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SOMMARIO

Lo scopo della seguente tesi & di proporre un nfroiente modello numerico
basato sul teorema cinematico dell’analisi limgter, lo studio di volte e strutture in
muratura con o senza fibrorinforzi in FRP.

L’approccio consiste in 2 Step. Al primo step sfimiscono le superfici di rottura
della struttura in muratura senza FRP attraversopuacedura di analisi limite. Si
considera una cella rappresentativa costituitairdalemento centrale collegato
con gli altri elementi attraverso delle interfacigede-plastiche (giunti di malta).
Nel secondo step le superfici di rottura vengonglémentate in un innovativo
codice agli elementi finiti per I'analisi al colks di volte o interi edifici in

muratura.

ABSTRACT

The aim of this thesis is to propose a new efficimummerical tool, based on the
kinematic theorem of limit analysis, for the study masonry shell and 3D

structures with or without FRP reinforcement.

The approach consists of two steps. In step | oforied masonry strength

domains are obtained with a FE limit analysis pdure applied to a representative
element of volume constituted by a central bridkefiacting with its six neighbours

by means of rigid plastic interfaces (mortar jaint) step Il, the unreinforced

strength domains are implemented in a novel uppand FE limit analysis code

for the analysis at collapse of entire masonry edrand 3D structures.
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Chapter 1.

| ntroduction

The recent earthquakes occurred in Umbria and Mafitaly 1997-1998), Molise

(Italy 2002) and Abruzzo (Italy 2009) indicatedtthize historical Italian buildings,

essentially constituted by masonry structures,saeacely resistant to horizontal
loads and highly vulnerable to seismic actions. hSutadequate behavior of
brickwork under earthquakes is a common issue cgomg buildings in many

countries worldwide. Inadequate resistance undemge actions may be observed
also for curved masonry structures, as for instaacdts, domes and arches, which
typically are designed to withstand vertical loatsler membranal regimes only.
Great impact on the scientific community and on @n people had the collapse
of one vault of the S. Francesco Basilica in Asdiging Umbria earthquake (26
September 1997), which caused both the death efgbps and an unquantifiable
artistic loss, due to the almost total destructadrirescos realized by the great

[talian medieval artist Cimabue.
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The need of designing efficient and non invasivergthening interventions to
masonry structures in seismic area appeared alimosiediately clear to all
technicians involved in the reconstruction of godled vaults after Umbria and
Marche earthquakes. Therefore, the utilization &PFstrips as reinforcement
instead of conventional methods seems the mosildeisolution for the seismic
upgrading, thanks to the limited invasiveness, kilita and good performance at
failure [1]-[7] of carbon fibbers.

Despite the great importance and the increasinfysitn of such innovative
strengthening technique, no numerical models devédethe prediction of the
ultimate load bearing capacity of vaults and enmtr@sonry buildings reinforced
with FRP strips are nowadays available. The intenal scientific community is
producing and has recently proposed several nuateriodels for the analysis of
masonry structures with and without FRP but theblem is still open. The
difficulty in modeling masonry structures depends many causes; among the
others, the most important are of course, the bg&reous character of masonry
(since it is a regular assemblage of blocks betwelgich mortar joints are laid)
and the brittle behavior of joints. Another impoittaremark is that a general
approach, able to predict the ultimate load beaciggacity of masonry under in-
and out-of-plane loads is still far to be propodespecially in presence of out-of-
plane actions, the important role of compressivenbrane actions has not been
taken into account with sufficient care, probabdcéuse experimental tests mainly
deal with pure flexion (maybe a consequence of twenplexity of the
experimentation in presence of multiple loads). Histicated numerical methods
began to emerge during the last decade, and hareused as valuable tools for
the analysis of masonry, see for instance the wiyKsourenco et al. [8], [9], [10],
Berto et al.[11],[12],[13], Luciano and Sacco [1#%],[16] Marfia and Sacco [17],
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Gambarotta and Lagomarsino [18],[19], Pietruszeak Ushaksarei [20], [21] and
Massart et al. [22].

In general, numerical models are based on threferelift approaches: micro-
modeling, macro-modeling and homogenization.

The micro-modeling consists in representing sepramortar joint sand units. In
some cases, reasonable simplifications have bé&eirced, for example utilizing
zero-thickness interfaces for the joints (see fmtance Lourenco and Rots [10]
and Lotfi and Shing [23]). An evident drawback bistapproach, which in some
cases limits its applicability to small panels, dsnnected to the necessity of
modeling separately units and mortar. Of courseranmodeling allows to capture
a point-to-point prediction of stress and straetesbn masonry panels to compare
with experimental evidences. On the other hand diffecult applicability of this
method for the structural analysis of complex wdildonging to existing real
buildings is evident. The alternative macro-modglia intended for large-scale
structural calculations. With this end in mind,dibes not make any distinction
between masonry units and joints, so averagingeffeet of mortar through the
formulation of a fictitious continuous material [2Among the others, it is worth
mentioning the classical approach which models mgsas a no tension material
(NTM). In this framework, many technical and thdma papers have been
published in the past thirty years, mostly by #aliresearchers [25]-[29]. In spite
of the attractive simplicity of the mechanical amgtions of this approach ,robust
numerical tools seem to be difficult to obtain, miesome FE codes have been
recently implemented with success [30],[31]. Fumih@re, even if the classical
theorems of limit analysis can be extended to NEbE([28]) some difficulties are

still present. In particular:
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» The origin of the axes in the stress space Q) belongs to the boundary
of the strength domain, so making the use of stahdiE packages
difficult.

e It should be noted that a key aspect which determitihe strength of
masonry panels subjected to horizontal actionsrictidn between the
blocks, as pointed out in [32]; as a consequermeastitutive equations for
masonry are generally non associated (see fomostB3]). Furthermore,
even if an associated flow rule is assumed, a ptaress state in which
shear stress and a vertical compressive pressweaeting, while
horizontal normal stress is absent (typical sitrafor load-bearing shear
walls), provides a positive principal stress, rirméessible for a NTM.

Several other models belonging to macro-modeling lwa found in the technical
literature, some of which with a marked phenomegickd nature. In order to take
into account some distinctive aspects of masonogh sas anisotropy in the
inelastic range and the post-peak softening behavlmsely related to the

constituent materials (mortar and units) and to geometry (bond pattern,
thickness of joints, etc.), some recent macro-n®Hale been “ad hoc” developed
(see [8] and [12] for instance), featuring orthptooelastic-plastic behavior with

softening. Usually, the mechanical properties nexliby the model are derived
from experimental data and the results are limitethe conditions under which
the data are obtained. Obviously, the introductibnew materials might require a
different set of experimental programs.

The third alternative is represented by the apfbioaof homogenization. It

consists in identifying an elementary cell, whicangrates an entire panel by
regular repetition. There are, indeed, importanitiwoutions for masonry in the

inelastic range. For instance, Luciano and Sacdép gioposed a brittle damaging

model characterized by a unit cell composed byKdpmortar and a finite number
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of fractures on the interfaces. Massart [34] anthdime and Pegon [35] adopted a
finite element approach to represent the non limedravior of the homogenized
material, assuming either elastic plastic or dan@ggionstitutive laws for blocks

and mortar. Nevertheless, this kind of FE appraacfuires a great computational
effort, since the field problem has to be solvedharically for every time step in

any Gauss point. De Buhan and de Felice in [36pg@sed a suitable model for a
homogenized limit analysis of masonry by meandefkinematic theorem, where
the blocks are supposed infinitely resistant anel jiints interfaces of zero

thickness with a pure Mohr Coulomb failure criterio

Limit analysis combined with homogenization appeany attractive because it is
able to reproduce some distinctive aspects of nigssnch as the anisotropy at
collapse and the scarce tensile strength, requionly a reduced number of

mechanical parameters of the constituent mateN&seover, limit analysis can be

easily applied to entire panels, once we dispose¢hef homogenized strength

domains for masonry.

1.1 Masonry curved elements

Masonry curved elements -as for instance archeagd@nd vaults- represent one
of the most diffused structural typologies in hiatal buildings of both Eastern and
Western architecture. Moreover, the growing interies the preservation and
rehabilitation of historic constructions has crelateneed for the development of
new efficient tools for the analysis and the eviiduaof load-bearing capacity of
these structures.

The first “scientific” graphical attempts for theudy of the equilibrium of masonry
domes go back to the early"8entury and are due to, e.g. Bouguer (1734), Bossu
(1778) and Mascheroni (1785), who stated simple avdimensional equilibrium



6 Chapter 1

equations, neglecting the role of circumferenti@icés. Anyway, what appeared
clear from the beginning, was that cracking ocaurgurved masonry elements in
presence of self-weight and of very low tensileesdes. In this context, a
considerable improvement in the analysis of spaEdomes was achieved when
Levy (1888) proposed a graphical analysis aimefinding the circle on which
circumferential forces vanish. For an exhaustistdny of the theories of masonry
vaults we remand to the classical treatise of Beuta[37]. Nowadays it can be
affrmed (Huerta [38]) that “the modern theory omit analysis of masonry
structures, which has been developed mainly by Heyi39], is the tool to
understand and analyze masonry structures”.

Despite the considerable research efforts dondenldst decades and the wide
spreading of Finite Elements programs (FE), tradél approaches based on the
assumption of a 1D behavior (Heyman [40], Oppenhetiral. [41], Pesciullesi et
al. [42]) are still the most diffused in engineegripractice. In this context, modern
and efficient computerized models have been predentthe framework of both
thrust lines method (O’Dwyer[43], Block at al. [34Ind limit analysis (Roca et al.
[45]), to predict possible collapse modes of maga@rches and axis-symmetrical
domes.

One the other hand, when dealing with the studgamfiplex 2D curved masonry
shells, thrust lines methods and at hand calculatiare hardly applicable:
therefore, FE approaches in the inelastic range haen preferred for these kind
of problems, assuming for masonry either a no tengiucchesi et al. [46] and
[47]), a damaging (Creazza et al. [48] and [49])aar orthotropic elasto-plastic
behavior with low tensile resistance (Lourencol ef9d, Lourenco [10]).

In the present degree, a novel finite element agirdor the limit analysis of
masonry vaulted structures is presented. A six-e@dangular curved element is

used in order to correctly take into account, assfgossible, the actual geometry
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of the vault. For the sake of simplicity, a kinefoapproach with possible velocity
discontinuities along the edges of adjoining eletmiésn considered. On the other
hand, it has been demonstrated (see Sloan and Kiefsa]) that the introduction
of discontinuities at the interfaces between camttigs elements is suitable for the
analysis at collapse of purely cohesive or coheliggonal materials, which is the
case of masonry. Following a general approach widdfused in the technical
literature for the analysis of masonry flat plag€amha [51]) plastic dissipation is
allowed only at the interfaces (generalized cyiicelr hinges) between adjoining
elements. In this way an upper bound of the collapsitiplier is obtained, since,
looking at the dual formulation, the admissibildthe stress state is imposed ( i.e.
the thrust surface is obliged to be inside the tvéepth when a no tension material
is considered) only at the element boundaries.rtteroto take into account all
possible deformation modes along triangles edges i@tation, stretching, and
sliding) it is assumed that plastic dissipationusscas a combination of bending,
torsion, out-of-plane shear and membrane actiamsh 8n assumption is necessary
when dealing with thick masonry shells (Reissnendlin hypotheses). When in-
and out-of-plane sliding phenomena occur, masorhjbés a typical frictional
behavior, which should be represented by non-aatsatiflow rules. Despite this
consideration, as it will be discussed throughbet €hapter 3, an associate flow
rule is here adopted for the interfaces, in ordetackle large scale engineering
problems with homogenization combined with simpl toutines. Thus, plastic
dissipation is evaluated assuming for the inteddmetween adjoining elements an
upper bound approximation of masonry failure swéambtained by means of a
standard UB finite element procedure, once thauitalde elementary cell is
identified for the curved texture under considemtilt is worth noting that, for
double-curvature shell like masonry domes, thetitieation of an elementary cell

which generates the whole structure it is not abvpgssible. However, in these
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cases, the technically meaningful simplificationassuming masonry constituted
by the assemblage of bricks with variable sizegpddding on the value of

principal curvatures) can be adopted.

