar
species of Ptychodus, the European P. altior Agassiz, 1835 (Dixon,
1850; Fossa-Mancini, 1921), and the North American P. whipplei
Marcou, 1858 (Lucas and Johnson, 2003; Siverson and Lindgren,
2005; Lucas, 2006). However, Ptychodus altior Agassiz, 1835 is
either regarded as a junior synonym of P. mammillaris Agassiz, 1835
(e.g., Giebel, 1848; Woodward, 1889, 1912; Priem, 1896) or a
phenotypic variation of P. rugosus Dixon, 1850 (e.g., Woodward,
1889, 1912; Leriche, 1906, 1909), for which Leriche (1929) intro-
duced the name “elevatus”. Herman (1977) even considered the
“elevatus” morphotype as a valid distinct species, thus suppressing
de facto the previously instituted name P. altior.

Here, we describe an associated tooth set and additional isolated
specimens of P. altior from the Scaglia Rossa Formation. This ma-
terial represents the first Italian record of this species. The
nomenclature and taxonomy of this high-cusped species are dis-
cussed and we provide evidence that Ptychodus altior Agassiz, 1835
is a valid species. A detailed comparison between this taxon and the
morphologically similar Ptychodus rugosus Dixon, 1850 and
P. whipplei Marcou, 1858 is also presented.

2. The Italian record of high-cusped Ptychodus

In 1818, the Italian naturalist, zoologist, and paleontologist,
Tommaso Antonio Catullo described the first record of Ptychodus
teeth from Italy (Catullo, 1818). Later various authors documented
isolated, associated, and even articulated remains of Ptychodus from
several Italian localities (Lioy, 1865; Bassani, 1876, 1889; De Zigno,
1883; Canavari, 1916; D’Eraso, 1922; Sorbini, 1976; Cigala
recently, remains of Ptychodus from northeastern Italy were re-
ported by Dalla Vecchia et al. (2005), Trevisani and Cestari (2007),
Trevisani (2009, 2011), Roghi (2010), Palci et al. (2013) and
Amaliftano et al. (2017a). However, only sporadic occurrences of
high-cusped Ptychodus teeth have been reported from Italy so far.
Bassani (1886) reported eight teeth from Castellavazzo (Belluno)
referred to an indeterminate species of Ptychodus with a very high
and narrow central cusp and compared them to Ptychodus trigeri
Sauvage, 1878. However, Bassani (1886) pointed out that those
teeth exhibit a smooth crown, thereby resembling those of P. altior
rather than those of P. trigeri. These specimens (Fig. 1) currently are
considered lost.

Sorbini (1978) reported the occurrence of Ptychodus whipplei
from Upper Cretaceous deposits cropping out in the surroundings
of Monte Loffa (S. Anna d’Alfaedo, Verona, north-eastern Italy).
Based on the figures published by Sorbini (1978), it is evident that
he was referring to the associated set of teeth that is described in
detail herein.

3. Geological setting

The Upper Cretaceous hemipelagic deposits of the Scaglia
Rossa Formation of northeastern Italy are generally poor in mac-
rofossils (Giuberti et al., 2005), with the exception of peculiar
lithozones, commercially known as ‘lastame’ and ‘Pietra di Castel-
lavazzo’ (Castellavazzo Stone; Amaliftano et al., 2017c). The
specimens described herein come from these specific stratigraphic
intervals.

The ‘lastame’ is a condensed and nodular/subnodular package
of reddish to whitish limestone, 7–8 m thick, extensively quarried
around Sant’Anna d’Alfaedo (Verona Province), in the Lessini
Mountains (Roghi and Romano, 2009; Trevisani and Cestari, 2007;
Amaliftano et al., 2017a; Fig. 2). According to Lozar and Grosso
(1997), this lithozone (‘lithozone’ 2) spans stratigraphically from
the lower Turonian to the lower Santonian, while other authors
assigned a Turonian-Coniacian age to it (e.g., Cigala Fulgosi et al.,
1980). The fossil content of the Lessiniian ‘lastame’ consists of in-
vertebrates (echinoids, inoceramids, ammonites and rudists) and
rare vertebrate remains, primarily of sharks and subordinately of
rare marine turtles and mosasaurs (e.g., Capellini, 1884; Cigala
1980; Ginevra et al., 2000; Dalla Vecchia et al.,
2005; Trevisani and Cestari, 2007; Roghi, 2010; Palci et al., 2013;
Amaliftano et al., 2017b).

The ‘Pietra di Castellavazzo’ is another condensed interval
within the Scaglia Rossa Formation characterized by relatively
common macrofossils (Bassani, 1886, 1888; Trevisani and Cestari,
2007; Amaliftano et al., 2017c). This lithozone, very similar in
thickness and paleontological content to the ‘lastame’, is exposed in
the surroundings of the village of Castellavazzo (north of Long-
aron, Piave Valley, Belluno; Amaliftano et al., 2017c; Fig. 2). The
‘Pietra di Castellavazzo’ consists of a 6–7-m-thick interval of
nodular micritic limestone, whose color varies from reddish to
grey-greenish (Trevisani, 2011). Thin dark-red clay interlayers
separate the micritic beds (of variable thickness, generally

Fig. 1. High-cusped Ptychodus tooth from Castellavazzo (Belluno) figured by Bassani (1886), probably assignable to P. altior Agassiz, 1835. This specimen is currently lost. Excerpt from Bassani (1886).
10–20 cm; Trevisani, 2011). Based on correlation with the 'lastame', the ‘Pietra di Castellavazzo’ has been referred to early-middle Coniacian (Colleselli et al., 1997; Trevisani, 2011), pending ongoing stratigraphic revisions.

