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Abstract

Blind deconvolution algorithms prove to be effective tools for fault identification, being able to extract excitation
sources from noisy observations only. In this scenario, the present paper introduces a novel blind deconvolution
method based on the generalized Rayleigh quotient and solved by means of an iterative eigenvalue decomposition
algorithm. This approach is characterized by a weighting matrix that drives the deconvolution process, whereby it
can be easily adapted to arbitrary criteria. Based on this framework, a novel criterion rooted on the cyclostationarity
maximization of the excitation – as typically encountered with machine faults – is proposed and compared with other
blind deconvolution methods existing in the literature. The comparisons involve both synthesized and real vibration
signals, taking into account a gear tooth spall and an outer race bearing fault. The results reveal superior capability to
recover impulsive cyclostationary sources with respect to other blind deconvolution methods, even in the presence of
impulsive noise or under non-constant speed.
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1. Introduction

The identification of impulsive faults is of major importance in the diagnosis of rotating machines, especially for
gears and bearings which usually are the most critical components in many mechanical systems. The impulsive fault20

identification can be difficult, particularly in the early stage, since the impulsive pattern due the fault occurrence is
often masked by background noise and other interferences. The situation is further worsen by the spreading effect
of the unknown transmission path. For this purpose, blind deconvolution (BD) techniques can recover the impulsive
pattern from noisy observations, even considering the effect of a unknown linear time-invariant system.

In the field of seismic signal processing, Wiggins [1] pioneered BD by developing an iterative algorithm based25

on the maximization of the kurtosis (called Varimax in his paper) in order to recover a spike-like source from a sig-
nal convolved with an unknown impulse response function (IRF). In the same field, Cabrelli [2] proposed another
criterion, called D-Norm, geometrically equivalent to the Varimax norm, which poses a direct solution to BD. This
method has been recently refined by McDonald and Zhao [3]. In the literature, these BD methods are known as
minimum entropy deconvolution (MED) and optimal minimum entropy deconvolution adjusted (OMEDA), respec-30

tively. Other authors explored higher-order statistics as well as different optimization algorithms. Lee and Nandi [4]
analyzed the performance of BD via higher-order statistics considering impacting signals from a vibrating cantilever
beam. The same authors [5] demonstrated also that the objective function method (OFM), that has been exploited in
MED and OMEDA, and the eigenvalue algorithm (EVA) give equivalent results considering the same experimental
measurements. Another statistics that combines both skewness and kurtosis (called Jarque-Bera statistic) has been35

investigated by Obuchowski et al. [6] for the gear fault identification.
Among all these blind deconvolution methods, MED has been the most commonly used for machine fault identifi-

cation. MED has been typically exploited in combination with other signal processing techniques in order to improve
its performances for machine diagnosis since it recovers preferably a large single peak rather than train of impulses, as
typically encountered with machine faults. Regarding the tooth fault detection, Endo and Randall [7] exploited MED40

in order to improve the gear fault detection based on auto-regressive (AR) models. This method has been further
investigated by Endo et al. [8] for discriminating a gear tooth spall from a cracked tooth. A similar approach has
been proposed by Sawalhi et al. [9] with regard to bearing fault diagnosis, taking advantage of the envelope spectrum
driven by maximum spectral kurtosis. In a different way, the spectral kurtosis has been exploited also by He et al. [10]
in order to extract multiple bearing faults.45

The need of criteria dedicated to machine diagnosis led to the introduction of the correlated kurtosis and the Multi-
Point D-Norm. The maximum correlated kurtosis deconvolution (MCKD), has been introduced by McDonald et al.
[11] whereas the multipoint optimal minimum entropy deconvolution (MOMEDA), has been proposed by McDonald
and Zhao [3]. Both the criteria try to enhance the vibration signal impulsiveness linked to a specified fault period
overcoming the tendency of MED and OMEDA to recover a single dominant impulse.50

Although the pivotal role of cyclostationarity in machine diagnosis has been widely recognized [12], it has not
yet been applied explicitly in BD criteria for machine fault identification. In this scenario, just one cyclostationary
criterion can be found in the literature devoted to vibration-based fault diagnosis, i.e. the MCKD [11], while the
others are based on extracting the most impulsive contribution (MED [1] and OMEDA [2]) or a periodic impulse train
(MOMEDA [3]). Despite MCKD is a cyclostationary criterion, it has been proposed empirically, without explicit55

mention of cyclostationarity. Moreover, the criterion at the base of MCKD (called correlated kurtosis) entails some
disadvantages that limit its use in many real applications. Therefore, this research work tries to fill this gap proposing
a simpler and more efficient criterion grounded on the cyclostationary framework.

A preliminary overview about standard BD criteria is given, pointing out some original considerations highlighting
advantages and limits. In particular, with regard to MED, the relationship between kurtosis and differential entropy60

is clarified. OMEDA and MOMEDA have been reviewed providing an original interpretation connecting the non-
iterative solutions of these two methods to (linear) least square solutions. Concurrently, a qualitative justification of
why MCKD is based on a cyclostationary criterion is provided as well. Then, an iterative eigenvalue algorithm for BD
of single-input-single-output (SISO) systems based on the generalized Rayleigh quotient is presented as well as its
version for single-input-multi-output (SIMO) systems. This algorithm differs from the EVA introduced by Jelonnek65

et al. [13] by the fact that it’s not restricted to the use of fourth-order (cross) cumulants. Furthermore, the deconvo-
lution is guided by a weighting matrix that can be easily modified adapting the deconvolution algorithm to arbitrary
criteria. The proposed BD method has been formulated considering the higher-order statistics maximization and con-
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sequently the cyclostationarity maximization through the indicators of cyclostationarity (ICS). The latter formulation
represents the core of this paper since it is the very original part of this research. The BD method based on the70

maximization of the second-order cyclostationarity, called CYCBD, is formulated for time-dependent signals and for
angle-dependent signals, particularly useful for rotating machine diagnosis considering non-constant regimes. The
CYCBD performances are compared with other BD methods, taking into account five cyclostationary synthesized
signals. The simulated results demonstrate the capability of CYCBD to recover impulsive cyclostationary sources
at constant and non-constant regimes. In support of the simulated results, two applications have been investigated75

regarding the identification of a gear tooth spall and an outer-race bearing fault. The experimental results highlight
the capability of CYCBD to identify localized faults exhibiting cyclostationary behavior. In particular, the criterion
maximized by the CYCBD (i.e. ICS 2) proves to be a robust and sensitive indicator in terms of early fault detection
and identification.

The paper is organized as follows: the overview of common BD methods is presented in Section 2 including also80

some original interpretations; the proposed algorithm is introduced and explained in Section 3 providing also criteria
based on higher-order statistics as well as on cyclostationarity indicators; Section 4 deals with the validation by means
of simulated signals; Section 5 concerns the validation using real signals supported by an extended comparison with
other BD methods; Section 6 gives the final remarks.

2. Overview about blind deconvolution techniques for machine diagnosis85

This section provides the general formulation of (SISO) BD and a more specific formulation for rotating machine
applications. Moreover, a general explanation of common BD algorithms used in rotating machine diagnosis is given,
providing some original interpretations of these methods.

2.1. Problem statement
In general, BD aims to recover – i.e. deconvolve – an input signal s0 from a noisy observed signal x, viz:

s = x ∗ h = (s0 ∗ g) ∗ h ≈ s0 (1)

where g is the unknown impulse response function (IRF), h is the inverse filter (from now assumed to be a FIR filter),
s is the estimated input and ∗ refers to the convolution operation. Note that bold lowercase letters refer to vectors
whereas bold capital letters refer to matrices. A convenient way to express the convolution for discrete signals in
matrix form is:

s = Xh (2a)
s[N − 1]

...
s[L − 1]

 =


x[N − 1] · · · x[0]

...
. . .

...
x[L − 1] · · · x[L − N − 2]




h[0]
...

h[N − 1]

 (2b)

where L and N are the total samples of s and h, respectively. Such expressions will be widely recalled in the next90

sections.
According to the scheme proposed in Refs. [7, 11] valid for vibration signals belonging to gearboxes, the observed

signal in Eq. (1) can be rearranged as summarized in Fig. 1. The measured signal x is assumed to be composed of:
an impulsive part s0 due to a localized fault, a pure periodic component p (e.g. related to the gear mesh) and Gaussian
background noise n, such that:

x = s0 ∗ gs + p ∗ gp + n ∗ gn (3)

where gs, gp and gn are the IRFs related to s0, p and n, respectively. Substituting Eq. (3) into Eq. (1), the mathematical
formulation of BD in the context of diagnostics is given by:

s =
(
s0 ∗ gs + p ∗ gp + n ∗ gn

)
∗ h ≈ s0 (4)

where, in practice, s0 represents the excitation force due to an incipient fault. Thus, in this context, BD aims to
estimate h such as to recover s0 linked to a machine faults minimizing the other contributions, i.e. p and n.
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Fig. 1: General scheme of blind deconvolution for mechanical system diagnostics.

The assumptions of the mathematical problem in Eq. (4) are: the samples of s0 are independent identically
distributed random variables having a distinctive statistical property (e.g. impulsiveness), g is a stable Linear Time95

Invariant system and the stationary Gaussian noise, n, and the periodic contribution, p, are additive and do not share
the same characteristics of s0. As it is, the problem is ill-posed since the IRFs – namely gs , gp, gn – are not available.
However, an estimation of the solution can be achieved considering an arbitrary criterion that imposes an expected
solution based on a prior assumption, e.g. assuming a certain statistical property is met by the desired estimated
source. It should be noted that many BD methods are amplitude invariant, i.e. do not recover the actual source100

magnitude. However, BD deconvolution methods can provide useful information in terms of waveform, extracting a
desired source that exhibits a certain statistical behavior.