This is the reason why, in the Chapter 2 a simgeristic method based on a
compatible identification between discrete modetl aguivalent continuum is

preferred. In Chapter 2 the upper bound FE homagéioh procedure adopted to
obtain an upper bound approximation of the actadlrfe surfaces for masonry
vaults is presented. Several examples of curvedsRg#&rabolic arch, ribbed cross
vault, hemispherical dome, barrel vault) are aredyand discussed in detail. The
anisotropy induced by the non null curvature of Ri&V is particularly evident if

compared with results obtained in the flat case.

1.2 Masonry reinforced with FRP

As previously discuss, the utilization of FRP srigs reinforcement instead of
conventional methods seems the most suitable eolufor their limited
invasiveness, durability and good performance #tréafor the rehabilitation of
domes and entire masonry building.

Nevertheless, it is worth noting that, despite teat importance and the
increasing diffusion of such innovative strengtingntechnique, few numerical
models devoted to the prediction of the ultimatedidearing capacity of out-of-
plane loaded FRP-reinforced masonry [52][53] areadays at disposal.

Very recently, limit state approaches have beamgited for masonry arches also
in presence of FRP reinforcement strips, see eagof@le et al. [54] and Roca et
al. [45].
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As a matter of fact, non linear complex damaginglet® (e.g. [15]) should be used
for the analysis FRP reinforced masonry. The FRBngieation from the support
is, indeed, typically brittle, as well as the témsiracking of mortar joints. These
aspects preclude, in principle, the utilizatiodiwiit analysis, which is based on the
assumption of perfect plasticity for the constitueraterials.

Despite the aforementioned limitations connectethéohypotheses at the base of
the approach proposed, following also what sugdestehe Italian Code CNR-
DT200 [55], limit analysis may be useful for desfgrposes, to provide a fast and
reliable estimation of collapse loads at a strdtlevel. On the contrary, no
information is given by limit analysis concerningsplacements reached near
collapse. However, such displacements are relgtsmlall and a rough estimation
could be obtained by means of an elastic analyistteostructure modelling the
crack pattern previously evaluated by means ot lamalysis.

The most important effect of a generic strengthgnimervention executed with
FRP strips is, indeed, to preclude the formatiorthef failure mechanism which
causes the collapse of the unreinforced structuith,the subsequent formation of
a new collapse mechanism different from the umgtiieened case, with higher
internal dissipation. Obviously, “hand” calculatfomay not be performed easily
for complex structures, especially in presenceuwofed shells with unsymmetrical
loads. Therefore, the adoption of an upper bourmcgeh combined with FEM
seems particularly suited for the prediction of FR&sonry behavior prone to
collapse.

The most suitable way for the analysis of FRP oetdéd walls is the utilization of
a two-steps approach based on homogenization cendépst step, relying in the
simplified homogenization of unreinforced masonnghwa curved representative
volume element has been widely illustrated in Coiagtand the reader is referred

there for a proper discussion of the limitationd #ve capabilities of the method.
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In the second step the macroscopic anisotropingtinedomains obtained in
Chapter 2 are implemented in a novel upper boundirRiE analysis code for the
analysis at collapse of entire FRP reinforced magsaunrved structures. Rigid
infinitely resistant wedge-shaped 3D elements aeduto model masonry at
structural level. The utilization of 3D elementssistable to simulate the flexural
strength increase obtained by the introduction RPFstrips. On the other hand,
wedge-shaped elements are utilized with the aimefoducing possible diagonal
out-of-plane failures, due to the development @icks (caused by bending and
torsion) which zigzag between contiguous bricks.

FRP strips are modelled by means of trianguladredements. Masonry and FRP
layers interact by means of interfacial tangerdigtions between triangles (FRP)
and wedges (masonry). Furthermore, a possibledihignsile strength for the FRP
reinforcement is considered at the interfaces batvesljoining triangular elements.
In this way, both delamination phenomenon at th@/Rksonry interface and FRP
tensile failure may be taken into account. Desphite fact that delamination is a
typical fragile phenomenon, an equivalent ultimgtiear strength for FRP/masonry
interfaces is assumed in the framework of limit lgsia, following formulas
provided by the recent Italian norm CNR-DT 200 [3&] the peak delamination
strength. It has to be emphasized that the limadyais approach here proposed is
based on the use a perfectly-plastic material mesgpdor masonry and for the
FRP/masonry interface, i.e. softening effect amditéid ductility cannot be
considered.

In order to validate the numerical model proposedumber of different structural
examples are analyzed, consisting of two archetedeby Vermeltfoort [56]
without reinforcement, a masonry ribbed cross vémyit Faccio et al. [57], a
hemispherical dome and a cloister vault, both telbyeForaboschi [58] in presence

and absence of reinforcement (Chapter 3). FinallZhapter 5 a set of numerical
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simulations on an entire building reinforced witRHF strips and experimentally
tested until collapse by Yi et al. [59],[6Q§ reported in presence and absence of
reinforcement.

Results obtained with the model proposed fit walthbexperimental data and
alternative non linear FEM simulations results. ikran overall analysis of the
performance of the numerical tool proposed, it bardeduced that the approach
presented may be a valuable software for pracét®mvolved in an inexpensive

evaluation of ultimate loads of masonry buildingsforced with FRP strips
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Chapter 2.
Masonry curved shells homogenized

failure surfaces

The study of masonry vaults should take into actthm essentials of the material
“masonry” -i.e. heterogeneity, almost no resistatewdension combined with a
good compressive strength and a high friction dciefit- as well as the overall
importance of the geometry for achieving the eftiilim.

In particular, the definition and the use of suigatmaterial constitutive laws for
masonry remains an open issue. In the recent pagtral authors (e.g. Luciano
and Sacco [1], Pegon and Anthoine [2], Massartle{3®) proposed different

complex modelling strategies for the analysis ofsomay structures in the non-
linear field. As a rule, three different approaclaes possible, usually known as
macro-modelling, micro-modelling and homogenization

While in micro-modelling (e.g. [4]) a separate detization of bricks and mortar

(usually reduced to interfaces) is assumed, maadets (e.g. [5]) substitute the
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heterogeneous material with a fictitious anisotropiomogeneous one, thus
needing much less time to be performed in compler linear analyses, but
requiring a calibration of the model with expensimgperimental data fittings.
Homogenization (e.g. [6] [1] [8] [9]) may be regaddas a compromise between
micro and macro-modelling, since macroscopic masdehavior is obtained
solving suitable boundary values problems on thitaat, thus taking into account

constituent materials mechanical properties andngéy only at the micro-scale.

The aim of this Chapter is to present the upperndo&E homogenization
procedure adopted to obtain an upper bound appatixim of the actual failure
surfaces for masonry vaults. In particular a FEtlamalysis discretization of the
elementary cell with 7 brick elements and mortamtpreduced at the interface is
used. The failure surfaces obtained, are implerdesit¢he macro-scale level in an
upper bound FE limit analysis code to obtain thé&pse load and deformed shape
at the collapse of entire masonry shells (ChaptrdBChapter 4).

Obviously, it should be remarked that rigorous hgemization can not be easily
applied in the case of curved structures, sinceidbetification of both a curved
elementary cell and suitable periodicity conditiars boundaries is not an easy
task. This is the reason why, in the present chapsimple heuristic method based
on a compatible identification between discrete eh@hd equivalent continuum is
preferred. In section 2.1 and 2.2 the upper bougdchémogenization procedure
adopted to obtain an upper bound approximatiomefactual failure surfaces for
masonry vaults is presented. In sub-section 2.8rakexamples of curved REVs
(parabolic arch, ribbed cross vault, hemispheritwahe, barrel vault) are analyzed
and discussed in detail. The anisotropy inducedhleynon null curvature of the

REV is particularly evident if compared with resuttbtained in the flat case.
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2.1 Homogenization background

. e

bricks disposition V’ ’ =
7z

¥

o, i I
i R, /'

disposition bricks disposifi
— ———
bricks dispesition

W J

elementary cell

Y

»

Figure 2.1: Typical double curvature shell structurd | and different bricks
dispositions.
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In this section, a FE procedure for obtaining ind aut-of-plane masonry failure
surfaces in case of curved shells is outlined.n&drization with several planes of
such surfaces will be then implemented in the 3iekiatic FE limit analysis code
described in the following chapter for a kinemditiait analysis of entire masonry
shells.

The general case of curved masonry vaults constitily a finite number of

infinitely differentiable surfacesfi(x) is considered (Figure 2.1 amdbure 2.2.

Since in the homogenized FE procedure, plasticipdigen on the interfaces
between adjoining elements can occur as a combmaif in-plane actions,

bending moment, torsion and out-of-plane shearsdRer-Mindlin thick plate

hypotheses are adopted (Cecchi et al. [10], Ceacti Milani [11]). It must be

noted that the introduction of a limited shear rggth under out-of-plane actions
could play an important role for instance in pregeaf monolithic arches and thin
shells subjected to concentrated loads, for whidllare can occur for out-of-plane
sliding of the blocksFigure 2.3(Drosopoulos et al. [12]).

Masonry is a composite material made by units bdridgether with mortar joints.

In most cases of building practice, units and rmaat@ periodically arranged, i.e.
walls are constituted by the regular repetitiorb€ks bonded with joints. When
dealing with flat panels, such periodicity allovesaonsider an entire structufe

as the repetition of a suitable representative eftgnof volume Y (REV or

elementary cell) — see Figure 2.4. Y contains ladl information necessary for
describing completely the macroscopic behaviou€XfIn particular, if a running

bond pattern is considered, as shown in Figure i2.has been shown that a

rectangular elementary cell may be adopted.
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osculator circle

Figure 2.2: Typical double curvature shell structur€s constituted by more that one
infinitely differentiable surface (e.gfl, f4). In the figure principal curvature radii at a

point P are also representegb( and 0, ).

Figure 2.3: Possible sliding of a thick arch.

On the other hand, when a curved masonry sur€acedentified at a poinfP by

the two principal curvature$/ p, and 1/ p, Figure 2.2is considered, it is very

straightforward to conclude that it is not alwaysgible to rigorously considé2



22 Chapter 2

as a regular repetition of the elementary voluméh¥s precluding in principle the
utilization of homogenization in the most generate. Nevertheless, a heuristic
but technically suitable approach is to identifyaimy case a representative volume
element, as depicted in Figure 2.4, which genettiiegiouble curvature shell by
repetition.

Without loss of generality, let us consider a magahell constituted by a finite
number of regular curved surfac€s. In correspondence of a poirtof Q , two
versorsr and s can be identified, corresponding to two orthogodiatctions

disposed parallel to the principal curvature plaofetie vault inx , seeFigure 2.4

Let the principal curvature radii alorrgands be denoted withp_(x) and p, (X)

respectively. Internal actions acting at each p&intQ are constituted by both in-
plane (meridian, hoop and shear stresses) andfqléime (meridian, parallel

bending and torsion) actions.

When p, (X) - o and p,(x) = p, OxOQ, the special cases of cross vaults,

barrel and cloister vaults are obtained. For akthcases of technical interest, the
curved elementary ceN' shown inFigure 2.5can be identified, which generates the
curved surface by repetition.

Furthermore, we define ol the local curved frame of referengg -y, - vy,

with y, normal to the vault middle surfacey, and y, parallel tor and s

respectively (seerigure 2.4. For this special sub-class of problems, rigorous
homogenization theory can be applied in combinatidth classic limit analysis
theorems for the evaluation of the homogenizedaimd out-of-plane strength
domain S™™ of masonry.

Despite the fact that classic homogenization themag never been applied to
masonry vaults, but only to flat walls, homogenizatconcepts has been recently

used, for instance, by Slinchenko and Verijenkd ftBlattice shells of revolution,
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for cylindrical shells by Andrianov et al. [14] abg Habbal [15] in the case of 1D

wrinkled arches.

== #=a—¥-+ 0 vz

e F=F—f=—F-F—F-%—1]

Elementary cell
[flat case]

Rigorous homogenization
[not adopted]

. . L Central brick
Figure 2.4: Comparison between homogenizatior

procedure and the kinematic approach here propeset

a: rigorous elementary cell identification in that tase.