The macrofossil assemblage of the ‘Pietra di Castellavazzo’ consists of chondrichthyans (e.g., Scapanorhynchus subulatus, Crotoxyrhina mantelli, Ptychodus spp.; Bassani, 1886, 1888; Amalﬁtano et al., 2017a), bony fishes (Lepidotes? sp. and Protosphyraena? ferox?; Bassani, 1886, 1888; Amalﬁtano et al., 2017c), ammonites, echinoids, inoceramids and rudists (radiolitids; Trevisani, 2009, 2011). Generally, the fossils are less common compared to that of the ‘lastame’ probably because of the lower number of outcrops (especially quarries) occurring in the Belluno area (Trevisani, 2009, 2011), and in many cases poorly preserved.

4. Materials and methods

The fossils described and figured herein comprise five specimens housed in the Museo di Preistoria e Paleontologia di S. Anna d’Alfaedo (specimen numbers MCSNV v.3994-3995) and the Museo di Geologia e Paleontologia dell’Università degli Studi di Padova (specimen numbers MGP-PD 7344, MGP-PD 14044, MGP-PD 14031, MGP-PD 32066). The specimen MCSNV v.3994-3995 (slab and counterslab of the same associated specimen), currently housed in the Museo Paleontologico e Preistorico di S. Anna d’Alfaedo, actually belongs to the paleontological collections of the Museo Civico di Storia Naturale di Verona and for this reason is catalogued with the acronym ‘MCSNV’. The specimen comes from Monte Loffa, close to the village of S. Anna d’Alfaedo (Verona Province), and were acquired by the museum in 1973 and referred to as Ptychodus whippelii in the museum catalogue. The specimens from the Museo di Geologia e Paleontologia dell’Università degli Studi di Padova are represented by isolated teeth coming from the Castellavazzo quarries (Belluno Province) and an isolated tooth of P. whippelii from Kamp Ranch Formation, Dallas County, Texas (U.S.A.).

The specimens were photographed using a Nikon D810 camera mounting a 60–90 mm lens and a Canon PowerShot SX720 HS camera. The teeth were measured with image analysis software ImageJ (v. 1.47). The tooth surface was coated with ammonium chloride in order to enhance the contrast of morphological crown features (“smoking”; see Amalﬁtano et al., 2017c and Scovil, 1996). This methodology guarantees a uniform coverage and the persistence of surfaces fidelity.

Illustrative drawings and images of the specimens were prepared using the software packages GIMP (v. 2.8.16) and Photoshop CS5 (v.12.0 x32).

A millimetric tungsten carbide spherical drill bit mounted on an electric drill was used to sample the matrix of the specimens MCSNV v.3995, MGP-PD 14044, and MGP-PD 14031. A smear slide, for calcareous nannofossil analysis, has been prepared with the powder obtained from the embedding rock. A small portion of the limestone from MCSNV v.3995 was utilized for preparing a thin section for planktic foraminiferal analysis.

The morphological terminology used herein mostly follows Cappetta (2012), Shimada (2012), and Hamm (2017), with some modifications (see Fig. 3). Open nomenclature follows the standard proposed by Matthews (1973), Bengston (1988) and Sigovini et al. (2016).
5. Results

5.1. Systematic paleontology

Class Chondrichthyes Huxley, 1880
Subclass Elasmobranchii Bonaparte, 1838
Order incertae sedis
Family Ptychodontidae Jaekel, 1898
Genus Ptychodus Agassiz, 1835

Diagnosis. See Woodward (1912).

Ptychodus altior Agassiz, 1835 emended
Figs. 1, 3–11, 13, 14

1822 Ptychodus (sic) whipplei - Sorbini, p. 69, fig. 10.
1850 P. rugosus Dixon 1850 - Cappetta, p. 38, figs. 4I–K.
1858 Ptychodus whipplei - Antunes and Cappetta, p. 106, t. 2, figs. 11a–d (non syn.).
1889 P. elevatus Leriche 1929B - Cappetta, p. 78.
1950 Ptychodus rugosus Dixon 1850 - Guinot et al., p. 594, figs. 3G–L.
1987 Ptychodus rugosus (Dixon, 1850) (sic). Trif and Codrea, p. 8, fig. 2.
1987 P. mammillaris - Fischer et al., p. 14, fig. 2c.