2.2. Blind deconvolution algorithms for machine diagnosis
In the following section, four BD methods commonly used in the field of vibration-based machine diagnosis are

briefly presented and discussed.105

2.2.1. Minimum Entropy Deconvolution
The MED algorithm has been firstly introduced by Wiggins [1] in seismic applications, exploiting the kurtosis

maximization in order to recover an impulse-like estimation of the source. A criterion based on kurtosis maximization
represents a very reasonable choice also in machinery diagnostics since the kurtosis is widely used as a general purpose
indicator for fault identification in bearings and gears.110

With reference to Eq. (1), the method provides an estimation of s0 (and h) given x which maximizes the following
criterion:

κ4 =

L−1∑
l=N

s[l]4

(
L−1∑
l=N

s[l]2
)2 . (5)

Note that this definition of kurtosis assumes zero-mean signals, as obtained after centering. It should be remarked that
MED is based on kurtosis maximization rather than entropy minimization. The definition of the entropy can assume
many possible declinations. However, in this context, it is convenient to recall the entropy definition given by the
probability theory [14]: the entropy is a measure of the average amount of information needed to specify the state of a
random variable. Thus, the probability distributions having peak-like shape would exhibit low entropy values. Since115

kurtosis is also a measure of the sharpness of a probability distribution, this perspective establishes the link between
the entropy and kurtosis. Moreover, if the signal probability distribution is symmetric and slightly non-Gaussian, then
the Gram-Charlier expansion of the differential entropy is related to the opposite of the kurtosis (see Appendix A).

Inverse filter h is the result of the following maximization problem:

h = argmax
h

(κ4) (6)

that can be estimated iteratively by the OFM. Analogous results can be achieved also using the EVA approach exploit-
ing the fourth-order cross cumulant [5]. For the full demonstrations see: Refs. [1, 3] for the OFM and Ref. [5] for120
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the EVA. This criterion does not require any prior information about the mechanical systems involved; thus it can be
considered more general than other criteria that need, for instance, the prior knowledge of the fault period.

Nevertheless, as pointed out in Ref. [3], MED tends to recover a single dominant impulse rather than a train of
impulses, that actually is how the local faults of the rotating machines appear in vibration signals. This behavior is due
to the nature of kurtosis since it theoretically reaches its maximum value for signals containing a unique (dominating)125

impulse. This shortcoming may occurs in particular when the FIR filter length is too long. The term ”too long” is
on purpose ambiguous; in fact, a priori estimation of the proper FIR filter length is not possible even if the FIR filter
length is a critical parameter that strongly influences the final results. This limitation does not regard only MED but it
is shared by all the blind deconvolution algorithms.

2.2.2. Maximum Correlated Kurtosis Deconvolution130

The MED algorithm has been recently improved by McDonald et al. [11], which presented an iterative blind de-
convolution method, called MCKD, based on a novel criterion called correlated kurtosis. The definition of correlated
kurtosis reads:

CKM =

L−1∑
l=N

(
M∏

m=0
s[l − mTs]

)2

(
L−1∑
l=N

s[l]2
)M+1 (7)

where Ts is the impulse period and M is the number of shifts. Note that the correlated kurtosis is equivalent to the
kurtosis for Ts = 0 and M = 1. This criterion is a measure of signal impulsiveness connected with a given period
Ts, taking advantage of two characteristics frequently encountered with machine faults: high kurtosis and repetitive
occurrence of the impulses.

Despite correlated kurtosis has been proposed by intuition, it is worth noting that, de facto, is a cyclostationary
criterion. A clarifying example is given in case of M = 1:

CK1 =

L−1∑
l=N

(s[l]s[l − Ts])2

(
L−1∑
l=N

s[l]2
)2 . (8)

Eq. (8) shows an evident similarity with the definition of kurtosis (see Eq. 5). However, it should be noted that the135

numerator of Eq. (8) is the discrete autocorrelation of the signal power, s2, at lag Ts. This quantity is nothing but
the signal power contribution which changes cyclically with frequency 1

Ts
. De facto, since the correlated kurtosis

is a measure of cyclostationarity according to a given cyclic frequency defined through 1
Ts

, MCKD allows for the
estimation of a source exhibiting the maximum cyclostationarity at cyclic frequency 1

Ts
.

The number of shifts M represents a parameter to be carefully set when MCKD is applied to real vibration signals.140

From experience [11], low values of M may not encourage enough the deconvolution of periodic impulses. Moreover,
high values of M (in general more than 8) can compromise the correct source estimation. The previous considerations
can be used to provide a informal justification about how correlated kurtosis behaves with respect to M. The presence
of strong background noise (S NR < 0) affects the estimation of correlated kurtosis in particular for low values of M.
For instance, with regard to M = 1, the numerator of Eq. (8) is not a consistent estimator of discrete autocorrelation145

in presence of noise. Furthermore, it is frequent that many rotating machines, even at nominal constant speed, exhibit
slight regime fluctuations which reflect in fluctuating values of Ts. This contributes further to a poor estimation of
correlated kurtosis, in particular when M � 1.

.

2.2.3. Optimal Minimum Entropy Deconvolution Adjusted150

The first direct method discussed in this work is the so called OMEDA, that is an improvement of the original
algorithm, proposed by Cabrelli [2] and advanced by McDonald and Zhao [3]. This method is based on the following
criterion:

D-Norm = max
l=N,1,··· ,L−1

(
|s[l]|
‖s‖

)
(9)
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where ‖•‖ is the Euclidean norm. The FIR filter that maximizes Eq. (9) is given by one of the columns of

H =
(
XXH

)−1
X (10)

that corresponds to the output, s, having maximum D-Norm. The OMEDA solution can be easily computed by pre-
multiplying Eq. (10) by XT . The mathematical steps to obtain Eq. (10) can be found in Refs. [2, 3]. According to
Refs. [2, 3], it has been proved by means of numerical simulations that the OMEDA returns outputs having simpler
structure than the solution provided by MED.

A simpler interpretation of this approach can be given noting that Eq. (10) is similar to the solution of a Least
Square problem. The product between the right side of Eq. (10) and the identity matrix yields to a set of solutions
(namely a set of filter coefficients) where the lth column of H is the Least Square solution of:

hk =
(
XXH

)−1
Xδl (11)

where δl is the lth column of the identity matrix. In other words, Eq. (11) is the solution of the following minimization
problem:

h = argmin
h

(‖Xh − δk‖) (12)

where δl represents an ideal impulsive signal with unitary amplitude and a delay equal to l samples. Eq. (11) is the155

Least Square solution of the filter coefficients based on a simple sharp target signal. Eq. (10) is the extension of this
logic, being H the set of solutions obtained considering shifted Dirac impulses as target signals. This interpretation
is in agreement with the formulation of OMEDA, since it is designed to recover the simplest source from a given
observation. Indeed, OMEDA scans all the possible Least Square solutions keeping the one returning the highest
D-Norm. From this standpoint, it is particularly simple to explain the tendency of OMEDA to deconvolve single160

peaks.

2.2.4. Multi-point Optimal Minimum Entropy Deconvolution Adjusted
An improvement of OMEDA has been proposed by McDonald and Zhao [3] by introducing a target vector t that

promotes the deconvolution of a sequence of ideal periodic impulses instead of a single one. The modified version of
D-Norm (Eq. (9)) is called Multi D-Norm and it reads:

Multi D-Norm =
1
‖t‖

tT s
‖s‖

. (13)

The FIR filter h that maximizes Eq. (13) is:
h =

(
XXH

)−1
Xt (14)

where t drives the deconvolution by imposing positions and weights of the target impulses. A valid solution can be
obtained by selecting the FIR filter length greater than the fault period. In this way, the correct position of the impulses
are automatically adjusted by the filter delay. As for OMEDA, it can actually be checked that maximizing Eq. (13) is
equivalent to finding the Least Square solution of:

h = argmin
h

(‖Xh − t‖) (15)

i.e. the filter coefficients are estimated in order to minimize the Least Square error between s and an ideal train of
equispaced impulses, t, having the same amplitude. Thus, by definition, MOMEDA overcomes the limitation of
OMEDA and MED to preferably deconvolve only a single impulse and the restriction of MCKD to be dependent on165

the choice of M. However, MOMEDA is based on a criterion that allows for the extraction of periodic impulses, i.e.
equispaced impulses having same amplitude. The periodic criterion at the base of MOMEDA is in contrast with the
(typical) cyclostationary nature of many mechanical vibration signals [12]. For this reason, MOMEDA could lose
effectiveness when is applied for machine fault identification.
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3. Proposed method170

In the following section, a BD method based on the generalized Rayleigh quotient and solved by means of an
iterative eigenvalue decomposition algorithm is proposed. Firstly, a formulation of the proposed BD method through
kurtosis maximization is obtained together with its extension to higher-order statistics. Consequently, the BD algo-
rithm based on the cyclostationary maximization, which is the core of this research work, is derived as well for SISO
ans SIMO models.175

3.1. Blind deconvolution driven by kurtosis maximization and extension to higher-order statistics

Unlike the methods proposed in refs. [1, 5], BD with kurtosis maximization can be reformulated as follows. Let
us first recall the definition of the kurtosis:

κ4 =
M4

M2
2

=
sHWs(
sHs

)2 (L − N + 1) (16)

where M4 and M2 are the fourth and the second moments, respectively, and the weighting matrix W is defined as:

W = diag
(

s2

sHs

)
(L − 1) =


. . . 0

s[l]2

0
. . .