—b: heuristic identification of the elementary ciat a

double curvature masonry shell and kinematic Simplified kinematic approach
[adopted]
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Figure 2.5: -a: Unit cell for a barrel vault withp_ (X) = p, =2 m. —b: Arch (o, =2 m)

elementary cell and its discretization by mean28# FE flat triangular elements.
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As a rule, when dealing with curved structures,ildgium equations in the unit
cell have to be written in a non Cartesian frame refierence, thus being
substantially different with respect to the flasea

The basic idea of the homogenization procedureistsnis introducing averaged
quantities representing the macroscopic membranienacand strain tensors

(respectivelyN and E) for in-plane actions, the macroscopic bending moim
and curvature tensors for the out-of-plane prob{esspectivelyM and y) and
the out-of-plane sliding and shear (respectivEly and T,) defined as follows

(here the direction3 is assumed perpendicular to the masonry middleepla
Figure 2.4):

E:[Eij]:<s>:viis(u)dv (,j=12)

1 o
N/t=[N;, /1] :<c>:vlcdv (i,j=12)

dz(u)
oy

1 o
X =[x ]=<08/3y >= = [=2dV (i, =12)
\
M/t =[M;] =<0y, >:V1IGY3dV (i,1=22)
\

I'; =<y, >=< [aus /9y, +0u, /dy,;0u, /0y, +du, /ays] >:V£J.73dv
v

T, /t =<1, >=<[0,5;0,4] >= lj 1,dV
Vi (2.1)



26 Chapter 2

where V is the volume of the elementary cell, t ttemsverse thickness, is the

displacements vector (componenis), ¢ and ¢ stand for the local quantities
(stress and strain tensors with componentsand g, respectively) and <*> is the

averaging operator. It is worth noting that, insthway, the behaviour of a
moderately thick shell (Reissner-Mindlin hypothgseaay be modelled.
Anti-periodicity and periodicity conditions are imged respectively to the stress

field 6 and the displacement field:

u=Ey+y+Ty+u™ u™on Y
on anti-periodic on dY
(2.2)

where:
- u® stands for a periodic displacement field;
- dY s the cell internal boundary (see Figure 2.4);

-Ez[E O; OT O] (O is a 21 zero vector);

_izlly3x O (1/2X[Y1 yZ]T)T OI;

- T is a 3% 3 matrix with all zeros exce]-):t31 =I';@ and f32 =I';(2).

Let S™, S” and S™™ denote respectively the strength domains of mdiar
more properly of the interface between mortar arickb, see Lourenco and Rots
[4]), of the units and of the homogenized macroscopaterial. S"™" domain of
the equivalent medium is defined in the space ef rtacroscopic stresses as
follows (Suquet [16]):
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1
N/t—<c>—V\J/.ch (al)
_ 1
M /t =<ay, >= v J cy,dV (a2)
1
SP"=(N T M)] T;/t=<r, >:ersdv (a3)
\%
dive =0 (b)
o]l =0 ©)
on anti-periodic on dY (d)
o(y)DS™ OyOY™; e(y)O0S® OyOY® (e
(2.3)

Here, [[o]] denotes the jump of micro-stresses across angrtiscity surface of
normal n™. Conditions (a) is typical of homogenization, citioth (d) is derived
from anti-periodicity, condition (b) imposes thecana-equilibrium and condition
(e) represents the yield criteria for the composi€btick and mortar).

The kinematic definition oS™", used in this chapter, is obtained by means of the

dual formulation of (2.3), assuming in the elementzell a velocity fieldv equal
to Ey +yy + L'y + v*', whereD is a macroscopic strain rate fielg, contains

the macroscopic curvature rate fielll, contains the macroscopic out-of-plane

per

sliding rate, and™ is a periodic velocity field. Under these hypottgsthe so

called support functionr™™ can be evaluated as follows:

o (5. T)= inf P(v)Iv=Ey + v,y + Ty +v*|
(2.4)

Where P(v) is the power dissipated in the elementary celbfgiveny .

From (2.4), it has been shown that a kinematicnitedn of S™™ can be obtained

as follows:
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\

)= [ nld )dY+jn([[v]] n)ds

Y (2.5)

N:E+M g +T'f :1snh°m(E,§g,f) OE,%,T
stm=(N M T)] ﬂh""‘fﬁ % l:j( mf[r( )v= Ey+y3xy+l“y+v"”}
P(v

where:

S is any discontinuity surface of vin Y, n is themal to S;

A(IvI; n)=1/2([vI] O n +n O[VI);

IT(d)Z max{c :d; o] S(y)};

N, M andT are the ultimate homogenized membrane, bendingatdf-plane
shear actions respectively.

It is worth noting that, using the kinematic defimn given by (2.5), it is possible
to explicitly determine the homogenized strengtmdim of masonry in the space

of the macroscopic stresses using a FE limit aislgéscretization of the
elementary cellRigure 2.4-b).

In particular, S™™ is obtained by means of the following constrainedimization

problem:

) . 0V,
A= min 2 [P@)v duzl{@i+—JJ (a)

VELTV Y 2\ 0y, oy,
Shom = NC:E+M%:+To =1 (b)
V=Ey +yy + Ty + v (©)
(2.6)
where

- A is the kinematic limit multiplier of the assignethcroscopic actions (moments,

membrane actions or out-of-plane shear);
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-M?, N° andT? are respectively unitary bending, membrane actmuasout-of-
plane shear tensors/vectors (i.e. they define dhiy direction in the S™"
generalized stress space at whitlis evaluated, see also Figure 2.6)

- P(d) is the local plastic dissipation over the REV;

- Y is a point of the REV in the local frame of refece.

2.2 Derivation of masonry homogenized failure
surfaces by means of a FE discretization of the
unit cell

A strategy for obtaining an accurate estimationS3f™ is to solve problem (2.6)

for several assigneM ® - N°-T? directions of the macroscopic actions by means
of a limit analysis FE approach.

In what follows, a FE upper bound approach is ashpin which dissipation
occurs only at the interfaces between adjoininghetgs, both for in-plane and out-
of-plane actions.

For the study of the masonry structures by measbelf elements (Chapter 3), the
discretization of the elementary cell is with aamgular FE infinitely resistant
elements, as shown Iigure 2.5b; plastic dissipation can occur only at interface

between adjoining elements.
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N,
N, Ny f >
R O

A
[81
0 I Ny

2, =[cos(cx) sin () 00000 (}]T
N’ =[N, NN =[cos(&) sin(ex) 0]"

12212

M :[Mleﬂffu]T:[O 00]
T’ =[7,T,f~[0 o) Vo T L1

12

macroscopic strength domain
An projection
z

Figure 2.6: Meaning ofN°, M% andT? -a vectorX; determines the optimization
direction in the homogenized space of in- and ddlane actions. In this case
x, =[cos(a) sin(@) 0 0 ... 0] ;-bvectorn, determines, in this case,

M® = [n21 Ns3; Ngs nzz]
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Instead, for the whole structures studies with veeelgments (Chapter 4), the REV
are discretized by means of 3D rigid infinitelyistant six-noded wedge elements,
whereas mortar joints are reduced to interface$ viictional behaviour and
limited tensile and compressive strength (Figur&).2ln this way, plastic
dissipation may occur only at bricks-bricks inteda and on mortar joints.
Nonetheless, it is worth noting that, since 3D weddements are used at a
structural level, only failure surfaces sectionserms of membrane and out-of-
plane shear are needed, since flexural and toldo@eaviour are derived directly
at a structural level by means of an integratianglthe thickness. In any case,
here both in-plane and out-of-plane failure surdaaee recovered for the sake of
completeness.

Three different typologies of interfaces occur wkeemasonry elementary cell is
considered, namely internal mortar-mortar, bricickoand brick-mortar interfaces.
Typically, cracking occurs in practice with a cofesfrictional behaviour at the
interface between bricks and mortar or directlydaghe joint. On the other hand,
as experimental evidences show, sliding occurs antan joints with almost zero
dilatancy with typical non-associated flow rule. § kiolates one of the hypotheses
of classic limit analysis theory (see for instakagris and Tin Loi [17], Orduna
and Lourenco [18] and [19]), implying that the wnégess of the ultimate load may
be lost and a multiplicity of solutions may exist fimit analysis problems, see for
instance Begg and Fishwick [20].

On the other hand, classical limit analysis thearessure the uniqueness of the
ultimate load factor and lead to simple optimizatiproblems. For the above-
mentioned reasons, in this case associated flowsrare assumed for the

constituent materials.
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‘ Brick 3
# NOdes == Mesh = Bricks head joint interface
N

==-R'E

* |
]

bed joint interface 6-noded wedge

Figure 2.7: Simplified micro-mechanical approach adoptedcBi$ supposed to interact
with its 6 neighbours and joints are reduced terfaces with zero thickness. Then, brick
with its neighbours is meshed by means of 6-nodediges.

In general, any non-linear failure criterigo~= (p(o) for mortar-mortar and bricks-

mortar interfaces can be assumed. Nonethelesxpasiraental evidences show,
basic failure modes for masonry walls with weak taoare a mixing of sliding

along the joints (a), direct tensile splitting dfetjoints (b) and compressive
crushing at the interface between mortar and brichs These modes may be
gathered adopting a Mohr-Coulomb failure criterommbined with tension cut-off

and cap in compression, see Figure 2.8, as suggegieourenco and Rots [4].

For what concerns brick-brick interfaces, a claséohr-Coulomb failure criterion

in plane stress¢, = ¢, (c)) is assumed.
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Mortar joints interfaces
Linearized Lourengo and Rots
(1997) failure criterion

k]

Brick-brck interfaces
];2 edge Mohr-Coulomb failure
criterion

d :friction angle
‘112 - compression linearized cap
j; : compression strength

f; - tensile strength

¢ : cohesion

Figure 2.8 Piecewise linear approximation of typical failumiterions adopted for joints
and brick-brick interfaces (respectively Linearizamirenco and Rots 1997 and classic
Mohr-Coulomb failure criterion).

Let us consider a generic interfatebetween adjoining triangular elemerit4

and N , as shown in Figure 2.9.
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Centroid Rigid rotations
velodities

“nou 2 % o Ay

—f—— Ay

Ay

Points of plastic multiplers
® cvaluation (linear jump of

velocities field)
1 £ axds ,—Interface I
' 2
| £1axis
3
Linear interpolation of the fa )::
velocity field on 7 ’
a-
z
y
3 P
x 4,
| 4(0,0,1) el P
5(L,01) 4\ 6(0,1.1) P E
1
/ 1 (0,07})\ é
2

y
[
Ps > , é1 20101 3(0,1-1) 3 5

9F element E (wedge, volume (7) Tedee

-b -C

Figure 2.9 (-a) Triangular three-nodes elements used fiFfh discretization of the
elementary cell and identification of interfateframe of reference; (-b) Rigid infinitely
resistant six-noded wedge element used for the &Edfetization and |, interface
between contiguous elements (-c).

We denote withé, — &, — &, an interface local frame of reference, wigh axis

perpendicular to the interface and, —¢&, laying on the interface plane.
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6:[033 O 023] in Figure 2.9. is the stress vector field acting the
interface, withg,, component normal to the interface (i.e. the staesisg parallel
to ¢, axis) ando,, and g,, the tangential stresses lying on the interface and

parallel to axest; — ¢, respectively.
Thus, for each triangular or wedge element, Figu®e six velocities unknown are

introduced, namely three centroid velocities (u, , U,) alongx, Y, z axes and

(0] D, . Let us denote with

three rotations @ g .

[w(&, & =[aw, Aw, Aw,]" the jump of velocity field onl, Aw,
corresponding to the velocity jump along the dimtt j with respect to

& — ¢, — &, Trivial algebra permits to conclude that the juofpthe velocity

field [[W]] is linear onl .
Aiming at treating the problem within the framewook linear programming,
within each interfacd of areaA', a piecewise linear approximation of the failure

surface qo=(0(6) is adopted.¢=¢(o) is generally constituted by,, planes of

equation A '6=c' 1<i<n,. In Figure 2.8, for instance, two different
linearized failure surfaces for both mortar-mortaterfaces and brick-mortar
interfaces are shown.

Since in the FE model adopted, the jump of velooityinterfaces is assumed to
vary linearly, 3[n,, independent plastic multiplier rates are assumed a
optimization variables for each interface.