Original type series. The three teeth originally figured by Mantell (1822; Fig. 11) coming from the Chalk of South Downs, southern England, without any indication of the precise locality of finding. We tried to locate the original material in the Mantell’s collection of the Natural History Museum, London (NHMUK), but unfortunately it seems to be lost (Emma Bernard, pers. comm.). For this reason, we designate below a neotype of Ptychodus altior Agassiz, 1835. Neotype. NHMUK PV P28347 (see Figs. 14B–B’), a detached tooth coming from the Chalk of Sussex (southern England) and belonging to the “Dixon Collection”, is designated herein as neotype of Ptychodus altior Agassiz, 1835. This definition meets the qualifying conditions specified in the article 75.3 of the International Code of Zoological Nomenclature (ICZN, 1999). NHMUK PV P28347 (Figs. 14B–B’), housed in Natural History Museum, London, is characterized by an extremely elevated narrow cusp with smooth lateral face (see also Woodward, 1912: p. 232). In occlusal view, the tooth shows a quadratic outline and six apical ridges, which characterize the apex; a concentrical ornamentation covers the thin marginal area. We designate this specimen as neotype owing its completeness and English Chalk provenance from a geographical area close to the type area of the type series. Moreover, the selected neotype exhibits all the morphological characters of Ptychodus altior and it is consistent with the original illustrations of the type series by Mantell (1822). NHMUK PV P28347 has been erroneously reported as NHMUK PV P28247 by Woodward (1922: pl. 48, fig. 7; Fig. 14) and, subsequently, by Cappetta (1987: text figs. 4I–K).

Diagnosis (emended). Symphysial teeth with very high cusps and symmetric, quadratic crown in occlusal view. Cusp with smooth
lateral faces, narrowing towards the apex. Pronounced enameloid folds confined to the apex of the cusp. Fine granulations anterior and posterior to the ridges commonly present. Concentric, thin and rugose ornamentation covering the marginal area of the crown. Lateral teeth differ from symphyseals by having a bilaterally asymmetric cusp. Cusp height decreasing mesio-distally throughout the dental plate. It mainly differs from the morphologically similar high-cusped Ptychodus whipplei Marcou, 1958, by lacking ridges that extend transversally across the entire cusp.

Referred material. An associated tooth set belonging to a single individual, MCSNV v.3994-3995 (Figs. 4–8), and two moderately preserved isolated teeth, MGP-PD14044 (Figs. 9D, D') and MGP-PD14031 (Figs. 9A–C).

Locality and horizon. All the referred specimens come from the Upper Cretaceous Scaglia Rossa Formation. Slabs MCSNV v.3994-3995 were collected from the ‘lastame’ of Monte Loffa in the Lessini Mountains (Verona province, Fig. 2). The isolated teeth MGP-PD14044 and MGP-PD14031 were found in the so-called “Pietra di Castellavazzo” in the surroundings of Longarone (Belluno, Fig. 2). Calcareous nannofossil content of MCSNV v.3994-3995 indicates the UC8-UC9 zones of Burnett (1999). The planktic foraminiferal assemblage is referable to the Dicarinella primitiva/Marginotruncana sigali Zone of the zonal scheme by Coccioni and Premoli Silva (2015). This zone is equivalent to the Marginotruncana schneegansi Zone Auctt. The calcareous plankton biostratigraphic results suggest a middle-upper Turonian age of specimens coming from ‘lastame’ (see Supplementary Table A.1), according to the correlation between calcareous plankton zones and stages by Ogg and Hinnov (2012). Matrix samples from “Pietra di Castellavazzo” were almost devoid of calcareous nanoplankton and the amount of sedimentary rock was inadequate to analyze planktic foraminifera.

Description. The specimen MCSNV v.3994-3995 consists of two slabs that comprise a total of 38 associated teeth of small size. In addition, several tooth fragments and some dental impressions are also preserved on the surface of the two slabs (Figs. 6, 7). The teeth slightly differ from each other in their overall size, height, and...
bilateral asymmetry of the cusps. MCSNV v.3995 contains five teeth that are well exposed on the slab surface. One of them (labeled herein as “MCSNV v.3995α”, Figs. 8A–C) was removed in order to allow detailed morphological observations. Three teeth still embedded in the matrix exhibit a complete crown, whereas a forth one only consists of the cusp (Figs. 4, 5). Moreover, at least four additional fragmentary teeth and several tooth impressions are also recognizable on the slab.

The dental crown of MCSNV v.3995α (Figs. 8A, C′) has a quadratic and symmetrical outline in occlusal view. The tooth exhibits both the characteristically high central cusp and the well-developed marginal area. The mesial and distal marginal areas are bilobate (Figs. 8A, A′) with the posterior marginal lobe (PML; see Fig. 3) being wider and more rounded than the anterior one (AML; see Fig. 3). Fine wrinkles and concentric granulations cover the surface of the marginal area. Both the posterior sulcus and the anterior protuberance are weakly developed. Three ridges, preceded by a weak granulation and followed by evident rugosities, cross transversely the dental apex. The cusp is considerably elevated, with a smooth lateral faces, and is mesio-distally compressed (Figs. 8B–C′). The anterior profile of the cusp is oblique, whereas its posterior profile is vertical. Anteriorly, the base of the crown is thin and arched, with the concavity directed downwards. The crown is covered with enamoid wrinkles. The tooth also possesses remains of the root (Figs. 8C, C′). One of the teeth