(L − N + 1)
L−N+1∑

l=N
s[l]2

. (17)

Substituting Eq. (2a) in Eq. (16), the following expression can be obtained:

κ4 =
hHXHWXh

hHXHXh
=

hHRXWXh
hHRXXh

(18)

where RXWX and RXX are the weighted correlation matrix and the correlation matrix, respectively. Coming to the
kurtosis maximization, it should be noticed that Eq. (18) is a generalized Rayleigh quotient whose maximization with
respect to h is equivalent to the eigenvector associated with the maximum eigenvalue λ of the following generalized
eigenvalue problem:

RXWXh = RXXhλ (19)

then λ corresponds to maximum κ4. Since RXWX and RXX are real and symmetric by construction and RXX is also semi-
positive definite, it implies that λ must be non-negative. This property is in agreement with the fact that the kurtosis
is always positive by definition. Furthermore, it should be noted that W has to be initialized with a guess; hence,
the equivalence between the maximum λ and the maximum κ4 is reached only by means of an iterative algorithm180

summarized by the following steps:

Step 1: assume a guess of h;
Step 2: estimate W evaluating Eq. (2a) given X and guessed h;
Step 3: solve Eq. (19) finding h associated to the maximum λ;
Step 4: return to Step 2 using h estimated in Step 3 until convergence.185

Since BD is based on the hypothesis that the source is a independent identically distributed random variable, a good
initialization of h is given by a whitening filter, according to Ref. [15]. In practice, the whitening filter can be
computed by means of an auto-regressive model filter by using the Yule-Walker equations for the filter coefficients
estimation. Moreover, in mechanical applications, the vibration signal spectra can be dominated by sharp peaks
related to the gear mesh harmonics or other deterministic sources [16]. Thus, the inverse AR filter strongly attenuates190

all the predictable components, returning a signal with a flat spectral density, which is the expected shape, on the
average, for a signal containing a series of impulses. In order to improve the algorithm speed, the complete evaluation
of the generalized eigenvalue problem can be avoided taking advantage of the fact that the algorithm needs only the
maximum value of λ. For this purpose, dedicated algorithms for the estimation of the greatest eigenvalue (e.g. the
power method) can be exploited.195
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At this point, an extension of the proposed algorithm can be written considering an arbitrary pth order normalized
moment by properly modifying W. Proceeding from the definition of the pth order normalized moment, the following
criterion is proposed:

κp =
Mp

Mp/2
2

=
sHWs(
sHs

)p/2 (L − N + 1)
p
2 −2 (20)

where the related weighting matrix is expressed as

W = diag
(

sp−2

(sHs)
p
2 −1

)
(L − N + 1)

p
2 −2 =


. . . 0

s[l]p−2

0
. . .


(L − N + 1)

p
2 −2

L−1∑
l=N

s[l]p−2
. (21)

Hence, the BD algorithm via kurtosis maximization (see Eq. (18)) can be easily extended for any normalized moment
just using the weighted function defined in Eq. (21). Note that in Eq. (21) only p > 2 is relevant in the interests of the
detection of impulsive components since κp>2 is a measure of the impulsiveness.

3.2. Blind deconvolution driven by cyclostationarity maximization

Analogously to the algorithm proposed in Section 3.1, a novel criterion for BD is proposed hereafter based on the200

maximization of the cyclostationarity through the maximization of the ICS. This indicator has been proposed by Raad
et al. [17] and its effectiveness on diagnostic purposes has been demonstrated in several applications such as gears
[17], bearings [18] and IC engines [19].

First of all, it may be useful to introduce some basic notions about cyclostationarity. From a general standpoint,
a cyclostationary process is a process exhibiting a periodic behavior of its statistical properties. Cyclostationarity
plays a pivotal role in the vibration-based fault diagnosis since it has been demonstrated [12] that the rotating machine
vibration signals are well modeled by cyclostationary processes. The real mechanical signals are often a mixture of
first-order and second-order cyclostationary processes, called also CS1 and CS2, respectively. The CS1 part represents
the perfectly deterministic part of the signal, which embodies all the periodic contributions, and the CS2 part is the
random signal part which exhibits periodic fluctuations of its energy flow. On these grounds, it is clear that the
cyclostationary approach turns out to be more realistic and general with respect to the approaches (as assumed in
the MOMEDA) that consider only the periodic part. Furthermore, the concept of cyclic frequency should be given
in order to clarify the further dissertation. In the cyclostationary scenario, the cyclic frequency can be seen as the
frequency related to a certain (hidden) fluctuation of the signal energy, which can be related to physical phenomena
as gear faults and bearing faults, for instance. In this context, the cyclic frequency for discrete-time signals is defined
as

α =
k
Ts

(22)

where k is the sample index and Ts is the cycle (in samples), which can be related to a fault occurrence rate for
instance.205

Coming back to the proposed criterion, let us recall the general definition of the second-order ICS:

ICS 2 =

∑
k>0

∣∣∣cs
k
∣∣∣2∣∣∣cs

0
∣∣∣2 (23)

with

cs
k =

〈
|s|2, e j2π k

Ts
l
〉

=
1

L − N + 1

L−1∑
l=N

|s[l]|2e− j2π k
Ts

l (24a)

cs
0 =

||s||2

L − N + 1
. (24b)
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Eqs. (24a) and (24b) may be expressed in a matrix form as follows:

cs
k =

EH |s|2

L − N + 1
(25a)

cs
0 =

sHs
L − N + 1

(25b)

where

|s|2 = [|s[N]|2, ..., |s[L − 1]|2]T (26a)

E =
[

e1 · · · ek · · · eK

]
(26b)

ek =


e− j2π k

Ts
(N)

...

e− j2π k
Ts

(L−1)

 . (26c)

From Eqs. (24a) and (24b), Eq. (23) may be expressed as:

ICS 2 =
|s|2HEEH |s|2

|sHs|2
. (27)

At this juncture, it may be observed that the signal comprising the periodic components of |s|2, called P
[
|s|2

]
, contain-

ing all the cyclic frequencies of interest k can be written as

P [s] =
1

L − N + 1

∑
k

ek

(
ek

H |s|2
)

=
EEH |s|2

L − N + 1
. (28)

Substituting Eq. (2a) and Eq. (28) into Eq. (27) after a simple manipulation returns the final outcome:

ICS 2 =
hHXHWXh

hHXHXh
=

hHRXWXh
hHRXXh

(29)

where the weighting matrix W reads:

W = diag

P
[
|s|2

]
sHs

 (L − N + 1) =


. . . 0

P
[
|s|2

]
0

. . .


(L − N + 1)

L−1∑
l=N
|s|2

. (30)

As done in Section 3.1, this BD criterion based on ICS2 can be generalized to the pth order ICS by appropriately
modifying Eq. (30):

W =


. . . 0

P [|s|p]

0
. . .


(L − N + 1)

p
2

L−1∑
l=N
|s|

p
2

. (31)

Eq. (29) is the core of the proposed cyclostationary BD method, namely CYCBD. By solving Eq. (29) through eq.
(30), the proposed method extract the source exhibiting the maximum CS2 behavior according to the cyclic frequency
k.

3.2.1. Extension to single-input multi-output systems
So far, this BD method has been developed for SISO systems. However, the proposed algorithm can be easily210

extended to SIMO systems when multiple responses are available. Indeed, this algorithm version allows for improving
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the source estimation through a simultaneous blind deconvolution of multiple response signals. For the SIMO model,
the deconvolution problem can be reformulated considering a number Q of responses xq. The deconvolution is carried
out simultaneously for each xq returning the estimation of s, being the sum of the qth contributions computed by the
qth inverse filters hq.215

Eqs. (1a), (29) and (19), that have been formulated for SISO systems, can be extended also for SIMO systems.
RXWX and RXX can be expressed as cross-correlation matrices, being Rqq the auto-correlation matrix of xq and Rqq̃

the cross-correlation matrix between xq and xq̃ (where q̃ = 1, · · · ,Q and q , q̃). Thus, RXX can is given by:

RXX =


. . . Rqq̃

Rqq

Rq̃q
. . .