Normality rule at the interfaces is expressed bgdtequality constraints per point

of the interface, involving plastic multiplier ratdields A! (P) and the jump of

velocity |U (P)| field is given by:
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Niin

0(p)]= Z;,/" (P)g—f (2.7)

Where J! (P) is thei™ plastic multiplier rate field ofl , associated with the"

linearization plane of the failure surface.

In order to satisfy equation (2.7) for each poihi g nine equality constraints must

be imposed, i.e. it is necessary to evaluate (Ih7¢orrespondence of three
different positionsP, = (x,,y,,z/) on | (for instance &, P,, P, of I,

Figure 2.9):

Niin

[OR)=34 (R)3Y k=123 (28)

c
Where A! (Pk) is the i™ plastic multiplier rate ofl corresponding to point
P = (Xk’yk’zk)'

From equations (2.8) (2.7) and (2.6), internal odissipated on thé ™ interface

is expressed by the following equation:

~ Nin_ T Nin 4

7, = [[UP)]TedA' = [ A (P)[a—ﬂ odA :izc; SA(PIA (2.9)
A A=l do =]

It is interesting to notice from equation (2.9) ttHaternal power estimation

depends on plastic multiplier rates variables ointso P, only. Finally, it is
stressed that the set of plastic multipligi'd P, ), obviously linear dependent with

respect to plastic multipliers of poinfd , P, and P,, is introduced only for the

sake of clearness.

External power dissipated may be written as:

7, = (2 + AT v (2.10)
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where X, is the vector of permanent loads, is the load multiplier,X; is the

vector of unitary loads dependent on the load mligti (i.e. the optimization
direction in the space of macroscopic stresses) énis the assembled velocity
vector of elements, which collects elements cedtveiocities and rotations.

Let us remark that, when dealing with masonry \eallttructures, dead loads play
a crucial role and contribute in a not negligiblarmer to the external power.
Obviously, periodicity conditions (2.6) are imposed V in the framework of
classic FE procedures by means of standard Dititldendary conditions (Pegon
and Anthoine [2]).

As the amplitude of the failure mechanism is aabjtr a further normalization

condition £]v =1 is usually introduced. Hence, the external powecomes
linear in V and A and can be written ag,, = X v+ A .

Both by equations (2.7), (2.8), (2.9) and the kiaten formulation of limit

analysis, the following constrained minimizatiomlplem is obtained:

n|
A= min
x={v.A (R4

r'v=1
tw(R)I =34 (e é2)52 RO

m XV

int

(2.11)

wheren' is the total number of interfaces considered &nis the vector of total
optimization unknowns. In general, problem (2.11pymbe easily handled

numerically both by means of well know simplex amerior point methods.
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2.3 Numerical results

Several structural examples of curved masonry stres are proposed. In
particular, two masonry arches experimentally tbdtg¢ Vermeltfoort [21], a
ribbed cross vault, a masonry spherical dome aokbiater vault experimentally
tested by Faccio et al. [22] and Foraboschi [23]f24 reported. Comparisons with
both experimental data available and numericalyaeal conducted through the
commercial software DIANA 9.3 [25] will be discussim chapter 3 and 4. In this
section, as a preliminary step for the structursdlyses, macroscopic masonry
failure surface sections for each different streaitexample analyzed. In general, it
is interesting to note tha®™™" depends not only on the mechanical properties of
the constituent materials, but also on the cureatdithe elementary cell.

For all the examples presented, a number of twaedgional projections of the
eight dimensional macroscopic masonry failure s@faobtained with the
numerical procedure previously discussed, are tegoin particular (see Figure

2.10), both the in-plane behaviour of the repregem element of volume when

subjected to membrane loads (and g,) at different orientations with respect to

the bed joint and the out-of-plane response (bgndioments along direction 11

and 22 as well as torsion 12, Figure 2.10) at fimatiof-plane shearT{,,T,;) are

investigated.

2.3.1 Parabolic arches by Vermeltfoort

The representative element of volume (with its gewynand the discretization by
means of wedge elements) considered for the asabfsiwo parabolic masonry
arches (a straight and a skew one) tested by Vdouodl[21] is depicted in Figure
2.11.
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S, G S,

direction 22

direction 11 S h@ﬂ o,

22

. c.

Figure 2.1Q Generic curved elementary cell. Meaning of diewt 11 and 229 angle
with respect to bed joint orientation, membranesstesg and J, , out-of-plane bending

M,; and M ,,, torque M, and out-of-plane sheall{, andT,,).

Bricks dimensions are 200 x 100 x 52 fr{(Rijswaard soft mud bricks) and mortar
joints are reduced to interfaces. It is interestingnderline that, since curvature of
the arch is not constant, a number of elementatlg should be considered.
Nevertheless, here only the REV located at the lmiddan of the structure (see
Figure 2.11) is taken into consideration for thkesaf conciseness (differences in
curvature from supports to the middle span areseddsufficiently small).

For joints reduced to interfaces, a Lourenco ants R4] failure criterion with
mechanical properties summarized in Table | ha® laelpted. For bricks-bricks

interfaces, a Mohr-Coulomb failure criterion is@s&d, see Table I.
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It is worth noting from Table | that joints compses strength has been taken
equal to masonry vertical compressive strengthh@uchoice is related to the fact
that the rigid plastic model adopted assumes aldumhaviour of the bricks and
3D effects are neglected. Therefore, it is not idsgo reproduce numerically
masonry crushing in compression, which results m wtimate resistance
intermediate with respect to bricks and mortar c@sgive strength. Thus,
mechanical properties of joints in compression agsumed with the sole aim of
fitting experimental masonry strength. On the otland, for the structural
examples reported in what follows, compressionmegis scarcely active and
influences marginally failure loads. In Figure 2.12 synopsis of resultant
numerical in- and out-of-plane macroscopic masdailure surface sections is
reported. In particular, in Figure 2.12 —a andiAbplane strength in the tension-
tension range and in the compression-compressigerat different orientations of
the bed joint with respect to 11 axis (see FigurE2 Zor the meaning of the

symbols) are depicted.

Table I: Parabolic arch. Mechanical characteriztisumed for joints and bricks.

Joint (Lourenco Rots failure criterion)

f, lN /mm2] Tensile strength 0.32
f. [N /mm2J Compressive strength 25
C Cohesion 1.2 f,
o} Friction angle 20°
D, Angle of the linerized compressive cap 40°
Brick (Mohr-Coulomb failure criterion with compresse cutoff)
f. [N /mm2J Compressive strength 30
ClN / mmZJ Cohesion 1

@ Friction angle 45°
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22-axis
125m

Figure 2.11 Vermeltfoort masonry arches. Representative eftrokvolume adopted for
the simulations and FE discretization

Furthermore, in Figure 2.12 from —c to —f M11-M2®&lav11-M12 failure surfaces
at increasing (imposed) T13 and T23 out-of-planeastare represented. From an
overall analysis of the results, it is particulaglyjident (1) the anisotropic behavior
of the REV at failure and (2) the effect of outgdéne shear on ultimate bending
moment and torsion.

For the sake of completeness, in Figure 2.13, ttypieal deformed shapes at
collapse in presence of N11 membrane action (#&jaio (-b) and N22 (-c) are
illustrated.

The curvature of the elementary cell is, in thisezanot particularly pronounced.
Furthermore, bricks are disposed with their larg@enension along the direction
with null curvature, therefore failure surface smt$ are very near to those
obtained in the flat case (compare, for instangeiféi 2.12 withErrore. L'origine
riferimento non e stata trovata.results).

Only for N22 (see Figure 2.13-c) a marked out-@rgl effect is visible, obviously

due to the curvature of the REV.
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Figure 2.12 Vermeltfoort masonry arches. —a and -b: In-plaomogenized failure surface

(-a: compression region, -b: tension region) dedént orientations of the load with respect

to bed jointd direction. —c and -d: M11-M22 (-c) and M11-M12)({dilure surfaces at
different values of out-of-plane shear T13. —e dni111-M22 (-c) and M11-M12 (-d)
failure surfaces at different values of out-of-mgahear T23.
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e
W,
& -c

Figure 2.13 Vermeltfoort masonry arches. Typical REV defornsdpes for (-a)
N11 membrane action, (-b) pure M12 torsion and {22 membrane action.

Finally, it is worth noting that, when dealing withembrane actions, being non-
null only curvature along 22 direction, ultimateesigth along 11 direction remains

almost equal to that obtained in the flat case.
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2.3.2 Ribbed cross vault

The geometry of the elementary cell utilized fog tonstruction of a ribbed cross
vault experimentally tested in [23] is representiadFigure 2.14. The REV
geometry presents negligible differences with resp® the cloister vault
elementary cell analyzed in the last example. Bagler is therefore referred there
for a full description of the homogenized failunaface obtained with the model
proposed and for a discussion on numerical resiiexe, we focus on an
alternative disposition of bricks, equally utilized practice and illustrated in
Figure 2.14 (second configuration). Despite the fhaat this disposition was not
used during experimentation carried out by Facti@le[23], it is particularly
interesting from a numerical point of view, sinbe targer dimension of bricks is
disposed along axis with non null curvature. Fois theason, a meaningful
deviation from the flat case is expected.

Common ltalian bricks of dimension 250x120x55 hwere used by Faccio et al.
[23] to build the vault, with mortar joints of thkiness approximately equal to 10
mm (here joints are reduced to interfaces for #ke f simplicity).

11 axis in Figure 2.14 is the direction of non nalirvature, with 22 axis
perpendicular to 11. 11 curvature is, in this casastant, therefore only one
representative volume element is needed for thiysisaf the cross vault at a cell
level.

Mechanical properties adopted for the constitueatenmls are summarized in
Table II. As in the previous case, a Lourenco-Raiisire criterion is adopted for
joints reduced to interfaces whereas for bricksanMCoulomb strength domain is

assumed.
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1*' configuration 1st configuration 2nd configuration

11-axis 3
22-axis

22-amis 11-azis

2" configuration LI5m

i/

Figure 2.14 Ribbed cross vault. Representative element afrmeladopted for the
simulations and FE discretization (first experinagricks configuration and second
disposition with bricks larger length along thesaaf non-null curvature).

Similarly to the previous example, in- and out-tdfe homogenized failure
surfaces obtained with the model proposed are tegpan Figure 2.16. Also in this
example, masonry homogenized failure surface aipthine failure mechanisms on
the curved elementary cell are reported in Figut® and Figure 2.17, obtained by

means of the homogenization technique with flaingular element.
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Nevertheless, due to bricks disposition (REV londienension is disposed along
the non null curvature axis, see Figure 2.14) diffiees between present failure
surfaces and those obtained for a flat elementaty are rather evident. In
particular, observing failure surfaces involving Miiending moment (Figure 2.16
from —c to —f), it is rather evident the anisotpiehaviour between positive and
negative M11, corresponding to compression of dusaand extrados respectively.
Obviously, in this case, curvature reduces masaingngth along 11 direction,
whereas REV ultimate resistance along 22 axis msnessentially the same of the
flat case. This is confirmed by failure mechanisshserved, for instance, after the
application to the REV of N11 membrane action (Fég.18-a), pure torsion
(Figure 2.18-b) or pure bending moment along 1edion (Figure 2.18-c). In
particular, it is interesting to notice the non ligigle out-of-plane velocity
components (obviously due to the REV curvaturd)rafks resultant solving linear

program ( 2.11) when an external N11 action isiapgpkee Figure 2.18-a.

Table II: Ribbed cross vault. Mechanical charast&riassumed for joints and bricks.