Fig. 6. Ptychodus altior Agassiz, 1835 from S. Anna d’Alfaedo, Lessini Mountains, northeastern Italy. Slab MCSNV v.3994, (A) photo and (B) interpretative line drawing, showing several teeth and some impressions of detached teeth (black areas). α = MCSNV v.3994; β = MCSNV v.3994γ; γ = MCSNV v.3994τ; δ = MCSNV v.3994ξ; ε = MCSNV v.3994ζ; η = MCSNV v.3994; ι = MCSNV v.3994κ; λ = MCSNV v.3994μ; µ = MCSNV v.3994ν. Scale bars equals to 20 mm.
preserved on slab MCSNV 3995 is much smaller and bilateral asymmetric compared to MCSNV v.3995, also showing a well-developed distal marginal area and a low and slightly pointed cusp.

The slab MCSNV v.3994 comprises 33 teeth, most of which are damaged with the root being almost never preserved (Fig. 6). Some of the preserved teeth in MCSNV v.3994 exhibit a marked bilateral asymmetry and two of them are also very small in size (e.g., MCSNV v.3994; Figs. 6, 7). The associated teeth are similar in size although the height of the cusps displays some variability (see Table 1 and Fig. 7). The tooth MCSNV v.3994 (Fig. 6) has a bilobate root.

Three teeth, still associated, have been detached from the slab (Figs. 8D–H). This tooth association comprises a well-preserved tooth (labeled herein “MCSNV v.3994”, Figs. 8F–H), a single dental cusp (Figs. 8D, E) and a bilaterally asymmetric fragmentary tooth (Fig. 7E). The tooth MCSNV v.3994 (Figs. 8F–H) is very similar in size and overall morphology to MCSNV v.3995.
Fig. 8. Dental remains of Ptychodus altior Agassiz, 1835. Detached teeth from slabs MCSNV v.3994 (D-H') and MCSNV v.3995 (A-C'); Specimens documented by color photos (A−H) and photos after ‘smoking’ treatment (A'−C', F'−H'). Overview of the associated teeth of the specimen MCSNV v.3994 (D, E); Occlusal (F, F'), lateral (G, G') and anterior (H, H') views of MCSNV v.3994 a. Occlusal (A, A'), lateral (B, B') and anterior (C, C') views of NHMVR-3995a. Scale bars equals to 5 mm. (For interpretation of the references to color/colour in this figure legend, the reader is referred to the Web version of this article.)
(Figs. 8A–C'), although notably asymmetric. Moreover, MCSNV v.3994z has the mesial marginal area more developed than the distal one (Figs. 8F, F', H, H'). See Table 1 for tooth measurements.

Specimen MGP-PD 14044 (Figs. 9D, D') from Castellavazzo (Belluno) consists of an isolated and incomplete tooth, solely represented by the apical part of the cusp, still partially embedded in the matrix. This tooth, rather abraded, exhibits two ridges limited to the apex of the cusp, whose extremities only are visible. MGP-PD 14031 (Figs. 9A, C') is a laterally compressed tooth, which consists of a thin and high cusp, whose basal portion is embedded in a thin matrix layer. Six feebly pronounced ridges limited to the apex characterize the asymmetric cusp. The lateral and posterior faces of the cusp are completely smooth, whereas the anterior face of the cusp displays faint granulations (Figs. 9C, C'). Posteriorly, the crown profile is perpendicular to the horizontal axis of the tooth, whereas the anterior profile is much more inclined.

Remarks. The tooth labeled MCSNV v.3995z (Figs. 8A–C') has a symmetric and high crown, and possibly represents a symphyseal tooth (Fig. 10S). MCSNV v.3994z (Figs. 8F–H') represents a lateral tooth (Fig. 10L), because of the asymmetric development of its marginal area. MCSNV v.3994f (Figs. 6, 7) is the smallest tooth of the set and is considerably bilaterally asymmetric; it probably occupied one of the outer rows of the dental plate. The other teeth are too fragmentary to confidently establish their position within the jaws. There is no evidence of the upper symphyseal teeth. The different heights of the many teeth along with their similar size may indicate the presence of both lower and upper jaw teeth (Fig. 7). MGP-PD 14044 (Figs. 9D, D') is too fragmentary to identify its original position within the dental plate. The cusp MGP-PD 14031 (Figs. 9A–C') is asymmetric, probably because this tooth occupied one of the lateral rows of the dental plate.

As mentioned above, on both slabs MCSNV v.3994–3995, several teeth are broken or only poorly preserved (Figs. 4–7). In his description of Ptychodus altior sensu Agassiz, 1835, Dixon (1850) assumed that a direct relationship exists between the reduced thickness of the enamloid layer and occurrence of damaged teeth. Several specimens from the Upper Chalk of England, housed in the Natural History Museum, London, display damaged enamloid and seem to support Dixon's assumption. Several detached teeth coming from two tooth sets housed in the Naturhistorisches Museum, Wien (NHMW) exhibit morphologies that are fully consistent with the lateral and symphyseal teeth described herein; the only difference is their much smaller size (one third as wide in average) compared to those preserved on the slabs MCSNV v.3994–3995. Such difference in size could be an indication of different ontogenetic stages, pending further findings of associated or articulated tooth sets of this poorly known species.