 (32)

where the diagonal elements are composed of the auto-correlation matrices of xq and the off-diagonal elements are
composed of the cross-correlation matrices of xq and xq̃. The weighted correlation matrix, RXWX , can be defined
analogously. Again, the deconvolution problem can be iteratively through by the generalized eigenvalue problem
reported in Eq. (19) which returns h, that is the concatenation of vectors of filter coefficients related to the qth

response

h =



h1
...

hq
...

hQ


, (33)

and λ that is is the final value of the maximized criterion. From Eq. (33), the qth contribution to the source s can be
calculated as:

sq = Xqhq (34)
where Xq is the Toeplitz matrix estimated as in Eq. (1b) related to the qth response xq. Finally, the overall source, s, is
computed by the sum of all the qth sources calculated using Eq. (34):

s =

Q∑
q=1

sq. (35)

3.2.2. Weighting matrix in the angle domain
It is a matter of fact that vibration signatures of rotating machines often exhibit periodicity locked in the angle

domain rather than in the time domain [12, 20]. Hence, the source estimation can be improved by re-defining the
weighting matrix reported in Eq. (31), that is composed of periodic components in the time domain, in a different
form consisting of periodic components in the angle domain. Recalling P [|s|p] in Eq. (31), this term is obtained by
extracting the Fourier coefficients related to a certain set of cyclic frequencies and then returning the filtered signal in
the time domain; viz:

P
[
|s|p

]
=

∑
k

cke− j2π k
Ts

l with ck =
1

L − N + 1

L−1∑
l=N

|s[l]|pe− j2π k
Ts

l. (36)

Exploiting the measured instantaneous speed (if available), the periodic component locked in the angular domain may
be extracted avoiding resampling [21] by a change of variable in Eq. (36). Therefore, under the assumptions that the
considered signal is time/angle dependent, i.e. s = s (θ (t)), Eq. (31) can be expressed in the time/angle domain as:

P
[
|s|p

]
=

∑
k

cke jkθ[l] with



ck = 1
Θ

L−1∑
l=N
|s[l]|pe− jkθ[l]θ̇[l]

θ[l] =
l−1∑
l̃=N

θ̇[l̃]

Θ =
L−1∑
l=N

θ̇[l]

(37)
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where Θ is the normalization term.
The cyclostationary BD method based on Eq. (37) is hereafter referred as CYCBDang. The periodic component

extracted by using Eq. (37) should lead to better results for the diagnostics of rotating machines since it improves the
estimation of the cyclostationary signal part also in presence of speed fluctuations.220

3.2.3. Further considerations
It should be observed that the weighting matrix reported in Eq. (30) is reminiscent. De facto, W expressed

for the maximum kurtosis BD (see Eq. (17)) is very similar to the weighting function obtained in Eq. (30). From
this similarity it can be deduced that the maximization of ICS2 is equivalent to maximize the kurtosis of the CS2
part according to the cyclic frequency k and its multiples. From the physical point of view, this criterion drives the225

deconvolution (based on maximum kurtosis) with respect to only one phenomenon characterized by a specific cycle.
This property is particularly relevant for the diagnosis of rotating machines. Indeed, as pointed out in Refs.

[3, 11], it may be exploited to highlight a specific fault as well as to discriminate the faulty rotating component from
the healthy ones. However, the proposed criterion adds something more than the others presented in the specialized
literature. On the one hand, MOMEDA deals with the extraction of an impulsive source approaching a Dirac comb,230

which is deterministic. On the other hand, MCKD exploits a cyclostationary criterion - i.e. the correlated kurtosis -
as the CYCBD but owns some limitations (see also Section 2.2.2). The first one is that the MCKD can be used just
for short signals involving a limited number of consecutive impulses [11]. Indeed, the selected signal length is related
to the shift number, M, that cannot be too large, as explained in Section 2.2.2. The second one regards the definition
of the impulse period Ts. Being Ts a constant, it is formally valid only for systems operating at constant speed while235

CYCBD can benefit of Eq. (37) in order to deals with fluctuating speeds. Moreover, CYCBD can be adapted to
maximize different orders of cyclostationarity. Conceptually, this is a key point since the rotating machines exhibit
cyclostationary behaviors of different order depending on the type of fault and of the systems [20]. Thus, CYCBD
can be more versatile for the rotating machine diagnosis than the MCKD.

To sum up, it has been demonstrated that BD problem expressed as a generalized Rayleigh quotient represents a240

versatile approach being easily adapted to arbitrary criteria, such as the maximization of κp (see Eq. (21)) or ICSp

(see Eq. (31)), just by selecting proper weighting matrices.

4. Comparison considering synthesized signals

The validation of the criterion based on the maximization of ICS2 using simulated signals is provided in this
section. The CYCBD is compared among other techniques already published as: MED (Eq. (17)), OMEDA [2, 3],245

MCKD [11] and MOMEDA [3].

4.1. Signal description

The simulations have been carried out in Matlab environment exploiting also the Matlab scripts available in Ref.
[3]. A Matlab implementation of the proposed cyclostationary BD method is provided online1 as well. Let us consider
different types of cyclostationary signals:250

1. periodic impulses with Gaussian distributed amplitudes and additive Gaussian background noise (SNR = -19
dB);

2. periodic impulses having Gaussian distributed amplitudes with jitter effect (following a Gaussian distribution)
and additive Gaussian background noise (SNR = -19 dB);

3. a couple of trains of impulses (with different cyclic frequency sets) having Gaussian distributed amplitude and255

additive Gaussian background noise (SNR = -19 dB);
4. periodic impulses with Gaussian distributed amplitudes and additive Gaussian background noise (SNR = -19

dB) with the addition of a single dominant impulse;
5. train of impulses with Gaussian distributed amplitudes having fluctuating cycle and additive Gaussian back-

ground noise (SNR = -19 dB);260
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Fig. 2: Simulated signal xsim,1: (a) train of equispaced impulses s0,1 having random (Gaussian) amplitudes with cycle 1/Ts,1; (b) s0,1 convolved
with the IRF gs,1; (c) overall signal xsim,1 with SNR = -19 dB.

which, for simplicity, are called xsim,1, xsim,2, xsim,3, xsim,4 and xsim,5, respectively. These simulated signals are cyclo-
stationary in different ways. In fact, xsim,1, xsim,3 and xsim,4 have periodic impulses with (Gaussian) random amplitude
while xsim,2 and xsim,5 own also a (Gaussian) random fluctuation of the impulse occurrence rate and a sinusoidal
fluctuation of the impulse occurrence rate, respectively.

These signals are expressed in agreement with the previous general formulation (see Eq. (3)), neglecting the
periodic component p, viz:

x =

I∑
i=1

s0,i ∗ gs,i + n ∗ gn. (38)

where index I indicates the number of the impulsive patterns (I = 1 for xsim,1, xsim,2 and xsim,5; I = 2 for xsim,3 and
xsim,4). The parameters used for the synthesized signals are resumed in Tab. 1 where: Fs is the sampling frequency,
T is the time length of the signal, Ts is the impulse period, g is the IRF, σimp is the standard deviation of the impulse
amplitudes and σ j is the standard deviation of the jitter. In these simulations, the IRFs gs,i and gn have been modeled
as responses of a damped single degree of freedom (SDOF) system to the time domain unit impulse [22]. The damping
is assumed viscous and sub-critical, as occurs in many real systems. In terms of displacements, the SDOF IRF for a
continuous signal is defined as:

xS DOF = Ae−ζωnt sin (ωdt) (39)

where A is the response magnitude, ζ the damping coefficient, ωn the resonance (angular) frequency and ωd =265

ωn
√

1 − ζ2. The IRFs gs,i and gn, expressed in terms of accelerations, are merely obtained by taking the second
derivative with respect to time of Eq. (39). Tab. 2 recaps the IRFs parameters while Fig. 2 to Fig. 6 display the
simulated signals. Each simulated signal owns (at least) a pure cyclostationary source and has been designed with the
specific purpose of highlighting the limitations of the considered BD algorithms from different standpoints.

Before examining the results, let us first discuss the general settings used for the different BD techniques in this270

comparison. As pointed out previously, care should be taken to select the filter length in order to achieve good quality
results using BD algorithms: depending on the criterion, different strategies should be adopted. This aspect is argued
in detail in Refs. [3, 11]. The filter lengths used for the following comparisons are reported int Tab. 3.
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Fig. 3: Simulated signal xsim,2: (a) train of equispaced impulses s0,1 having random (Gaussian) amplitudes with cycle 1/Ts,1 and jitter (Gaussian
distribution); (b) s0,1 convolved with the IRF gs,1; (c) overall signal xsim,2 with SNR = -19 dB.
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Fig. 4: Simulated signal xsim,3: (a) train of equispaced impulses s0,1 having random (Gaussian) amplitudes with cycle 1/Ts,1; (b) s0,1 convolved
with IRF gs,1; (c) train of equispaced impulses s0,2 having random (Gaussian) amplitude with cycle 1/Ts,2; (d) s0,2 convolved with IRF gs,2; (e)
overall signal xsim,3 with SNR = -19 dB.
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Fig. 5: Simulated signal xsim,4: (a) train of equispaced impulses s0,1 having random (Gaussian) amplitudes with cyclic frequency 1/Ts,1; (b) s0,1
convolved with IRF gs,1; (c) the single dominant peak s0,2 ; (d) s0,2 convolved with IRF gs,2; (e) overall signal xsim,4 with SNR = -19 dB.
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Fig. 6: Simulated signal xsim,5: (a) train of equispaced impulses s0,1 having random (Gaussian) amplitudes with variable cycle 1/Ts,1; (b) s0,1
convolved with IRF gs,1; (c) cyclic frequency values fluctuating around the mean value (dotted line); (d) Gaussian noise n convolved with IRF gn;
(e) overall signal xsim,5 with SNR = -19 dB.
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Tab. 1: Parameters used for the synthesized signals.

xsim,1 xsim,2 xsim,3 xsim,4 xsim,5

L (samples) 5000 5000 5000 5000 5000
Ts,1 (samples) 250 250 250 250 250
Ts,2 (samples) - - 625 - −

σs,1 1.500 1.500 1.500 1.500 1.500
σs,2 - - 3.500 - -
σ j - 0.025 - - -
S NR (dB) −19 −19 −19 −19 −19

Tab. 2: Parameters used for the computation of the IRFs.