Joint (Lourenco Rots failure criterion)

f, lN /mm2J Tensile strength 0.05
f. [N /mm2J Compressive strength 2.3(%
c Cohesion 1.2 f,
® Friction angle 25°
P, Angle of the linerized compressive cap 40°

Brick (Mohr-Coulomb failure criterion with compresse cutoff)
f, |_N /mm2J Compressive strength 30

(*): the value adopted corresponds to masonryeedriompressive strength adopted by
Creazza et al. (2000).
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Figure 2.16 Ribbed cross vault. —a and -b: In-plane homogerfaire surface (-a:

compression region, -b: tension region) at diffe@entations of the load

with respect to

bed jointd direction. —c and -d: M11-M22 (-c) and M11-M12){dilure surfaces at
different values of out-of-plane shear T13. —e dnif111-M22 (-c) and M11-M12 (-d)

failure surfaces at different values of out-of-@ahear T23.
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Figure 2.17 In-plane failure mechanisms on the curved eleargrtell. —a: purelN
action and detail of elementary cell out-of-planevature (ribbed cross vault elementary
cell). —b: complex in-plane failure in presenceNf, , N, N

s’

2.3.3 Emi-spherical dome

The double curvature representative element ofmelwith its discretization in
Finite Elements, considered for the analysis atlalevel of a spherical dome
experimentally tested in [24], is depicted in Fig#.19. Bricks dimensions are
250%120x55 mrhand mortar joints are reduced to interfaces. Wetgewith the
symbol “11” the direction tangent to the REV in r@apondence of the centroid of
the central brick and laying on a horizontal plamel with the symbol “22” axis
tangent to the elementary cell and perpendiculat 16,

It is interesting to notice that, differently fropnevious examples, both 11 and 22
directions correspond to axes of non null curvaté® already discussed, in this
case the REV chosen for the simulation should taldy scaled passing from the
supports to the top of the dome, if we suppose tiatcupola is generated by

repetition of the REV here considered.
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Figure 2.18 Ribbed cross vault. Typical REV deformed shapes (fa) N11
membrane action, (-b) pure M12 torsion (-¢) purelNd&nding moment.

Obviously, this should require that bricks dimensi@are scaled from their original
dimensions (an approximation here accepted in otdethave a numerical
estimation of masonry behaviour).

Mechanical properties adopted for the constitueatenials are summarized in
Table Il and correspond to experimental data ctdlé by Foraboschi [23][24], see
also [26].
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Figure 2.19 Masonry dome. Representative element of volunopizd for the
simulations and FE discretization

Membrane and out-of-plane homogenized failure sedaobtained solving

optimization problem ( 2.11) for a number of diffat directions of the unitary
vector £, (representing the load direction in the 8-dimenaicspace of in-, out-

of-plane and shear actions) are depicted in Figug® following the scheme
adopted in the previous examples. Due to the docimeature of the elementary
cell, the homogenized masonry failure surface eanty different from the flat
case, remaining sensibly anisotropic. The differstnength when respectively
positive or negative M11 and M22 bending moments ewnsidered (see for
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instance Figure 2.20-c and —e) are obviously acticensequence of the REV
curvature.

This is confirmed by deformed shapes at collappeesented in Figure 2.21. In
particular, in Figure 2.21-a field of velocitiesatllapse for bending along 11 axis
(both positive and negative) is depicted, whereasFigure 2.21-b failure

mechanism corresponding to pure torsion (M12)psasented.

2.3.4 Cloister vault

The single curvature REV constituting by repetitrcloister vault with square
plane and experimentally tested by Foraboschi i#iere analyzed. REV with its
discretization by means of six-noded wedge elemisntepicted in Figure 2.22.
Common ltalian bricks of dimension 250x120x55 twere used by Foraboschi
[24] to build the vault, with mortar joints of thkness approximately equal to 10

mm (here joints are reduced to interfaces for #ke f simplicity).

Table Ill: Hemispherical dome. Mechanical charasterassumed for joints and
bricks.

Joint (Lourenco Rots failure criterion)

f, |_N /mm2J Tensile strength 0.1
f. [N /mm2J Compressive strength 1.8
C Cohesion 1.2f,
@ Friction angle 20°
D, Angle of the linerized compressive cap 45°
Brick (Mohr-Coulomb failure criterion with compresse cutoff)
f. |_N /mm2J Compressive strength 30
cl_N /mm2J Cohesion 1

ol Friction angle 45°
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Figure 2.20 Masonry dome. —a and -b: In-plane homogenizddréasurface (-a:
compression region, -b: tension region) at diffeentations of the load with
respect to bed joind direction. —c and -d: M11-M22 (-c) and M11-M12)(fdilure
surfaces at different values of out-of-plane sfig8. —e and -f: M11-M22 (-c) and
M11-M12 (-d) failure surfaces at different valudat-of-plane shear T23.
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-b

Figure 2.21 Masonry dome. Typical REV deformed shapes forgtae M11
horizontal bending moment (left: intrados comprdssight: extrados compressed), (-
b) pure M12 torsion.

We indicate with the symbol “11” the horizontal scurvature equal to zero) and
with the symbol “22” the axis perpendicular to “14rid tangent to the elementary

cell in the centroid of the central brick.
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Analogously to previous cases, a Lourenco-Rotaurikriterion is adopted for
joints reduced to interfaces (mechanical propertidsere available, are collected
from Foraboschi [23][24]), whereas for bricks a Md@oulomb strength domain is

assumed (see Table IV).

Figure 2.22: Cloister vault. Representative element of volumbepded for the simulations
and FE discretization

Homogenized failure surfaces obtained applying themerical approach

previously presented are reported in Figure 2.28alicular, in Figure 2.23-a and
—b, in-plane masonry ultimate behavior at differententations of the bed joints
with respect to load direction in the compressiompression and tension-tension

region respectively are represented.
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Table 1V: Cloister vault. Mechanical characteristg&sumed for joints and bricks.

Joint (Lourenco Rots failure criterion)

f, lN /mm2] Tensile strength 0.018
f. |_N /mm2J Compressive strength 2.3
c Cohesion 1.2f,
® Friction angle 20°
o, Angle of the linerized compressive cap 40°
Brick (Mohr-Coulomb failure criterion with compresse cutoff)
f. [N /mm2J Compressive strength 20
C|_N /mm2J Cohesion 1
o} Friction angle 45°

Similarly, in Figure 2.23 from —c to —f, out-of-pla ultimate strength (for both 11
and 22 directions) is evaluated at increasing assigput-of-plane shear actions
T13 and T23.

As it is possible to notice, results are similarthose obtained for the parabolic
arch by Vermetfoort [21], being REV almost flat tims case. Small differences
occur between present results and Cecchi et aldddllyses, except for a reduction
of 22 axis ultimate strength, consequent to a smalof-plane effect due to the

non null curvature. Such a behaviour is confirmadtibe deformed shape at
collapse observed loading the REV with a membrattora along 22 axis, as

illustrated in Figure 2.24.
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Figure 2.23: Cloister vault. —a and -b: In-plane homogenizelifa surface (-a:
compression region, -b: tension region) at diffeentations of the load with respect
to bed jointd direction. —c and -d: M11-M22 (-c) and M11-M12)({dilure surfaces at
different values of out-of-plane shear T13. —e dni111-M22 (-c) and M11-M12 (-d)

failure surfaces at different values of out-of-@ahear T23.
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Figure 2.24: Cloister vault. Typical REV deformed shape atajodle for pure membrane
action along 22 axis

2.4 Conclusion

In the present chapter, a kinematic simplified tdemtion model for the
determination of averaged masonry macroscopic piegeat failure has been
discussed.

The model assumes as representative element omeo(RREV) a central brick
interconnected with its six neighbours by meansnuafrtar joints reduced to
interfaces with frictional behaviour and limitechséle and compressive strength.
Suitable macroscopic internal actions have beeroseg on the REV in order to
comply, at least in an approximate manner, the gemzation theory
requirements. In order to numerically evaluateex@uise linear approximation of
masonry failure surface to use at a structurallJélie REV has been discretized by
means of flat six-nodded wedge rigid elements afidtathree-nodded triangular
rigid element for the study of ribbed cross va@ince no dissipation is allowed
inside the element, failure may occur only at therfaces between contiguous
elements. A possible failure of bricks has been &ken into account assuming a
limited strength for brick-brick interfaces. A sitedinear programming problem



Masonry curved shells homogenized failure surfaces 59

has been obtained at the micro-scale, which allpwelying several optimization
problems at fixed internal actions combinations, nomerically evaluate a
piecewise linear approximation of masonry failungace.

Four cases of technical relevance have been distussletail, namely a parabolic
arch, a ribbed cross vault, a dome and a cloistelt.viFor each case, macroscopic
masonry behaviour at failure in presence of mendeard flexural loads has been
investigated. The differences with respect to tla¢ ¢ase are sometimes rather
evident, especially when bricks are disposed wvii#irtionger dimension along the

axis with non null curvature or when double curvat®EVs are considered.
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Chapter 3.
Limit analysis of masonry vaults by curved
shell Finite Elements

Masonry curved elements -as for instance archeagd@nd vaults- represent one
of the most diffused structural typologies in hiatal buildings of both Eastern and
Western architecture. Moreover, the growing interies the preservation and
rehabilitation of historic constructions has crelateneed for the development of
new efficient tools for the analysis and the eviiduaof load-bearing capacity of
these structures.

In the present chapter, a novel finite element @ggh for the limit analysis of
masonry vaulted structures is presented. A six-mddangular curved element is
used in order to correctly take into account, assfgossible, the actual geometry
of the vault. For the sake of simplicity, a kineioapproach with possible velocity
discontinuities along the edges of adjoining eletsies considered. On the other

hand, it has been demonstrated (see Sloan and &ireg}) that the introduction of
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discontinuities at the interfaces between contiguelements is suitable for the
analysis at collapse of purely cohesive or coheliggonal materials, which is the
case of masonry.

In Section 3.1, the novel triangular six-nodes edrelement is presented, whereas
in Section 3.2, several numerical simulations omumber of masonry shells
experimentally tested until collapse are performedgarticular, the dependence of
the collapse load from the mesh refinement andtitoest materials parameters

(sensitivity analysis) is thoroughly discussed.

3.1 Thecurved triangular F. E. modd

3.1.1 Basic assumptions

In this Section, a kinematic FE approach for thenbgenized upper bound limit
analysis of masonry curved shells is presentedixA8des triangular curved rigid
element with possible velocities discontinuitieorg the edges of adjoining
elements is developed. Following a general approaitely diffused in the
technical literature for the analysis of masonat filates (Sinha [2]), in the model,
plastic dissipation is allowed only at the intedfadetween adjoining element.
The utilization of six-nodes curved elements istipalarly important for the
structural analyses reported in what follows, siitcés possible to accurately
approximate the actual shape of curve surfaces witbnfew elements (Chapelle
and Bathe [3]), and therefore permitting a reliaddéimation of both internal and
external (e.g. dead loads) dissipation.

On the other hand, it is stressed that an impotianation of the limit analysis
approach here adopted is its impossibility to giMermation (required by some
codes of practice) on displacements. In any casee that a failure mechanism is

known from limit analysis, an elastic FE analysik the resistant structure
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immediately before the collapse may be used to hiafermation on the

displacements.

3.1.2 Six-nodes curved shell elementary

Let a six-nodes triangular curved shell eleméntbe considered, as shown in
Figure 3.1-a, with nodes coordinatéxi,yi,zi ),i =1...6 and node numbers
disposed in counter clockwise, with vertex node ners from 1 to 3. Let the

symbol Q indicate the surface dE, Figure 3.1.
Let us introduce the two natural coordinateand P varying respectively from O

to 1 and from 0 to 1- (Zienkiewicz and Taylor [4]). Hence the global odioate
(x, A z) of a point P within the triangular elemerit can be expressed as:

PE[X y Z]T:iZ:Ni(t’p)[)ﬁ Y Zi]T (3.1)

% 4
2
% ez
e ; ﬁ y
L
t

0 1
-a -b

Figure 3.1 Six-nodes curved element (-a) and its implememtati Matlab (-b). The green
line refers tol ), edge.
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Where X, Y, and z are global coordinates of nod® (i =1,...6) and N, is the

nodei shape functionN, are given by:

N, (t, p):{”i (2’7. —1) i=123

731> i =456
1-p-t i=14
n, = t =2
p =3

(3.2)

Natural coordinates of nodal points are respegtiveP,(t, p)= (0, 0),
Pt p)=(10), R(tp)=(02), R(tp)=(1/20), Rt p)=(1/21/2),
P,(t,p)=(0,1/2).