Nomenclatural notes. High-cusped Ptychodus teeth with smooth cusp faces were figured for the first time by Gideon Mantell (1822; pl. 32, figs. 17, 21, 27; Fig. 11) based on material collected from the English Chalk of South Downs. Subsequently, Agassiz (1835, p. 54) introduced the species Ptychodus altior, referring explicitly to the
Symphyseal (S) and lateral (L) teeth; reconstruction based on MCSNV v.3994. P. altior (Brignon, 2015: p. 14). After the publication of the clature (ICZN Code, 1999, names published before 1931), 1835 must therefore, according to Article 12.2.7 of the Code of Zoological Nomenclature, be considered a junior synonym of Ptychodus mammillaris Agassiz. However, according to Dixon (1850), Ptychodus altior represents a "very characteristic species". The specimen figured by Dixon (1850: pl. 30, fig. 10; Fig. 13E), which is fully consistent with the specimens described herein, is probably NHMUK PV P49851 (Figs. 13A–D), currently part of the "Capron Collection" housed in the Natural History Museum, London. This specimen is also very similar to the three teeth originally figured by Mantell (1822) and assigned to P. altior by Agassiz (1835). Woodward (1889, 1912) considered P. altior sensu Dixon (1850) to be a phenotypic variation of P. rugosus Dixon 1850, and figured two examples exhibiting the peculiar high-cusped morphology in his 1912 publication (Fig. 14). Since then, most authors followed this interpretation and Leriche (1906, 1909) used the name "altior" to indicate a variety of P. rugosus with elevated cusp and smooth lateral cusp faces. The same author later renamed this peculiar morphotype and introduced the name "elevatus" for it (Leriche, 1920). Since Dixon (1850), P. altior was mentioned as a valid species solely by Fossa-Mancini (1921: p 209). Herman (1977) considered the "morphotype" elevatus as a separate and valid species (Ptychodus elevatus), returning to the initial Ptychodus altior concept of Dixon (1850) and Agassiz (1835). Finally, Cappetta (2012) used the specific name elevatus for Ptychodus teeth characterized by a high and narrow cusp. According to the Article 23.1 of the International Code of Zoological Nomenclature (ICZN Code, 1999), the valid name of a taxon is the oldest available name. As a consequence, we consider Ptychodus elevatus Herman 1977 as a junior synonym of Ptychodus altior Agassiz, 1835.

6. Discussion

6.1. Comparison with similar species

As discussed above, several authors assigned Ptychodus teeth with high cusps and smooth faces to the species P. rugosus (e.g., Woodward, 1912; Hamm, 2010b). Priem (1896) interpreted the small and narrow teeth formerly referred to P. altior as pertaining to the upper symphyseal row of P. rugosus. This hypothesis is, however, not acceptable since the upper symphyseal teeth of P. rugosus (Figs. 15B, B') are characterized by a scarcely developed or almost absent cusp (Case, 1990; Hamm, 2010a, b). Moreover, as evidenced herein, both specimens MCSNV v.3994-3995 comprise bilateral asymmetric (lateral, Figs. 8F–H', 10L) as well as symmetric (symphyseal, Figs. 8A–C, 10S) teeth and both of them are notably...
different from those characteristic of *Ptychodus rugosus* (e.g., Hamm, 2010b; MGP- PD 7344, Figs. 15A–A’).

Woodward (1912) hypothesized that the *Ptychodus altior* morphology might belong to immature specimens of *P. rugosus* Dixon (1850). Later, other authors (e.g., Leche, 1929) accepted the opinion of Woodward (1912), based on some similarities between the teeth of *P. altior* and *P. rugosus*, as for example the presence of ridges confined to the cusp apex, which occur only in these two taxa (Figs. 7, 14A–A’). Moreover, the stratigraphic ranges of the two taxa are partially overlapping. *Ptychodus altior* seems to be restricted to the interval Turonian-Coniacian (Leche, 1929; Herman, 1977), whereas *P. rugosus* ranges from the Coniacian to the Santonian (Herman, 1977; MacLeod, 1982; Hamm, 2010b).

Furthermore, the central teeth of *P. rugosus* have more rounded and large cusps (Figs. 15A–A’), whereas those of *P. altior* (Figs. 8A–C) and their lateral marginal areas are never bilobate (see Hamm, 2010b).

High cusps similar to those of *Ptychodus altior* (e.g., Fig. 8) are also present in the North American species *P. whippele* (Figs. 15C–C’, D–D’). *Ptychodus whippele* is characterized by narrow and high tooth cusps, which are nearly cylindrical in cross section, unlike those of other *Ptychodus* species, which have a more oval or conical cusp cross section (see Lucas, 2006). The two species, however, can be easily separated based on different ridge morphologies and distributional pattern since *P. whippele* has ridges that extend transversally across the entire cusp (Figs. 15C–C’, D–D’; see also Williston, 1900).