gs,1 gs,2 gn

A 1.963 10−10 3.591 10−10 1.258 10−10

ζ 0.004 0.01 0.05
ωn (rad/s) 19.894 39.788 63.662

4.2. Results and discussion

Fig. 7 summarizes the outputs obtained for different BD algorithms considering xsim,1. Note that source signal275

s0 is buried under strong background noise (S NR = −19 dB) and all the output signals are normalized by their
respective maximum value. This normalization is allowed since BD is unable to recover the actual source amplitude.
Furthermore, it should be remarked that the estimated sources are delayed with respect to the output signal due to
the filtering. In this specific application, the FIR filters introduce a constant delay with respect to the frequency
domain which can be easily corrected. From now, the filter delay has been kept since it does not affect the result280

discussion. From the qualitative standpoint, the best result is achieved by MED, MCKD and CYCBD that provide a
satisfying representation of the source signal. The impulses are extracted with their correct rate of repetition as well
as their relative magnitudes. The MCKD performance is expected since it is based on a cyclostationary criterion.
However, the correlated kurtosis is very sensitive to slight changes of the fundamental fault cycle. Hence, the jitter
effect or even very slight changes on the impulse repetition rate should affect the MCKD results, as demonstrated by285

further examples. Unfortunately, the smallest impulses are difficult, even impossible, to be detected since they are
overwhelmed by the background noise that is still present in the recovered signal. MOMEDA and OMEDA are able
to properly extract just the prominent peaks, since they present a remarkable background noise kept by the recovered
signal.

From these results, it is clear that the outputs of MED and CYCBD appear very similar. This outcome is not290

surprising since it has been demonstrated in Section 3.2 that there is a strong mathematical similarity between these
two criteria. However, CYCBD owns the capability to recover signals characterized by certain cyclic frequencies and
this feature may be exploited for diagnostics purpose as investigated in the following section.

In the same fashion, the results regarding xsim,2 are summarized in Fig. 8. In this case, the random part of the signal
is higher than in the previous example because of the jitter, which follows a Gaussian distribution. The presence of295

the jitter strongly worsens the MCKD output since the repetition of the impulses is no longer at constant rate. Again,
MOMEDA returns to be not effective for the recover of cyclostationary sources since it assumes a periodic source to
extract.

So far, no remarkable differences have been found between MED and CYCBD considering xsim,1 and xsim,2. The
examples represented by xsim,3 and xsim,4 emphasize the differences between these algorithms. The simulated signal300

Tab. 3: Filter lengths (in samples) used for benchmarking BD algorithms with simulated signals.

xsim MED OMEDA MCKD MOMEDA CYCBD CYCBDang
1-4 300 300 300 300 300 -
5 - - 100 400 - 250
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Fig. 7: Comparison of the BD results regarding xsim,1: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD and (f) the target source.
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Fig. 8: Comparison of the BD results regarding xsim,2: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD and (f) the target source.
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Fig. 9: Comparison of the BD results regarding xsim,3 focusing on fault period Ts,1: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD
and (f) the target source.

xsim,3 has been obtained by adding a second pattern of impulses with a different cyclic frequency. This signal may
be useful in order to inspect the capability of CYCBD to discriminate different types of fault, depending on their
periodicity. The expectation is that MED will recover the source exhibiting the lower number of impulses, i.e. the
impulses with period Ts,2, since the lower the number of impulses, the higher the value of the kurtosis. This behavior
should be followed also by OMEDA. Assuming that the source of interest is the one having period Ts,1, the results305

shown in Fig. 9 agrees with the previous prediction. Indeed, MED (diagram (a) in Fig. 9) recovers the source having
period Ts,2 whereas CYCBD is the only one that recovers correctly the desired impulsive source. Moreover, note that
MOMEDA is not biased by the presence of another impulsive pattern, but the provided estimation appears very noisy
and the recovered peaks are barely observable; analogously, MCKD returns similar results to MOMEDA. OMEDA
completely fail the source recovering. Fig. 10 collects the results obtained with the same data of Fig. 9, but focusing310

on the target source having period Ts,2. As expected, CYCBD and the other BD techniques that depend on the selected
fault occurrence rate, i.e. MCKD and MOMEDA, can properly extract the target signal (diagram (f) in Fig. 10). Note
that, in this case, all the recovered signals are globally better than those collected in Fig. 9. This behavior can be
explained by the fact that, since the two mixed impulsive patterns have similar amplitudes (see diagram (a) and (c)
in Fig. 4), the maximized criteria tends to be more effective for the pattern, exhibiting the minor amount of impulses315

in the full time span. The simulated signal xsim,4 (see Fig. 5) addresses the case of a train of impulses with Gaussian
distributed amplitude with a single dominant impulse. Likewise to xsim,3, MED as well as OMEDA deconvolve the
single dominant peak instead of the train of impulses, as reported in Fig. 11. Moreover, also MCKD fails to provide
the desired results.

Care should be paid to signals that exhibit more than one impulsive source. In fact, all the BD techniques ad-320

dressed in this research are valid under the hypothesis of the presence of a single impulsive pattern to deconvolve;
in other words, they basically refer to SISO systems. Hence, the proposed attempt to extract multiple sources only
demonstrates that, under certain conditions, CYCBD - and to a lesser extent MCKD and MOMEDA - can overcome
to this intrinsic limit. But the results shown in Figs. 9 and 10 can not be considered as a definitive proof of the
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Fig. 10: Comparison of the BD results regarding xsim,3 focusing on fault period Ts,2: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e)
CYCBD and (f) the target source.
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Fig. 11: Overall comparison of the BD results regarding xsim,4: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA, (e) CYCBD and (f) the target
source.

effectiveness of CYCBD on signal separation considering multiple sources.325

Finally, xsim,5 concerns the case of a train of impulses that are equispaced in the angle domain but they have a cyclic
frequency varying in the time domain. In practice, this could be the case of bearing faults or gear faults under variable
operating conditions. As reported in Fig. 6(c), the cyclic frequency oscillates sinusoidally with a mean value of 10 Hz
and an amplitude of ±1 Hz. Fig. 12 summarizes the results of the last numerical example and does not display the
results of MED and OMEDA since the goal is to underline the limitations of MCKD and MOMEDA regarding non-330

equispaced impulses. In this case, the CYCBDang is driven by the tacho reference while MCKD and MOMEDA are
performed by using the average impulse period, which is 10 Hz. It can be easily noticed that CYCBDang recovers the
original source with good accuracy in terms of relative amplitude as well as impulse occurrence rate. However, both
MCKD and MOMEDA are not capable to recover the original source providing a noisy output.

This section has remarked the advantages of CYCBD for the analysis of cyclostationary signals in comparison335

with BD algorithms already published in the literature by using dedicated examples. In general, CYCBD returns
better results with respect to the other BD algorithms when the source is purely cyclostationary. The simulated results
highlight the superiority of CYCBD with respect to MOMEDA, which is expected since MOMEDA fits with periodic
sources. Moreover, MCKD is overcome too even if correlated kurtosis is a cyclostationary criterion. This is likely
due to the definition of correlated kurtosis. Indeed, as remarked in Section 2.2.2, correlated kurtosis can lose its340

effectiveness for long noisy responses [11] as well as impulses not perfectly equispaced. However, this preliminary
benchmark has been performed considering ad hoc simulated signals with marked cyclostationary behavior. Thus,
further verifications are carried out in the next section considering real signals.

5. Application to real vibration signals

This section is devoted to the investigation of the CYCBD method considering two different applications. The first345

one addresses a gear tooth spall identification on a two-stage gearbox; the second one regards a run-to-failure bearing
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Fig. 12: Overall comparison of the results regarding xsim,5: (a) MCKD, (b) MOMEDA, (c) CYCBDang and (d) the target source.

test.

5.1. Diagnosis of gear tooth spall

The first application deals with the detection of a gear tooth spall. First, a qualitative comparison of the results of
several BD algorithm is presented; second, a procedure for gearbox diagnostics for the identification and quantification350

of seeded gear spalls based on BD technique is proposed and discussed.

5.1.1. Experimental setup
The first experimental verification of the proposed algorithm has been assessed by means of a dedicated test rig,

shown in Fig. 13, located at the Engineering Department of the University of Ferrara. Detailed information about this
test rig can be found in Ref. [23]. The vibration signals in the radial direction have been collected by means of B&K355

piezoelectric accelerometer placed on the bearing support of the first stage pinion with sampling frequency 10.2 kHz
for a total time duration of 4 s. The measurement campaign has been conducted using LMS SCADAS 310 controlled
by LMS Test.Lab.

The investigated gearbox is composed of two stages of helical gears: the first one having 18 and 71 teeth and
the second one 12 and 55 teeth. Four different sizes of gear tooth spall have been realized via milling process in the360

71 teeth wheel (first stage) in order to verify the sensitivity of the proposed criterion. Table 4 collects the details of
the artificial defects sorted according to the percentage ratio between the spall size and the whole tooth face. More
information about the reproduction of the gear tooth spall by milling process can be found in Ref. [24]. All the steady
condition tests have been carried out considering the following nominal conditions: input shaft speed of 3600 rpm
and nominal load of 48.8 Nm.365

It should be noted that the test condition just described is particularly unfavorable for the spall detection. Firstly,
gear tooth spall is harder to detect in helical gears than in spur gears since the contact in helical gear is smoother.
This feature, in general, favors the reduction of impulsive components due to the contact among teeth. Secondly,
considering that the higher the load, the better the contact among gear teeth, the test load is significantly lower than
the nominal load of the gearbox in actual working condition.370
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Fig. 13: Experimental setup.