Let us consider thd[, edge of the elemenE, connectingP, and P, nodes.
Similar considerations can be repeatedlfer3 and 2 — 3 edges respectively, with
no conceptual differences. Since the edge is ainstl to pass througk,, P,
and P, nodes, each poinP on I, is given in parametric form (assuming i.e.

p =0) as follows:

x(t) X(t) = X, + (— 3Xp — Xp, + 4xP4)t + 2[(xpl + X, )— 2XP4] t?
P=P(t)=| y(t) [1{¥(t) = Vo + (3 — Vo, + 4y K+ 2V + 5 )20 |
2t)] | 4t)= z, +(-32, — 2, +4z7, J+ 2[(2Pl +z,)- 22, |t?
(3.3)

where X, , Y, and z, are respectivelyx, y and z coordinates of nod® and

t0fo 4].
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Figure3.2 ', edge with thicknest andS® —r° —Q° curved local frame of reference

From (3.3), it follows that for an arbitrary edg'qf of an elementE which

connects nodes— j , a suitable local curved frame of referesfe-r® —q° with

origin on vertexi can be identified, as shown in Figure 3.2.
We consider curved elements as rigid bodies iipitresistant, with possible
plastic dissipation only at the edges between aijgi elements. In this context,

thus, it is necessary to evaluate jump of velcgibetween adjoining elements in
the local coordinate systesf —r° —q°.
From equations (3.1)-(3.3), we obtain by differatitin vectorss® —r ¢ —q°® in the

global coordinate system:

re n xn =—(oP/at)/|oP/at| = (oP/ap)/|oP/ dp|

R
q°=s"xr® (3.4)

e

at each poinP(t) belonging to the edgEy,.
From (3.4), trivial algebra leads to determine tb&ation matrix T(t) which

permits to pass from the global coordinate systethd local (see Figure 3.3).
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Figure 3.3 Global and local frame of reference. DeterminatbfP® and W*°.

s° e
q° :T(t) €,
re = (3.5)

On the other hand, for a generic pofdton I/, local abscissa® (from P,) is

determined by means of:

s°(t) = jolse = N (dx/dt)? + (dy/ dt)* + (dz/ dt)* dt

Coordinates of element centroid (i.eXg =éjxd§2, Ys =éjyd§2,
Q

Q

1 , .
Zg 25 I zdQ)) are evaluated by means of numerically tacklefaserintegrals,
Q

taking into account thadQ = ||6P/6t X 6P/6p||dpdt.
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Since curved triangular elements here adoptedgitk velocity field interpolation

inside each element depends only on 6 independeiales representing centroid

velocities Ug =[uff‘ uy uf]T and rigid rotations® :[dbff iy de]T
along coordinate axes.
Therefore, velocities field of a generic poiRt on I, edge is expressed in the
global frame of reference as:

u ()] [u? 0 0 0 - ®f ['x{t)-x

u,(t)|=| 0 up 0 ®F 0 -oF|y(t)-ys [=Re(P-G)

O y
uZ&) 0

0 ul -o¢ o 0 | zt)-z (37)

From (3.7), it follows that velocity field in theodal coordinate system results
dependent o non linearly (see equation (3.3)).

In order to evaluate internal power dissipatechatinterfaces by means §hom,
the jump of velocities vectdiu™ M]1=[Aq As AS, A, Ar] for each point
of the interface has to be evaluated as a funadfoglements centroids velocities

and rotations.Aq and As represent the in-plane normal and tangential vtgloc
jumps, Az9nn and Az9m are the flexion and torsion rotation rates jumpkereas

Ar is the out-of-plane tangential velocity jump ($égure 3.4).
By means of ( 3.5 ) and (3.7), jump of velocitiedd between element® and
N in the local coordinate systerA(q As AF) can be written as follows:

Ags®

Ads’)|=T"(s")'RY (As*)-6")- (s "RE (Pls*) - 6")

AT(s® (38)
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WhereA?(Se) is the total out-of-plane jump of velocities, aining contributions
of Ar(se) andAS .
On the other handA:?nn and Az9m can be determined by means of the following

expression (see Figure 3.3 for the definition aflaa®®, W° and 9°):
NS, = —sin(9°)codwe oV - )+

cos(ﬁe)cos(dbe)(d% - )+sm( )(CD )

A, = -codd®)codwe oM ~ N )+

sin(ﬁe)cos(we)( —CDN)+SIn( e)(dDM —dDN) (3.9)

Plastic dissipation on interfate

T" A 18

[ax

Figure 3.4 Triangular elements utilized for the structurahlgses. In- and out-of-plane
dissipation, possible plastic dissipation at tteriiace due to in-plane normal action, in-
plane shear, bending moment, torsion and out-afeptnear.
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Figure 3.5 Internal actiond' at the interfacd in the local coordinate system.

Thus, from equations (3.8) and (3.9), for a gengoiat of abscissa® it yields:

Ar(se) = AF(S‘*)-A:S‘H{i - seJ
2 (3.10)

WherelL,, is the interface length.

3.1.3 Plastic flow relationships and power dissipation

We introduce for each interfack between contiguous elements, macroscopic

specific actions collected in the vectot', Figure 3.5, defined as
t'" :[N(;q N, M., M} Trl], constituted by membrane actions acting
along local axisq®( N(']q) and local axiss®( N.,), bending momentN . ), torsion
(M) and out-of-plane sheal’{ ).

Lip

P' = [(N\Aq+ NLAS+ M A5, +M A, +T Arkis i
’ 11
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Power dissipated at the interface can be evaluaikthg analytically the integral
(3.11).

For each interfackof length L,,, we suppose to have at disposal the homogenized

(linearized) strength domain constituted by planes in the local coordinate

system (a generic linearization plane qI has equation

ALNL +ATNL +BEM,, +BIM/ +ATT) =C¥ 1<q' <m'). Such a

n

linearization for each interface (and, in principler each point of the interface)

can be obtained fror5"™ exploiting the procedure recommended by Krabbenhof
et al. [5], and the reader is referred there faothier details. Introducing plastic
multipliers fields at the interface (one for eattearization plane) from equations
(3.11), power dissipated at the interface can beritten as:
Lip
Pl = J-/]l (Se)(N(;quq + Nslsp%l + MrlmBr?n + MrlnBr?t +Tr: A? )jS (3 2)
0 A

Obviously, field /i'q, (se) assumes the same analytical expression foundhéor t

velocity field, i.e. is quadratic ib, see equations (3.3) and (3.7).

Therefore, /1';. (se) field is fully determined introducing only threelagtic

multipliers for each internal interface and for Ileadinearization plane,
corresponding to nodes 1, 6, 3.

On the other hand, the numerical evaluation ofgiretie(3.12) case by case is time
consuming and should involve several variablesewh interface. Thus, in order
both to reduce the computational cost and to be abltackle complex 3D
analyses, a symbolic integration is performed ngkise of Symbolic Matldlf
toolbox. In this way, plastic dissipation at a genénterface can be obtained with

a very limited computation effort as:
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Pl =S L Wi +w A2
q|

where W i=163 are predetermined numerical coefficients obtained

(3.13)

symbolically.

External power dissipated can be writtenRis = (Pg + AP/ )\N whereP, is the

vector of permanent loadg, is the load multiplier for the structure examin&ﬂ,

is the vector of variable loads and is the vector of assembled centroid elements
velocities. As the amplitude of the failure meclsamiis arbitrary, a further
normalization conditiorPlTW =1 is usually introduced. Hence, the external power

becomes linear inv and A .

314 The Linear Programming (L P) problem

After some elementary assemblage operations, arlipppgramming problem is
obtained, where the objective function consistdhi@ minimization of the total
internal power dissipated:
mln{P inass;'\‘ I,assT _ PTW}
| 0
A%U = b
suchthat .
A 20 (3.14)
where:
U is the vector of global unknowns and collects\teetor of elements centroids

velocities W) and rotations @ ) and the vector of assembled interface plastic

I,ass) )

multiplier rates §
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A is the overall constraints matrix and collects nmalization conditions,
velocity boundary conditions and constraints forasgc flow in velocity

discontinuities.

P,"*** collects the coefficient‘xi\{C,ql of equation (3.13) of all tha' interfaces.

The reader is referred to Sloan and Kleeman [1afortical discussion of the most
efficient tools for solving the linear programmipgoblem reported in equation
(3.14).

It is interesting to note that an estimation of rbemme actions and moments

associated to the failure mechanism can be obtaiiagtthe dual problem of (3.14):

min{— Py [w (I)]T + P, eSSy, I,a:;s} A
H'[w @] +A™ 4 =0 max{A}

- HE+RA-P, =
suchthat R [W (I)] =1 suchthat, e
] AIHZ S PllnaSS
)\’ l,ass 2 0
primal dual

(3.15)

Where X collects elements membrane actions and momenaaf element and

A is the collapse multiplier.

3.2 Structural examples

In this section, several numerical results on a emof masonry vaults are
presented and compared with experimental data ablailfrom the technical

literature.

The first two examples are respectively a barrefaregular vault and a skew arch,
both tested by Vermeltfoort [10]. The third exampdies on a ribbed cross vault
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experimentally tested by Faccio et al. [8], wherdhe last example is a
hemispherical dome (related experimental resuisaginilable from Creazza et al.
[61[7].

For each example, the homogenized limit analysigragerh presented in the
previous section has been employed to predict atémload and failure
mechanism, assuming for the constituent materiglee available) mechanical
properties experimentally determined (Vermeltfgafi], Faccio et al. [8], Creazza
et al. [7] and [6], Foraboschi [9]).

Both a mesh dependence study and a sensitivitygigalarying in a wide range

mortar cohesion and friction angle, are finallyaepd.

3.2.1 Barrd rectangular vault

The first analysis relies on the determination l#f tiltimate strength of a barrel
rectangular vault experimentally tested by Vernoelif [10]. The vault is a
parabolic arch with a clear span of 3 m, an inadius of 2.5 m, a width of 1.5 m
and a sagitta of 0.5 m.

The mechanical properties assumed for joints andkdrto calculate failure
surfaces are reported in chapter 2.

In Figure 3.8, a comparison between the numerigdlure load and the
experimental result is represented: the good agrernetween numerical and
experimental results is worth noting.

In order to evaluate the influence of the mechamoaperties adopted for joints on
both collapse load and failure mechanism, a seitgianalysis has been conducted
on the example at hand. Three different valuesriofidn angle ® have been

considered, respectively equal to 20°, 25° and Sbfilarly, four different values

of the tensile strengtH, have been inspected, respectively equal to 0.05,008

and 0.5N/mnt.



76 Chapter 3

ism lw lSkN lsm

0.5m
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g | I | I

1.25m M1

3m

Figure 3.6 Barrel rectangular vault. Geometry and loadingdithon.

Collapse load numerically evaluated at differemttion angles and cohesions is
reported in Figure 3.9 -a and -b.

It is interesting to note from the sensitivity arga that, for high values of tensile
strength, the failure load does not depend on mdriion angle, being failure

essentially due to pure bending, as shown in Fi§uté -a. In Figure 3.10 —b, the
internal power dissipation patch is also represkmes it possible to note, internal
dissipation is concentrated under the line of aagilbn of the external load,
meaning that, in this case, failure occurs as aegumence of the formation of two
flexural “plastic” hinges. A total of four hinges ipresent at collapse (two
geometrical and two plastics), a result clearlyagreement with simple mono-
dimensional predictions based on at hand calculati&inematical chains). The
numerical collapse load turns out to be very nedhat found by Vermeltfoort [10]

during experimentation (see Figure 3.8).
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Finally, in order to evaluate internal forces agtion the arch, in Figure 3.11
bending moment and axial compressive load eccéwtridefined as the ratio

between bending moment and axial load) along aedth are reported.

-a
48 ‘chshl i
I | 1
PP S A VI —
(Y !
* |
E‘ 44 {Mesh 1 \_\_‘4__ _i _____
Y
= | N |
=
S 42 - PMesh? F | 1==--1
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w2 () o e i - N
3 ! | | ! | esh ] [FAilure load: 40 kN
! | | | 1
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o
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Figure 3.7 Barrel rectangular vault. —a: Mesh 4: 320 elemants 729 nodes —b: Mesh
dependence study.
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Figure 3.8 Barrel rectangular vault. Comparison between erpartal and numerical
(dashed line) results.

Numerical data are collected from the solution eeof the dual problem (3.15). It
is particularly evident both the formation of twdagtic hinges with position
corresponding to the maximum positive and negateentricities, as well as the
effect of the small tensile strength adopted fortarojoints, which allows that

maximum eccentricities are major than one hathefarch thickness.