6.2. Possible dietary preference of Ptychodus with high and narrow-cusped teeth

The wide and flat molariform teeth of *Ptychodus* (e.g., *P. decurrens*, *P. latissimus* and *P. polygyrus*) are commonly regarded as durophagous feeding adaptations and benthic, thick-shelled macroinvertebrates are traditionally considered target preys of *Ptychodus* (e.g., Compagno, 2002; Everhart and Caggiano, 2004; Everhart, 2005; Cappetta, 2012; Shimada, 2012; Kolmann et al., 2014). A few possible lines of evidence supporting this assumption are represented by putative tooth marks on inoeramid bi-valves (Kaufman, 1972). Stewart (1988) also reported some *Ptychodus* teeth found associated with presumed remains of inoeramid bivalves and fragments of cirriiped crustaceans. The peculiar cusp morphology shared by *P. altior* and *P. whippele* (see above) may be related to peculiar target preys, possibly different from those of the other congeneric species. Cappetta (2012) therefore suggested that the narrow-cusped species *Ptychodus whippele* and *P. elevatus* (= *P. altior*) probably preyed mostly on thin-shelled invertebrates (e.g., ammonites). However, there is no direct evidence of predator-prey relationships between *Ptychodus* and any invertebrate yet. Shimada et al. (2009) hypothesized an alternative diet for *Ptychodus occidentalis* based on articulated specimen exhibiting laterally narrow dentitions with high-crowned teeth. According to Shimada et al. (2009), the dentition could have also had a grabbing function in although the dental plates of this species were suitable for crushing. The species *P. occidentalis* may have been an opportunistic generalist, which occasionally preyed on crustaceans and mollusks that not necessarily were protected by hard shell (Shimada et al., 2009).

In addition, several extant chondrichthyan with relatively narrow and cusped teeth feed on thin-shelled prey (see Talent, 1982; Wilga and Motta, 2000; Compagno et al., 2005; Shimada et al., 2009; Mara et al., 2010; Herbert and Motta, 2018). For example, the bonnethead shark (*Sphyrna tiburo*) the high-cusped anterior teeth are relatively small and narrow and are used for grasping, while the posterior molariform teeth are suitable for crushing and processing food (Wilga and Motta, 2000; Mara et al., 2010). Smooth-hound sharks (*Mustelus* spp.) have rounded cusped

Fig. 12. Teeth assigned by Agassiz (1838: t. 25b, figs. 9, 10) to *Ptychodus altior*, figured in the third volume of “Recherches sur les poissons fossiles”, subsequently re-determined by other authors as *P. mammillaris*. Excerpt from *Agassiz (1838)*. A, occlusal view; A’, B, lateral view.

Fig. 13. NHMUK PV P49851, specimen of *Ptychodus altior* *Agassiz, 1835* belonging to the “Capron Collection” (associated to another tooth). A, occlusal view; B, lateral view; C, anterior view; D, posterior view. It probably corresponds to the specimen (E) originally figured by Dixon (1850: t. 30, fig. 10). Scale bars equals to 10 mm. Fig. 13 E is an excerpt from Dixon (1850).
Fig. 14. Teeth of Ptychodus altior Agassiz, 1835. Specimens NHMUK PV P4428 (A, A0) from the “Mantell Collection” and NHMUK PV P28347 (B, B0) from the “Dixon Collection”. NHMUK PV P28347 (B, B0) is designated herein as neotype of Ptychodus altior Agassiz, 1835. Woodward (1902: t. 48, figs. 6–7b) originally figured both these teeth, and referred them to Ptychodus rugosus. 6, 7 = occlusal view; 6a, 7a = posterior view; 6b, 7b = lateral view. Scale bar equals to 10 mm.

Table 1

Measurements of the teeth of Ptychodus altior, MCSNV v.3995z and MCSNV v.3994a: see Fig. 8. MCSNV v.3994j, MCSNV v.3994y, MCSNV v.3994$, MCSNV v.3994c, MCSNV v.3994u, MCSNV v.3994$, MCSNV v.3994h, MCSNV v.3994w, MCSNV v.3994 and MCSNV v.3994u: see Fig. 6, 7. MCSNV v.3995j and MCSNV v.3995y: see Fig. 4. CRH = Crown height; CRW = Crown width; CRL = Crown length; CUH = Cusp height; CUW = Cusp width; CUL = Cusp length.