Tab. 4: Description of the gear tooth spalls considered in the experimental campaign [25].

ID Fault description
Sp12.5 2 mm along the tooth profile, 0.6 mm depth, 2 mm across

the tooth face (12.5 % of the tooth face width)
Sp25 2 mm along the tooth profile, 0.6 mm depth, 4 mm across

the tooth face (25 % of the tooth face width)
Sp50 2mm along the tooth profile, 0.6 mm depth, 7.8 mm across

the tooth face (50 % of the tooth face width)
Sp100 2 mm along the tooth profile, 0.6 mm depth, 15.5 mm across

the tooth face (100 % of the tooth face width)
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Fig. 14: Measured vibration signals in the sp100 case at (a) constant speed and (b) variable speed with (b,d) their speed profiles.

A variable speed test has been also carried out in order to validate experimentally the CYCBDang algorithm. In
this case, the test has been performed in run-up condition between 30 Hz and 34 Hz referenced to the input shaft
rotation frequency, with a load of 45.8 Nm. An example of the acquired vibration signals and their speed profiles is
reported in Fig. 14.

5.1.2. Result discussion: constant regime tests375

The results presented in this section have been carried out considering the following filter lengths: 50 samples
for MED and MOMEDA, 40 samples for MCKD (with 5 shifts), 800 samples for MOMEDA and 700 samples for
CYCBD. The CYCBDang has not been considered since the benefits of using this algorithms should be negligible in
a constant speed case. All the recovered signals have been normalized by their respective absolute maximum value in
order to facilitate their comparison. Furthermore, the MCKD has been performed using the whole signal in order to380

highlight its intrinsic limitation to deal with long signal and with non-constant speed [11].
Figs. 15, 16, 17 and 18 summarize the results related to cases Sp12.5, Sp25, Sp50 and Sp100, respectively. The

first observation is that MED correctly recover the fault train only in case Sp100 (see Fig. 18), i.e. where the defect
should be more evident, whereas OMEDA appears ineffective in all the considered cases. The tendency of OMEDA
to be recover a single large impulse is highlighted in Fig. 15(b) and to a lesser extent in Fig. 16(b). As expected, the385

challenging test conditions highlighted the significant limitations of MED and OMEDA when applied to mechanical
vibration signals.

Now, let us discuss the results related to BD algorithms designed for rotating machine diagnostics (MCKD and
MOMEDA) compared to the proposed ones. The MCKD returns satisfactory results just in cases Sp100 and Sp50 but
in the remaining cases the algorithm does not recover correctly the train of impulses. These results can be explained by390

the fact that, as reported in Fig. 14, the instantaneous speed is not perfectly constant. Considering that the definition
of correlated kurtosis (see Eq. (7)) is based on the correlation of signal segments having a fixed lag mTs, which
correspond to a constant fault period, the MCKD could fail on the extraction of very slight impulsive sources buried
in background noise and mechanical interferences. The other BD algorithms examined in this comparison – namely
MOMEDA and CYCBD – are able to properly deconvolve the sequence of impulses due to the gear tooth spall. De395

facto, this preliminary result is not surprising since the gear tooth spall can be modeled as a composition of CS1 signal
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Fig. 15: Comparison of the results with 12.5 % spalling (Sp12.5) considering: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.
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Fig. 16: Comparison of the results with 25 % spalling (Sp25) considering: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.
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Fig. 17: Comparison of the results with 50 % spalling (Sp50) considering: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.
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Fig. 18: Comparison of the results with 100 % spalling (Sp100) considering: (a) MED, (b) OMEDA, (c) MCKD, (d) MOMEDA and (e) CYCBD.
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Fig. 19: BD results of the run-up test: (a) instantaneous speed of the intermediate shaft, (b) MCKD output, (c) MOMEDA output and (d) CYCB-
Dang output.

and CS2 signal [17, 26]. On these grounds, even if the criterion of MOMEDA is based on the extraction of a periodic
signal rather than a cyclostationary one, the MOMEDA results are as good as the CYCBD results. Therefore, this first
comparison highlights the superiority of the proposed CYCBD algorithm with respect to MED, OMEDA and MCKD
for the gear tooth spall identification.400

Finally, this experimental results have shown that:

• MED and MOMEDA cannot deal with small gear tooth spalls with small loaded gears;

• MCKD returns better results than MED and MOMEDA but only for Sp50 and Sp100 cases;

• MOMEDA and CYCBD have comparable outputs.

This investigation has shown also that the maximized criterion of the CYCBD is sensitive to the spall size. This405

feature will be exploited later for the design of a diagnostic procedure for gear tooth spalls as well as for pointing out
the differences between CYCBD and MOMEDA.

5.1.3. Results discussion: run-up test
The run-up experiment has been performed in order to confirm the observation made on the simulated case with

variable speed, with specific reference to the simulated signal xsim,5 and Fig. 12. The goal is to verify the limits of410

MCKD and MOMEDA to deal with train of impulses having a variable period with respect to CYCBDang. In this
case, just the Sp100 have been considered. As done before, MCKD and MOMEDA are referenced to a mean impulse
period while CYCBDang is driven by the tacho signal.

The experimental results of the run-up are shown in Fig. 19 and discussed hereafter. For the sake of clarity,
only 1 s is shown. In this case MCKD as well as OMEDA have been neglected since they are not sensitive to the415

periodicity of the impulse train. The results have been carried out by using a filter length of 50 samples for all the BD
methods. It is clear that the best results is returned by CYCBDang and MOMEDA. In fact, the impulses extracted
by using the MCKD are buried under strong background noise. For this reason, some impulses are barely visible.
It should be noted that the time intervals, which are actually expressed in frequency in Fig. 19, are almost constant
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for the MOMEDA results. The spacing of the impulses is in agreement with the prior periodicity selected (i.e. the420

average rotation frequency of the intermediate shaft), which is 8.656 Hz. However, the rotation frequency is linearly
increasing, that is in contrast with the constant spacing of the extracted impulses.

Finally, this experiment has shown that MCKD returns a very noisy result even if the spacing between the impulses
is correct and MOMEDA extracts a train of impulses without a physical meaning but reflect the periodicity of the target
vector t (see Eq. (15)). Instead, CYCBDang returns a clear extraction of the impulses with the proper occurrence rate.425

5.1.4. A diagnostic procedure for the gear tooth spall identification
The strong points of CYCBD previously highlighted may be exploited in order to design a diagnostic procedure

for the identification (and the quantification) of gear tooth spall for gearboxes operating at constant speed. Also if the
results presented in the previous subsection are pretty easy to be interpreted, it’s a matter of fact that the diagnostics of
machines by means of vibration analysis is directing to be less dependent on the user interpretation by using of simple430

indicators that objectively quantify the the machine condition. For this purpose, a methodology can be advanced that
gives a simpler interpretation of the data returning information about both the presence and the severity of the gear
tooth spall.

In a similar manner to Refs. [3, 11], the final value of the maximized criterion may be exploited considering the
percentage difference between the healthy case and the faulty one. Thus, calling such a percentage difference as F, it
reads:

F =
C −Cre f

Cre f
100 (40)

where C and Cre f are the maximized criterion values (see Eqs (7), (13) and (23)) for the faulty case and the healthy
one, respectively. This indicator can be used in order to estimate both the size and the position of the gear tooth spall.435

From the physical standpoint, a positive deviation of F indicates the possible presence of a defect; analogously, a
negative deviation as well as very low positive F may be interpreted as the absence of a defect. Furthermore, the value
of F can used to determine the severity of the fault since the greater F, the greater the spall size.

Let us apply the proposed indicator for the diagnostics of the gearbox under investigation. This gearbox is com-
posed of two stages that correspond to 3 rotating axes having different rotation frequencies. Performing BD algorithms440

using the incorrect fault periodicity should lead to negative value of F for all the considered spall sizes. On the con-
trary, when the proper fault period is taken into account, F should exhibit positive values, increasing with the spall
size. Before discussing the results, it should be noted that the cyclic frequency sets used in CYCBD must be computed
avoiding overlapped frequencies among the sets in order to guarantee the uniqueness of the information carried by
each frequency set.445

The final results on the use of indicator F are summarized in Fig. 20, considering MCKD (a), MOMEDA (b) and
CYCBD (c). MED and OMEDA have been left out on purpose since they are not able to distinguish repetitive impulses
having different periods. Moreover, the CYCBD results has been obtained by using a filter length of 200 samples. As
demonstrated later, the filter length has a limited influence on the CYCBD results. As mentioned previously, three
fault periods have been taken into account, namely the rotation frequencies of the input shaft (first column of Fig. 20),450

of the intermediate shaft (second column of Fig. 20) and output shaft (third column of Fig. 20). Remember that the
seeded fault in the 71 teeth gear is synchronized with the period of the intermediate shaft. Hence, negative values of
F should be expected regarding to the periods of the input and the output shafts whereas F must be positive for the
intermediate shaft just because it corresponds to the fault period.