3.2.2 Skew arch

The second numerical simulation relies on a skenaljdic arch with a clear span
of 3 m, an inner radius of 2.5 m, a width of 1.5ansagitta of 0.5 m tested by
Vermeltfoort [10].

Mechanical properties assumed for joints and brizies the same of the barrel
rectangular vault. In Figure 3.12 the geometry dnel loading condition are

reported.
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P /P
0

Figure 3.10 Barrel rectangular vault. -a: Numerical failureananism compared with
experimental evidences by Vermeltfoort (2001).Nbrmalized power dissipated patch (

P™ is the maximum nodal power dissipation value).
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Figure 3.11 Barrel rectangular vault. Bending moment and c@sgive stress eccentricity
evaluated from the dual problem.

Three different meshes, with increasing level diheament, have been tested (the
third mesh is represented in Figure 3.13 —a), ideorto perform the mesh
dependence study reported in Figure 3.13 —b, wtlexrenumerical failure load
obtained with the different meshes considered psnted. Failure mechanism and
plastic dissipation obtained with mesh 3 is algreed in Figure 3.14.

No experimental force-displacement curves aresgtadial for the example at hand.
From Vermeltfoort [10], only the experimental cpliée load (around 26 kN) is
available. When mechanical properties reportedabld | in sub-section 2.3.1 are

adopted, a numerical collapse load of 34 kN isiobth in acceptable agreement
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(when an associated limit analysis approach is t@ddpwith experimental

evidences.

0.5 m /\

1.25m

¥
) I — ——— ——

Fil 1 1 1 1 1 1 1_7

T 1T T T 1T 1 ¢

A 1 I 1 1 I 1

3m

Figure 3.12 Skew vault. Geometry and loading condition.

In order to investigate how joints mechanical prtipe influence both collapse
load and failure mechanism, a sensitivity analyss been conducted on the
example at hand (results are reported in Figurg @kand -b).

Three different values of friction angl® have been considered, respectively

equal to 20°, 25° and 30°, with four different \eduof ft tensile strength,

respectively equal to 0.05, 0.1, 0.3 and Dl3mnT .
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It is interesting to note that, at a fixed valuetesile strength, the failure load
varies considerably varying mortar friction angled Figure 3.15 -b), meaning that

failure is due to a non-trivial combination of aftplane shear, bending and

torsion, as shown in Figure 3.14 -a, where theifaimechanism of the arch fdy

equal to 0.3N/mnt and ® equal to 20° is reported. Obviously, in this case,
mono-dimensional analysis would be not useful aB® ahell model is necessary
to reproduce the torsion behaviour of the arch.

In Figure 3.14 —b, the internal power dissipatiatcp is also represented. As it is
possible to note, internal dissipation is concdattanot only under the line of
application of the external load (see detail A igufe 3.14), but also along two
diagonal lines (details B and C), thus demonsigatimat failure occurs as a

consequence of the limited torsional strength eféfch.

3.2.3 Ribbed crossvault

A ribbed cross vault, experimentally tested by kaet al. [8], formed by the

intersection of two barrels vaults with an exteriaimeter of 2.3 m, is consider as
third example.

Mechanical properties assumed for joints and brigkdgl the failure surfaces
implemented are reported in sub section 2.3.2.

Data not available from experimentation have beeosen from typical values

from the literature, whereas the remaining coedfitd adopted are taken in
agreement with Creazza et al. [7][6]. In Figure63the geometry and the loading

condition of the ribbed cross vault are reported.
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Figure 3.14 Skew vault. -a: Numerical failure mechanism comepawith experimental

evidences by Vermeltfoort [10]. —b: Normalized powissipated patchR™
maximum nodal power dissipation value).

is the
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Figure 3.15 Skew vault. —a: Sensitivity analysis varying mottnsile strength and mortar
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Three different meshes, with increasing refinemieate been used (the third mesh
is represented in Figure 3.17 —a), in order togrerfa mesh dependence study on
the numerical collapse load (Figure 3.17 -b). lguFé 3.18, a comparison between
numerical failure load obtained with the presentleiand the experimental load-
displacement curves is represented; moreover, ncaheesults obtained by means
of the damage model proposed by Creazza et ab]§r also represented.

The satisfactory agreement among present resultsjopisly Creazza et al. ([7]
and [6]) elasto-damaging approach and experimentdences is worth noting.

As in the previous cases, a sensitivity analyss Ieen conducted varying both
mortar tensile strengttf, (0.05, 0.1, 0.15, and 0.Rl/mnt) and mortar friction
angle® (25°, 30° and 35°) in a wide range.

The failure loadsP, so obtained are depicted in Figure 3.19-a andAsbit is
possible to note from Figure 3.19-b, wheffe is reported at a different values of
f, (fixed) varying ® , failure occurs as a combination of bending artebylane

shear for almost all the values &f inspected.

lxp

2.3 m|

1.15m

HhH ' :
23m T - m
03 m[

23m

Figure 3.16 Ribbed cross vault. Geometry and loading condition
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Such a behaviour is confirmed by the failure medrarobserved and the internal

power dissipation patch, as shown respectively igufe 3.20-a and -b, where
numerical results obtained assumifig equal to 0.1N/ mnt and ® equal to 20°

are reported.

Finally, observing the patch of internal power gtiation, it is particularly evident
that an out-of-plane sliding of the elements urither zone of the application of
external load occurs, with the formation of fivendng hinges in the principal arch

of the cross vault (see Figure 3.20-c)

3.24 Hemispherical dome

The fourth analysis, which concerns a hemisphedoate with an inner diameter
of 2.2m and thickness of 0.12m and experimentasted by Foraboschi [9], is
hereafter discussed.

Mechanical properties assumed for joints and brackssummarized in Table Il in
sub section 2.3.3. In Figure 3.21 the geometry thad loading condition are
reported. Three different meshes, with increasefqnement, have been used (the
third mesh is represented in Figure 3.22 -a), ideorto perform a mesh
dependence study on the numerical collapse loapi(&i3.22-b). In Figure 3.23, a
comparison between the failure load obtained whih present numerical model

and experimental load-displacement curves is repied.
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Figure 3.18 Ribbed cross vault. Experimental and numericastidd line) results

Load-displacement curves obtained using the eldatoaging model by Creazza et

al. [6] are also depicted. Also in this case a isieitg analysis (f, equal to 0.05,

0.1, 0.15, and 0.N/mnTt and ® equal to 25°, 30° and 35°) has been conducted.
Results of such analysis are reported in Figuré-3.and -b.

Similarly to the previous cases, the failure loagehds considerably on mortar
friction angle at assumed tensile strength, meaniad collapse occurs as a

combination of bending and in-plane actions, asvshim Figure 3.25 —a (failure

mechanism obtained assumirfg equal to 0.IN/mnt and ® =20°).
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-C -d
Figure 3.20 Ribbed cross vault: -a: Failure mechanism (Creatzd. [6]). —b: Failure
mechanism, section view, present study. —c: Failehanism, front view, present study.

—d: Normalized power dissipated patdR %" is the maximum nodal power dissipation
value).

Figure 3.21 Hemispherical dome. Geometry and loading condition
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In Figure 3.25 -b, the internal power dissipatiatch is represented. As it possible
to note, internal dissipation is concentrated alengircular crown, with the

formation of one annular bending hinge; moreoverimor amount appears along
the meridians of the hemispherical dome, which skzes whenf, - O.

Finally, in Figure 3.26, the meridian and radialegfic membrane actions
distributions from the dual problem, as well as idian actions eccentricity are
represented. As it is possible to notice, collapsrurs for the formation of a hinge

along the parallel located between the fifth areddgixth row of elements.

3.3 Conclusion

In this chapter, a kinematic limit analysis modet the structural analysis of
masonry curved shells has been presented. In thalations, six-nodes curved
triangular elements are used, with possible plagigsipation at the interfaces
between adjoining elements. Curved elements haea lbeed with the aim of
taking into account correctly, as far as possithle, actual geometry of the vault.
For the sake of simplicity, a kinematic approachrigployed assuming curved six-
nodes triangles rigid-infinitely resistant, with gsible velocities discontinuities
along the edges of adjoining elements. dissipdti@ailowed only at the interfaces
(generalized cylindrical hinges) between adjoinghgments. In this way, an upper
bound of the collapse load is obtained. In ordetate into account all possible
failure modes along triangles edges (rotation{dtreg, and sliding), it is assumed
that dissipation occurs for bending moment, torsiout-of-plane shear and in-
plane actions, as usually accepted for the analysithick (Reissner-Mindlin)

shells.



Chapter 3

94

o
=
&
g%
45
a
-]
ge 8
T T vy
| 1 —
| 1
| 1
| 1
] [ S
| 1
| | 1
| | 1
| | 1
] . L1
I 1 1 [ ]
” | | ” “
| [
[ 1 [ [ (e
\\\\\ 4,\\\\\_\\\\\_\Jﬁww,ﬂ\.ﬂ\\i%
| I
I I 0B [ —
[ I o [
| | | n [ ]
I | i [
F—=-- e j———== e
| 1 1! (]
I | 1 " 1
I | | 1
| | :____ [
I I PR ML
| I f1 L
| 1 1 (]
DR R T
| o
| ___ (| S B S =
| | o] 1 [T s
! Lol | :
| 1 -l
| | h [ ]
I | 2 4, 1
\\\\\ R ]
| - 1|2 [
| .\.+.\,\ _M [
— [ ¢ 1 (]
= -t | | L
el||”| —H————= _|||||¢,-|“|||-
| |
= " m_ 1 W 1
| | 1
| M_ 1 (]
ﬂ f f — =
o o = o o =
=)} 5] ~ =l w ~r

[N peorT aanprey

Number of elements

Figure 3.22 Hemispherical dome. —a: Mesh 3:1344 elements 2d8d nodes). —b: Mesh

dependence study.



Limit analysis of masonry vaults by curved shglité elements

60

P
(=]
|

Load AP [kN]

20

| 1 |
/ Creazza et al. (2002) elastic-plastic

/' Creazza et al. (2002) damage model —
/- Experimental result

= == Numerical failure load 54.7 kN

=
wn
o+ — —
-1

Vertical displacement of the load AP [mm]

Figure 3.23 Hemispherical dome. Experimental and numericali{dddine) results.

Plastic dissipation is evaluated assuming for thmerfaces between adjoining
elements an upper bound approximation of the atimralogenized masonry failure
surface, obtained by means of a standard UB faléement procedure, once that a
suitable elementary cell is identified for the @uolvtexture under consideration.
The model is assessed through several numericallations on masonry shells
experimentally tested until collapse. In particuldwe dependence of the collapse

multiplier from the mesh and from the material paeters (sensitivity analysis) is

thorough

ly discussed.
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Figure 3.25 Hemispherical dome. -a: Failure mechanism (presteicty and damage model

by Creazza et al. [6]).-b: Normalized power disgpgpatch P™ is the maximum nodal
power dissipation value).
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Chapter 5.
Application of numerical model proposed

on an entire masonry building

The recent devastating earthquake occurred in Zbr(taly 2009) indicated once
again that the historical Italian buildings, esgdiyt constituted by masonry
structures, are scarcely resistant to horizontadldoand highly vulnerable to
seismic actions. Such inadequate behaviour undghgemke excitation is a
common issue of masonry buildings in many countniesrildwide and is
essentially due to mortar joints low strength wheaded out-of-plane [1].

The utilization of FRP strips as reinforcement éast of conventional methods
seems the most suitable solution for the seismgraging, thanks to the limited
invasiveness, durability and good performanceiltré&a[2]-[8] of carbon fibers.

As discuss in previous chapter, the new and efficrmimerical tool proposed is
able to predict the ultimate load bearing capacdy only for domes but also for

entire masonry buildings with or with out FRP strifn order to fully validate the
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numerical model proposed, a set of numerical sittaris on an entire building
reinforced with FRP strips and experimentally téstmtil collapse by Yi et al.
[10][11] is reported, in this chapter, in presence and aesehreinforcement.
Results, obtained with the model proposed fit virglth experimental data and
alternative non linear FEM simulations results. ikran overall analysis of the
performance of the numerical tool proposed, it bardeduced that the approach
presented may be a valuable software for pracét®mvolved in an inexpensive

evaluation of ultimate loads of masonry buildingsforced with FRP strips.