<table>
<thead>
<tr>
<th>Tooth</th>
<th>CRH</th>
<th>CRW</th>
<th>CRL</th>
<th>CUH</th>
<th>CUW</th>
<th>CUL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCSNV v.3994z</td>
<td>~10 mm</td>
<td>~18 mm</td>
<td>~14 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994h</td>
<td>~14 mm</td>
<td>~13 mm</td>
<td>~14 mm</td>
<td>~14 mm</td>
<td>~11 mm</td>
<td>~7 mm</td>
</tr>
<tr>
<td>MCSNV v.3994$</td>
<td>~10 mm</td>
<td>~13 mm</td>
<td>~12 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994c</td>
<td>~10 mm</td>
<td>~12 mm</td>
<td>~12 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994u</td>
<td>~10 mm</td>
<td>~12 mm</td>
<td>~13 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994$</td>
<td>~7 mm</td>
<td>~10 mm</td>
<td>~11 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994h</td>
<td>~12 mm</td>
<td>~10 mm</td>
<td>~13 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994$</td>
<td>~8 mm</td>
<td>~11 mm</td>
<td>~12 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994c</td>
<td>~14 mm</td>
<td>~13 mm</td>
<td>~13 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994u</td>
<td>~14 mm</td>
<td>~13 mm</td>
<td>~13 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994$</td>
<td>~12 mm</td>
<td>~13 mm</td>
<td>~13 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.3994u</td>
<td>~7 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~4 mm</td>
<td>~3 mm</td>
<td>~7 mm</td>
</tr>
<tr>
<td>MCSNV v.3995z</td>
<td>~12 mm</td>
<td>~13 mm</td>
<td>~14 mm</td>
<td>~10 mm</td>
<td>~6 mm</td>
<td>~11 mm</td>
</tr>
<tr>
<td>MCSNV v.3995y</td>
<td>~10 mm</td>
<td>~18 mm</td>
<td>~13 mm</td>
<td>~6 mm</td>
<td>~4 mm</td>
<td>~11 mm</td>
</tr>
<tr>
<td>MCSNV v.3995z</td>
<td>~9 mm</td>
<td>~12 mm</td>
<td>~12 mm</td>
<td>~8 mm</td>
<td>~9 mm</td>
<td>~12 mm</td>
</tr>
<tr>
<td>MCSNV v.14044</td>
<td>~5 mm</td>
<td>~4 mm</td>
<td>~7 mm</td>
<td>~5 mm</td>
<td>~4 mm</td>
<td>~7 mm</td>
</tr>
<tr>
<td>MCSNV v.14031</td>
<td>~5 mm</td>
<td>~4 mm</td>
<td>~7 mm</td>
<td>~5 mm</td>
<td>~4 mm</td>
<td>~7 mm</td>
</tr>
</tbody>
</table>
Fig. 15. Teeth of high-cusped Ptychodus. Central rows tooth (MGP-PD-7344; A, occlusal view; A', anterior view; A'', lateral view) of Ptychodus rugosus from the Santonian of Valdagno (Vicenza province, Northern Italy); scale bars equals to 10 mm. Upper symphyseal tooth of Ptychodus rugosus (B, occlusal view; B', lateral view) belonging to an associated tooth set (NHMUK PV P61143-49), Sussex (English Chalk); scale bars equals to 5 mm. FHSM VP-18451 (C, occlusal view; C', lateral view; C'', anterior view) ascribed to Ptychodus whipplei, Northern Kansas (U.S.A.) and housed in Fort Hays State University’s Sternberg Museum of Natural History (FHSM); scale bars equals to 5 mm. MGP-PD 32066 (D, occlusal view; D', lateral view; D'', anterior view; D''', posterior view; D'''' inferior view) ascribed to Ptychodus whipplei coming from Kamp Ranch Fm., Dallas County, Texas (U.S.A.).
teeth as well and feed on crustaceans (Compagno, 1984; Rountree and Able, 1996). Moreover, some Rajidae, such as Dipturus chilensis and Bathyrhaja brachyurus, or Potamotrygonidae, such as Potamotrygon motoro, grasp its prey’s (e.g., crustaceans) using their narrow-cusped teeth (Bellezza et al., 2008; Koen Alonso et al., 2001; Shibuya et al., 2012). Although these extant chondrichthyanas and Psychodus altior are not closely related, some of the dental characters shared by most of them may indicate similar diet preferences. Indeed, the peculiar dental morphology with narrow-cusped teeth in P. altior suggests a grasping function.

Nevertheless, based on the marked abrasion patterns observed on occlusal surfaces of some of the teeth described here (see for example Fig. 9 D, D’) and on those observed on teeth housed in the collections of the museums of London and Vienna, it is evident that P. altior was able to crush and fragment its prey.

Therefore, it is possible that within the genus Psychodus generalists (e.g., P. altior and P. occidentalis) and specialists (e.g., P. mortoni, see Shimada, 2012; P. latissimus and P. polygyrus) evolved probably to minimize competition. Psychodus altior may represent a peculiar evolutionary lineage, in which new feeding adaptations evolved, with a dental morphology more similar to a mixed grinding/grasping-type dentition, in analogy with some extant rays or sharks that target mostly crustaceans (see above).

6.3. Distribution and paleobiogeography

Most specimens referred to Psychodus altior come from the Upper Cretaceous English Chalk (e.g., Kent, Sussex, Surrey; Dixon, 1850; Mantell, 1822; Woodward, 1889, 1912). The Chalk of Sussex, England (see Mantell, 1822) also provided the original type series on which Agassiz (1835) based this species (see also Brignon, 2015). Reuss (1845) and Fischer et al. (2017) described some teeth belonging to P. altior from Germany, erroneously referred to as P. mammillaris. Several other isolated teeth from Germany are housed in the collections of the Naturhistorisches Museum, Wien. Material referred to P. altior also occurs in Turonian deposits of northwestern France (Priem, 1898; Leriche, 1902, 1906, 1929; Guinot et al., 2013), and two teeth from the Coniacian of Belgium (Malsères Chalk Fm) were described and figured by Herman (1977). More recently, an isolated tooth, attributable to P. altior was described from the Upper Cretaceous of Romania (Trif and Codrea, 2017). The Late Cretaceous configuration of Europe as an archipelago (see Dalla Vecchia et al., 2005; Martin and Delfino, 2010; Scosphate, 2014) probably promoted the broad distribution of Psychodus altior in this area. Antunes and Cappetta (2002: figs. 11a–d) described and figured a single tooth, assigned to P. whipplei but clearly attributable to P. altior, from Angola, which currently is the only record of this species outside Europe. The presence of a “Trans-Saharan Seaway” (Scosate, 2014) could have constituted a passage between southern Europe and Angola region.