The data related to the intermediate shaft period (Fig. 20) highlight that MCKD and MOMEDA fail on the full455

detection of the gear tooth spall. In fact, negative F values occur despite the presence of the defect. Furthermore,
unsatisfying results are also achieved considering the period of the input shaft and of the intermediate one, since
non-negligible positive values of F are present. However, this experimental evidence is not an absolute proof of
the ineffectiveness of such methods. Indeed, it should be remarked that the considered test condition is particularly
hard to detect due to the low load and the gear type (helical). The results perhaps could be improved finding a more460

convenient filter length - and M shifts for MCKD - by trial-and-error. However, as demonstrated in the following
subsection, CYCBD results are robust with respect to the selected filter length.

On the other hand, interesting results are achieved by CYCBD. The gear tooth spall is correctly identified in all
the considered cases, since positive values of F are achieved in all the considered cases. In addition, the severity of the
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Fig. 21: Sensitivity analysis of CYCBD referenced to (a) the ICS 2 values and (b) the F values. The square marks indicate the number of samples
used in Fig. 20.

fault is also well represented because F increases according to the size of the seeded fault. This results is particularly465

relevant because it indicates that CYCBD, de facto, is sensitive to the dimension of the fault, which can be of great
value in order to monitor the evolution of the defects.

The results of CYCBD for the input shaft are satisfying since they are all negative, indicating that the 18 teeth
gear is healthy. Regarding the output shaft, low positive values similar to the Sp12.5 case are present. This result can
be interpreted as the presence of a small defect in the 55 teeth gear. However, the proposed method globally gives470

adequate results considering the slight size of the fault in case Sp12.5 and the unfavorable test conditions due to the
small load. Indeed, in more favorable cases (spur gears, higher load..) this method should be even more effective.

5.1.5. Sensitivity analysis
Despite the promising results obtained in the previous subsection, a sensitivity analysis must be carried out in

order to assess the effect of different filter lengths on the final results. It is a matter of fact that blind deconvolution475

techniques achieve different results depending on the considered filter length. Thus, this aspect is investigated in more
detail below. In this sensitivity analysis, CYCBD has been performed with FIR filter length, N, varying from 10
samples to 800 samples taking into account the cyclic frequency set related to the fault period. Greater values of N are
not considered because of the high computational efforts which is unbearable for real time application and, in general,
for industrial purposes. The effects of various values of N have been tested in terms of maximized ICS 2, values of F480

and number of iterations.
Fig. 21(a) collects the values of ICS 2 whereas F values are displayed in Fig. 21(b). ICS 2 values estimated with

both the proposed algorithms are in agreement with the related fault size, i.e. the greater the fault, the greater the
ICS 2. Furthermore, the value of the final estimated ICS 2 seems directly related to the filter length. However, longer
filter lengths should be taken into account in order to clarify this relationship. This investigation is not performed in485

this work because of the extreme computational effort involved. A sudden increment is observed between 670 samples
and 680 samples. This effect occurs very likely because in that region of the diagram the filter length approaches the
length of the fault period (approximately 673 samples). Interesting remarks can be made observing the values of F
collected in diagrams (a) of Fig. 21. This diagram clearly show that the proposed methodology is globally consistent
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Fig. 22: Sensitivity analysis of CYCBD concerning the number of iterations in the cases: (a) Sp12.5, (b) Sp25, (c) Sp50, (d) Sp100 and (e) healthy.
The gray square marks indicate the number of samples used in Fig. 20.

considering a wide range of N. The effect of a unlucky choice of N seems limited to a slight range of values and490

concerns only the identification of case Sp12.5. Hence, the detection of the smallest defect (Sp12.5) is not always
guaranteed.

The number of iterations as a function of the filter length shown in Fig. 22 can be considered as an indicator
of the quality of the deconvolved signal. In fact, a high number of iterations implies a slow convergence rate and
consequently a slow algorithm. Two stoppage criteria have been adopted in the proposed algorithm: the first one495

regards the percentage difference of two consecutive final values of the maximized criterion; the second one regards
the maximum number of iterations, which is activated if the condition of the first one is not met. Hence, the observation
of how the number of iterations changes according to the variation of N may lead to pivotal consideration about the
proper selection of the filter length. Fig. 22 indicates that a large number of iterations is globally needed for the
smaller spall sizes, i.e. Sp12.5 and Sp25. The other cases do not highlight particular convergence issues. Hence,500

taking into account the convergence rate and the computational effort, Fig. 22 suggest to limit N to 200 samples.
Thus, according to both Figs. 21 and 22, in the considered experimental case N should not be greater than 200

samples. In fact, in this range, satisfying results can be achieved avoiding slow convergence rate associated with
strong computational effort. Furthermore, Fig. 21 is a consistent proof of the robustness of the method considering
different size faults.505

5.2. Early diagnosis of an outer-race bearing fault

The second application addresses the detection of a bearing fault considering a run-to-failure experiment. The
capability of the CYCBD to monitor the fault development is investigated and discussed.

5.2.1. Experimental setup
The vibration signals used in this example are part of the data set provided by the Center for Intelligent Main-510

tenance Systems of the University of Cincinnati [27]. According to the scheme shown in Fig. 23, the test rig is
composed by four bearings type Rexnord ZA-2115 installed in the same shaft. For this test, the shaft speed has been
fixed at 2000 rpm and a load of 27.7 kN has been applied to bearings 2 and 3. Each bearing is monitored by to ac-
celerometers PCB 253B33 mounted in radial direction. Further detail about the experimental apparatus as well as the
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Fig. 23: Schematic of the IMS test rig.

whole dataset is available online2. The vibration signals have been continuously acquired with a sampling frequency515

of 20.48 kHz, collecting 1 second of samples each 10 minutes. The test has been stopped after 7 days (corresponding
to 16.4 minutes of actual acquisition) revealing an outer race fault occurred in the first bearing.

5.2.2. Result discussion
On the basis of the previous discussion in Section 5.1.4, data can be analyzed by observing the variations of

maximized BD criteria with respect to time. To this purpose, CYCBD output (i.e. the ICS 2 final value) can be used520

as an indicator capable to identify both the kind and the severity of the fault. In this respect, two different frequencies
of interest, the BPFO and the ball pass frequency inner race (BPFI), are considered. BPFO and BPFI represents
the characteristic frequencies of an outer race bearing fault and an inner race bearing fault, respectively. As done
previously in Section 5.1.4, the effectiveness of CYCBD, using both the SISO and SIMO formulations this time, is
verified and compared with MCKD and MOMEDA.525

Considering this kind of data representation, a threshold can be designed in order to establish both fault type and
first fault manifestations. In a general context, a threshold based on the presence of outliers, i.e. observations far from
a given distribution pattern, is a reasonable choice. Frequently, outliers indicate the presence of some kind of anomaly
due, for instance, to a bearing failure. Hence, the idea is to define a threshold from observations related to a supposed
healthy state – e.g. samples acquired during the test beginning – that defines the indicator value beyond which a fault530

may be occurred.
A consistent rule of thumb for identifying suspected outliers is the Tukey’s method that has been already success-

fully used for pass/fail decision tests by using vibration-based scalar indicators in other research works [19, 28]. The
Tukey’s method is quiet general and does not require prior distribution knowledge. The only limitation is that Tukey’s
method could lose effectiveness for data having non-symmetric probability distribution. Moreover, for bearing fault535

monitoring applications, another necessary condition is that the system operates in stationary conditions because all
the vibration signature changes should be associated to faults rather than regime variations. According to Ref. [29],
this method exploits the interquartile range (IQR), namely the distance between first and third quartile, in order to
define two classes of outliers: “outside” and “far out”. The first class refers to mild outliers (i.e. data not so far from
the reference distribution) and it is defined as 1.5 times the IQR distance. The second one refers to extreme outliers540

(i.e. data significantly distant from the reference distribution) and it is defined as 3 times the IQR distance. In this ap-
plication, the threshold is represented by the latter class just for the upper limit since it is expected that the considered
indicators rise when a fault occurs.

2http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository Last consulted on 11/10/2017
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Fig. 24: ICS 2 final values of CYCBD (SISO) for the sensor on Bearing 1 referenced to (a) the BPFO and (b) the BPFI.

The comparison of BD methods is performed in terms of bearing fault identification and early detection dedicated
diagrams from Fig. 24 to Fig. 27. In these diagrams, dark gray data points refer to the maximized BD criterion545

that works as a scalar indicator referring to a specific type of bearing fault (outer race fault or inner race fault). The
threshold has been estimated by using the Tukey’s method on the data acquired in the first day of recording, under
the hypothesis that all the bearings are healthy in that time interval. Note that time window related to the healthy
condition has been highlighted in light gray.

Moreover, it is expected a certain dispersion of the indicator even when the bearings are healthy. This is due to550

unpredictable phenomena such as measurement uncertainty and other events unrelated to bearing faults. Such phe-
nomena could produce also odd data points that can be misinterpreted. Consequently, it is convenient to smooth the
data points in order to estimate a consistent trend that simplify the data verification with respect to a given thresh-
old. The data smoothing has been performed by the moving average method, which can be easily implemented by
convolving a given time series with a fixed rectangular window of 50 samples.555

Fig. 24 collects the ICS 2 final values estimated by SISO CYCBD for the sensor on Bearing 1 with a FIR filter
length of 80 samples. Fig. 24 highlights that, considering the BPFO, a clear increasing trend can be detected after 3.8
days, with three consecutive local sudden deviations in correspondence to day 5, 6 and 6.5. This global fluctuations
of the indicator trend observed in Fig. 24, are likely due to propagation phenomena of the bearing fault. As reported
in Ref. [30], after the defect appearance, the propagation mechanism of bearing faults is composed by consecutive560

propagation and smoothing effects. The diagram related to the BPFI shows a slighter increasing trend due to the
presence of a certain number of values above the threshold. This happen especially when also the ICS 2 values
referenced to the BPFO significantly deviate. This behavior is in agreement with the physical interpretation of the
fault development, since a marked growing trend of the indicator related to the outer race fault is expected. By the
way, the presence of some data points beyond the threshold in the BPFI case could make the interpretation of the data565

difficult.
The SIMO approach may improve the results because the weighting matrix estimation is enhanced when several

responses are considered. Since the quality of the CYCBD output is strictly related to the accuracy of the extracted
cyclic components, a good estimation of the weighting matrix leads to a better source estimation. In this particular
case, the low frequency resolution of the measurements (1 Hz) is not ideal for bearing diagnostics, thus the SIMO ap-570

proach can be used to counter-balance this limitation by exploiting the presence of multiple sensors on the test bench.
Fig. 25 show the results obtained by performing SIMO CYCBD taking into account all the available accelerometers.
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Fig. 25: ICS 2 final values of CYCBD (SIMO) referenced to (a) the BPFO and (b) the BPFI taking into account all the available sensors (on
Bearings 1 to 4).

It can be observed that the result quality has been strongly improved by performing the SIMO CYCBD. In this
case, the outer race fault results are not significantly improved since becomes visible after 3.8 days, as highlighted
also by SISO CYCBD results. However the diagrams related to the inner race fault are generally enhanced. In fact,575

the ICS 2 values referenced to the inner race fault shows decreasing number of outliers as the number of considered
sensors increases. This leads to a reduced chance to detect false positives since the smoothed trend never across the
threshold, in particular in Fig. 25. Thus, the SIMO approach not only enhances the early detection of the bearing fault
but also improves the interpretation of the data. However, the computational effort the SIMO CYCBD is remarkable
compared to the SISO CYCBD. Furthermore, it should be noted that when accelerometers far from the excitation (i.e.580

the outer-race fault in Bearing 1) are involved, data points below the threshold may appear in the diagrams concerning
BPFO. This can be explained because the effectiveness of SIMO CYCBD can decrease considering accelerometers
very far from the source implying to a reduction of the SNR, even if the system is very stiff.

As done before, the results obtained by MCKD and MOMEDA are reported in Figs. 26 and 27, respectively. For
the sake of clarity, the correlated kurtosis values in Fig. 26 are expressed in logarithmic scale. For the MCKD, the585

filter length has been set to 120 samples using 7 shifts. Moreover, only 2000 samples of each records has been taken
into account, according to the suggestion in Ref. [11]. The results obtained with MCKD referenced to the BPFO are
worse than the SIMO CYCBD in terms of early fault detection and of data dispersion. However, with some limitations,
the MCKD allows for the bearing fault identification. Indeed, the fault typology is correctly detected, as well as the
increasing trend of the BPFO indicator. However, the threshold is crossed after 4.5 days that is approximately one day590

later with respect to CYCBD results. Comparing Figs. 24 and 26, it is further clear that correlated kurtosis appears
less sensitive with respect to ICS 2 to changes in the vibration signature due to the outer-race bearing fault. Thus, after
these observations, CYCBD results should be preferred.

Considering now MOMEDA results in Fig. 27, the filter length has been set to 120 samples as in the MCKD.
In this case the indicator of MOMEDA (i.e. multipoint kurtosis [3]) gives unsatisfactory results. In fact, some data595

point from day 5 to the last day are above the threshold but the smoothed curves, which represents the data trend,
is always below the threshold. Actually, this is not surprising since the bearing faults are well modeled as second-
order cyclostationary signals [20] but MOMEDA is sensitive to periodic signals. Even if the BPFO highlights a weak
increasing trend, the data dispersion is too high to be reliable. In fact, the fitted curve remains below the threshold in
the whole dataset.600
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Fig. 26: Correlated kurtosis final values of MCKD referenced to (a) the BPFO and (b) the BPFI.
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Fig. 27: Multipoint kurtosis final values of MOMEDA referenced to (a) the BPFO and (b) the BPFI.
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Finally, this application has shown the effectiveness of CYCBD in order to identify an outer race bearing fault
considering the natural advancement of the bearing fault. This is all the more accurate as BD is performed considering
several sensors placed on the test rig.

6. Conclusions

In this paper a novel blind deconvolution algorithm based on the iteratively minimizing a Rayleigh quotient has605

been introduced. The strong point of the proposed method is the flexibility: several tailored criteria can be easily
implemented thanks to the presence of a weighting function driving the deconvolution. A BD method based on the
indicators of cyclostationarity, called CYCBD, has been deduced. In this scenario, the cyclostationary framework has
been explicitly used for the first time in order to design a BD method with application to machine diagnosis.

The advantages of CYCBD have been highlighted in five different synthetic signals enlightening its capability to610

recover impulsive patterns exhibiting cyclostationary behavior. Particular care has been dedicated to compare CYCBD
to MOMEDA and MCKD since represent the most recent BD methods for the diagnosis of rotating machines proposed
in the literature.

Considering real signals, the effectiveness of CYCBD has been investigated and discussed, both in qualitative
and quantitative terms, in comparison with other BD methods proposed in the literature, first considering the gear615

tooth spall identification by means of a dedicated experimental campaign. This comparison has led to design a
diagnostic procedure based on the proposed cyclostationary criterion for gear tooth spalling in gearboxes operating
at constant regimes (or accounting small speed fluctuations). The main advantage of this method is that requires a
limited user interaction by exploiting an indicator based on the relative value of the maximized criterion between
the healthy condition and the current one. The method robustness has been further demonstrated by means of an620

extended sensitivity analysis taking into account the effect of the FIR filter length on different critical parameters of
the algorithm. Moreover, the proposed BD method has been applied for the bearing fault identification using a run-to-
failure dataset achieving satisfactory results. In this case, CYCBD provides excellent diagnostic performances with
respect to the other BD algorithms in terms of early fault detection and identification.

All the results highlight that the maximized value of ICS 2 through CYCBD can be considered as a robust fault625

indicator. Specifically, the experimental results, according to the simulated ones, demonstrated the superiority of the
proposed criterion dealing with cyclostationary signals in two different experimental cases. In particular, CYCBD
overcomes MOMEDA dealing with cyclostationary sources since MOMEDA is based on a criterion sensitive to
periodic sources. Concurrently, the cyclostationary criterion used in CYCBD, i.e. ICS 2, appears more consistent
with respect to the criterion used in MCKD, namely the correlated kurtosis. CYCBD proved to be effective also in630

non-constant regime cases, which represents an open issue until now. CYCBDang has highlighted good performances
dealing with vibration signals in variable speed conditions. In such circumstances, MOMEDA and MCKD do not
give satisfactory results since they have been designed only for the extraction of equispaced impulse trains.

External Resources

A Matlab implementation of the proposed blind deconvolution method together with an interactive demo can be635

found at: put_the_link_here
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Appendix A. Relationship between differential entropy and kurtosis

The differential entropy H of a random variable x is defined as:

H = −

∫
f (x) ln f (x)dx (A.1)

where f (x) is the probability density function (pdf) of x. If x is zero-mean and of unit variance, the truncated version
of the Gram-Charlier expansion of f (x) is given by:

f (x) ≈ ϕ (u)
[
1 +

κ3

3!σ3 H3 (u) +
κ4

4!σ4 H4 (u)
]

(A.2)

where

ϕ(u) =
e
−u2

2

√
2π

(A.3)

Hm is the Chebyshev-Hermite polynomial of order m and κn refers to the cumulant of order n. For the sake of
simplicity, the argument of H and ϕ are neglected hereafter. The expansion reported in Eq. (A.2) is valid under the
hypothesis that f (x) is close to a Gaussian pdf [31]. Eq. (A.2) can be further simplified if we assume that f (x) is
symmetric, which implies that κ3 is nil.645

On these grounds, considering the Taylor’s expansion ln(1+ψ) ≈ ψ− ψ2

2 , the substitution of Eq. (A.2) in Eq. (A.1)
gives:

H ≈ −

∫
ϕ
(
1 +

κ4H4

4!

) [
lnϕ +

κ4H4

4!
−

1
2

(
κ4H4

4!

)2]
du (A.4)

≈ −

∫
ϕ lnϕ + ϕ

κ4H4

4!
−
ϕ

2

(
κ4H4

4!

)2

+ ϕ lnϕ
κ4H4

4!
+ ϕ

(
κ4H4

4!

)2

−
ϕ

2

(
κ4H4

4!

)3

du.

Recalling the hypothesis of x approximately Gaussian, this expression can be simplified by noting that:

• κ4 is small and it’s equivalent to the kurtosis, viz:

κ4 = E
[
(u)4

]
= Kurt[x] (A.5)

• the third-order term is infinitely smaller than the second-order terms under the hypothesis;

• the Chebyshev-Hermite polynomials are orthogonal with respect to ϕ:∫
ϕHiH jdu = j!δi j (A.6)

where δi j is the Kronecker delta;650

•
∫
ϕ lnϕdx is the differential entropy of a Gaussian distribution with zero-mean and unit variance, such as

−

∫
ϕ lnϕdx ≈

1 + ln 2π
2

. (A.7)

Thus, after some manipulation, Eq. (A.4) can be rewritten as:

H ≈
1 + ln 2π

2
−

1
48

Kurt[x]2 (A.8)

giving the link between the kurtosis and the differential entropy.
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