7. Concluding remarks

The Late Cretaceous elasmobranch Psychodus altior had a dominantly European distribution with the exception of a single record from Angola (Africa). All records indicate that the stratigraphic range of the species is confined to the Turonian-Coniacian and the micropaleontological analyses of the sedimentary rock sample obtained from the matrix of MCSNV v.3995 are consistent with this datum. According to the International Code of Zoological Nomenclature (ICZN Code, 1999), Psychodus altior Agassiz, 1835 must be considered valid and consequently represents a senior synonym of P. elevatus Herman, 1977. The presence of MCSNV v.3994–3995 in the Lessini Mountains area represents the first associated occurrence of this species in Italy providing new information about its dental pattern (e.g., the narrow teeth of P. altior do not represent upper symphyle teeth as previously hypothesized). The Italian specimens are similar, but still clearly different from the teeth of Psychodus rugosus and P. whipplei. The different size of Italian specimens and those housed at the Natural History Museum of Wien may be an indication of different ontogenetic stages. The narrow high-cusped morphology characterizing Psychodus altior and P. whipplei probably indicates a different target prey compared to low-crowned Psychodus species.

Author contributions

Manuel Amadori conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the paper, prepared figures and/or tables, approved the final draft.

Jacopo Amalfitano conceived and designed the experiments, performed the experiments, analyzed the data, authored or reviewed drafts of the paper, prepared figures and/or tables, approved the final draft.

Luca Giusberti conceived and designed the experiments, performed the experiments, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, approved the final draft.

Eliana Fornaciari performed the micropaleontological analyses, analyzed the data, contributed reagents/materials/analysis tools, authored or reviewed drafts of the paper, prepared supplementary tables, approved the final draft.

Valeria Luciani performed the micropaleontological analyses, analyzed the data, authored or reviewed drafts of the paper, prepared supplementary tables, approved the final draft.

Giorgio Carnevale authored or reviewed drafts of the paper, approved the final draft.

Jürgen Kriwet authored or reviewed drafts of the paper, approved the final draft.

Uncited reference

Geinitz, 1875, Woodward and Sherborn, 1890.

Acknowledgements

This paper is dedicated to Anna Vaccari (curatorial technician of the paleontological section of the Museo Civico di Storia Naturale di Verona), taken from us too soon.

The authors deeply thank Elisa Marchesini (Associazione Culturale Officina 3; Museo Paleontologico e Preistorico di S. Anna d’Alfaedo), Roberto Zorzin (Museo Civico di Storia Naturale di Padova) for accurate photographic documentation and information about its dental pattern (e.g., the narrow teeth of P. altior do not represent upper symphyle teeth as previously hypothesized). The Italian specimens are similar, but still clearly different from the teeth of Psychodus rugosus and P. whipplei. The different size of Italian specimens and those housed at the Natural History Museum of Wien may be an indication of different ontogenetic stages. The narrow high-cusped morphology characterizing Psychodus altior and P. whipplei probably indicates a different target prey compared to low-crowned Psychodus species.

Please cite this article in press as: Amadori, M., et al., First associated tooth set of a high-cusped Psychodus (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of northeastern Italy, and resurrection of Psychodus altior Agassiz, 1835, Cretaceous Research (2018), https://doi.org/10.1016/j.cretres.2018.10.002
(Progetto di Ateneo CPDA159701/2015 titled ‘Reappraisal of two key Fossil-Lagerstätten in Scaglia deposits of northeastern Italy in the context of Late Cretaceous climatic variability: a multidisciplinary approach’, assigned to Eliana Fornaciari).

References

Bengston, P., 1989. Food habits of the broad nose skate, Bathyraja bra- tional approach the context of Late Cretaceous climatic variability: a multidisci-

Herbert, A.M., Motta, P.J., 2018. Biomechanics of the jaw of the durophagous bon-

Oxyrhina Mantelli

Agassiz, 1835 and

Oxyrhina Mantelli

www.iczn.org/code

Herzog, M.J., Caggiano, T., 2004. An associated dentition and calci-

Mammalius susscus to Eliana Fornaciari).

Talent, L.C., 1982. Food habits of the grey smoothhound, Mustelus californicus, the brown smoothhound, Mustelus henlei, the shovel-nose guitarfish, Rhinobatos productus and the bat ray, Myliobatis californica, in Elkhorn slough, California. California Fish Game 68, 224–234.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cretres.2018.10.002.