5.1 Masonry test structure: geometry description

A 3D FE limit analysis on a two story unreinforcesinforced masonry building
experimentally tested by Yi et al. and Moon eira[10]-[12] is considered.

The structure reproduces some structural charsiotsr of typically existing
masonry buildings in the mid-America area. The disiens of the structure are
7.32x7.32 m in plan, with story heights of 3.6 m tioe first story and 3.54 m for
the second story. The structure is constituted doy fnasonry walls labeled as
walls A, B, 1, and 2, respectively, see Figure 5.1.

The walls have different thicknesses and openintgpgato represent typical
masonry walls.. Walls 1 and 2 are composed of bmielsonry with thickness 20
cm. Wall 1 has relatively small openings, whereadl & contains a large door
opening and larger window openings. Therefore,ldinge difference in stiffness
between walls 1 and 2 allows the torsional behawbrthe building to be
investigated. Walls A and B are identical, and veithominal thickness equal to 30
cm. The moderate opening ratios in these two wals representative of many

existing masonry buildings. The aspect ratios efprange from 0.4 to 4.0. The



Application of numerical model proposed on an enmtirasonry building 155

four masonry walls are considered perfectly coratwat the corners, a feature not
always reproduced in the existing structures. Efigws to investigate also the
contribution of the transverse walls to the straraftthe overall building. For walls
A and B, Yi et al. [10][11] employed masonry arattels, whereas for walls 1 and
2, steel lintels were used. A wood diaphragm an@méer roof are present in
correspondence of the floors. Both solid bricks &udlow cored bricks were
employed in the structure. The nominal dimensidrsoth types of bricks are 200
x 89 mm (length x width). The cored bricks contailongitudinal hole through the
center with a diameter of 22 mm. Solid bricks wesed for the lower 54 courses
in the first story of the test structure to approaiely the 3.8 m level, whereas

cored bricks were used for the remaining parthefstructure.

5.1.1 Reinforced building

When dealing with the reinforced case, each wall ateengthened with different
typologies and dispositions of strips.

For Wall 1, unidirectional glass FRP (GFRP) strigpoxy bonded to the interior
face were used (Figure 5.2 -a), whereas two bitilireal glass fiber reinforcement
cement sheets bonded to the internal faces wetedmmn Wall 2 (Figure 5.2 -b).
Pre-stressing bars (17.5 mm diameter and 690 M&d girength) were located
vertically at the center of each pier of Wall Ad&ie 5.2 -c).

Finally, unidirectional vertical and diagonal GFRRips were bonded to the
interior face of Wall B (Figure 5.2 -d).

512 L oading condition and material properties

Two different loading conditions are investigateadmerically, corresponding to
horizontal loads dependent on the load multipligpli@d along X (i.e. parallel to

Walls 1 and 2) and Y direction (parallel to A andrBspectively, see Figure 5.1.



156 Chapter 5

732 cm

| 732 cm |
g
Wall A \
E, WallB
\ Wall 1
— Wall 2
1)?,'::1117 - Wall 2 11':E wall 1
5 1 /!
1em Wall B e Wall A
llm \l F\‘ 110 cm T
</ cm
17em —4 uj‘; E )
120 cm z 354cm
= — = 3E
240 cm g 110em th wom
Q g %P 360cm
=3
= J

Figure5.1 Unreinforced masonry test structure

The test setup of [10] was obtained locating twOQLKN actuators at the roof level
and two 450 kN actuators at the first floor, theproducing a first vibration mode
static distribution of horizontal loads in bothetitions.
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Figure 5.2 Reinforced masonry test structure: -a- Wall 1;,\Asll 2; -c- Wall A; -d- Wall
B

In the numerical model, vertical loads consist oofywalls’ self weight and
permanent loads of the first floor and of the roof.

The experimental compressive strength of bricks rwadtar reported in [10] is
41.6 MPa and 0.283 MPa respectively. Mechanicapgnties assumed in the
numerical model for masonry are summarized in Talle
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Table 5.1: Entire building reinforced with FRP strips. Mecizal
characteristic assumed for joints and bricks.

Joint (Lourenco Rots failure criterion)

f, [N/mmz] Tensile strength 0.15
f. [N /mn12J Compressive strength 4
c Cohesion 1.2f,
O} Friction angle 20°
®, Angle of the linerized compressive cap 40°

Brick (Mohr-Coulomb failure criterion with compresse cutoff)

f. [N /mn12J Compressive strength 45
CI_N / mmz] Cohesion 1
O Friction angle 45°
Heterogeneous model Continuous Plate

7

1

FEM discretization

E
“:),  Element E q’fﬂ

a n 0B , . 1

1 7 7 A R A R
£ &
- n 10 h @
&' —G 2l y —G 3 ’

I B, I P,

P e £
Centroid velocities Rotation rates
b

Figure 5.3 REV adopted to model unreinforced masonry anBHsliscretization
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The failure surfaces adopted for analysis on macede level at step I, calculated
with the procedure explained in Chapter 2 (see reigu3 for REV adopted to

model unreinforced masonry ) are reported in Fidide

5.2 Numerical results

521 X direction

For the numerical limit analyses performed in wilows, a model with 5920
wedge shaped elements (masonry) and 2176 triahgedeen used, see Figure
5.5.The 3D deformed shapes at collapse, both irsepoe and absence of
reinforcement, obtained through the FE limit anislysoposed are represented in
Figure 5.5 and Figure 5.6. The corresponding nwakm@and the experimental
collapse loads are reported in Table 5.2. As camobed, limit analysis simulations
are in satisfactory agreement with experimentalltgesproviding collapse loads
not exceeding 10% of error with respect to the erpental ones in the most
unfavourable case. Considering the obvious lintitegiand inaccuracies introduced
using a homogenized limit analysis approach, sudis@epancy may be regarded
as acceptable. From a detailed inspection of tfi@ermed shape at collapse, it can
be observed a symmetric behaviour of the buildbeing Walls A and B almost
geometrically identical (except for the applicatioh a different reinforcement
typology in the strengthened case). Figure 5.7 Eigdre 5.8 show a comparison
between the deformed shape of Walls A and B anéxperimental crack pattern.
As can be noted, while in the unreinforced cas#apse occurs for rocking and
shear failure of the piers of the first story walhrigid body motion of the second
story, the introduction of FRP at the first levelshthe obvious consequence of

transferring plastic dissipation also at the secziody.
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Figure5.4: Homogenized masonry failure
surfaces obtained with the procedure
proposed and implemented at structural
level for the analysis at collapse of entire
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Figure5.5 Collapse mechanisms in absence of reinforcemehdirection

Figure 5.6 Collapse mechanisms in presence of reinforcemettlirection
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Table5.2: Collapse load

Numerical model  Experimental Variation
(Anum) (Aex) [Anum)- Aex)l/ (Aex)
Without FRP 330 305 8.2%
With FRP 520 475 9.5%

\
\/

L a5
=

Figure5.7 +X direction: comparison between numerical anakzattern without FRP
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This is confirmed comparing the normalized plasdigsipation patch reported in
Figure 5.9 and Figure 5.10 respectivaty absence and presence of FRP

reinforcement.

e

ol

i - [* ;1"%

Figure 5.8 +X direction: comparison between numerical anakzattern with FRP
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Figure 5.9 Seismic load along +X direction, unreinforced ca$ermalized plastic
dissipation patch on masonry elements (color rdrage O to 1).
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Figure5.10 Seismic load along +X direction, unreinforced ca&$ermalized plastic

dissipation patch on masonry elements (color rdraye O to 1).
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/7 — TN

Figure5.11 Seismic load along +X direction. Normalized plastissipation patch on
masonry/FRP interfaces (color range from 0 to 1).

In the framework of limit analysis, plastic disdipa simulates the crack zones
found at the end of the experimentation and theeefhould give a global
prediction of the effectiveness of the reinforcemen

Finally, in Figure 5.11, plastic dissipation at theerface between FRP and
masonry is represented; it is particularly evidbetrole played by the strips which
delaminate for in-plane actions on Wall A and fat-of-plane rocking of Wall 1.

In order to have a deep insight into the role pilalpg the reinforcement strips on

the increase of the ultimate resistance of thedmgl in Figure 5.12 numerical

collapse loads obtained varyinf, masonry/FRP interface strength in a wide
range (from O to 1 MPa, being 0 MPa the unreinfdrcase) are represented. First
derivative of collapse load with respect tf reaches the maximum value

approximately in the rage 0.3- 0.6 MPa, meaning tthia is the optimal value of

the bond strength. Finally, it is worth rememberthgt typical values of bond
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strength f, which can be found in building practice range frérd5 MPa to 0.50
MPa.

5.2.2 Y direction

Numerical 3D deformed shapes at collapse, with aiitiout reinforcement,
obtained when the building is loaded along Y dimettare shown in Figure 5.13
and Figure 5.14. The corresponding numerical aace#perimental collapse loads
are reported in Table 5.3. As can be noted, algbigncase, limit analysis failure
loads seem in good agreement with experimentaltsesu

Figure 5.15 and Figure 5.16 show a comparison letvibe deformed shape of
Walls 1 and 2 and the experimental crack pattesicén be noted, the collapse
mechanism is similar, in particular the differeipieaing ratio of the Wall 1 and 2

determines torsional effects in the building, segife 5.13and Figure 5.14.

Collapse load [kN]

450
] == Numerical

results

400 4 / e Experimental
] without FRP
d et

350 - Experimental
] with FRP
<

300

250

200 f, [MPa]
0 0.2 0.4 0.6 0.8 1

Figure5.12 Seismic load along +X direction: sensitivity arsagyon the collapse load
varying fID masonry/FRP interface strength.
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v_

Figure 5.13 Collapse mechanisms in absence of reinforceméhtlirection

When dealing with the FRP reinforced structure, @edenate increment of the
collapse load (around 15-20%) is observed, a camsem of the fact that the
failure mechanism does not change considerably reipect to the unreinforced
case, except for a more evident plastic dissipat@mrcentrated on Wall 2.

oL

Figure5.14 Collapse mechanisms in presence of reinforcemahtirection
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Table 5.3: Collapse load +Y Direction

Numerical model  Experimental Variation
(Anum) (Aex) [Anum)- Aex)l/ (Aex)
Without FRP 315 301 4.6%
With FRP 395 361 9.4%

As can been observed from the Table 5.3, a verg ggoeement is found between
experimental and numerical collapse loads, botprésence and absence of FRP
strips.

sinagEbaimint
| P -
I

E— - ul |

Figure5.15 +Y direction: comparison between numerical anelcgattern without FRP
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Figure5.16 +Y direction: comparison between numerical andlkrzattern with FRP

As already discussed, within limit analysis, plagtissipation simulates the crack
zones found at the end of the experimentation. ideriag that a homogenized

approach has been used (i.e. a precise crackmpattgagging between bricks can
not be reproduced), plastic dissipation patch tesylite satisfactory, see Figure
5.17 and Figure 5.18.

Finally, in, plastic dissipation at the interfacetween FRP and masonry is
represented; it is particularly evident the rolaygld both by the continuous tendon
which delaminates for in-plane actions and by thi@forcement loaded out-of-

plane on Wall B.
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Figure 5.17 Seismic load along +Y direction, unreinforced cé$ermalized plastic
dissipation patch on masonry elements (color rdirgge O to 1).
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Figure5.18 Seismic load along +Y direction, reinforced cdsermalized plastic
dissipation patch on masonry elements (color rdrage O to 1).
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Figure5.19 Seismic load along +Y direction. Normalized plastissipation patch on
masonry/FRP interfaces (color range from 0 to 1).

In order to fully assess the numerical results iobth with the present model, in
Figure 5.20 numerical collapse loads obtained waryimasonry/FRP interface
strength f, in a wide range (from 0 to 1 MPa, being 0 MPauheeinforced case)
are represented. It is worth noting that a satisfgdncrease of the collapse load is
obtained in the rage 0.3- 0.6 MPa. This result @hbin agreement with
experimental evidences on the bond strength andscofl practice specifics, and
indicates once again that high resistance masdrB/fiaterfaces do not allow to
increase proportionally the collapse load of thdirenbuilding. Failure for
delamination is, indeed, a consequence of thedinihasonry strength, see [9],

since f, peak strength is evaluated from masonry tensilé eompressive

strength.
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5.3 Conclusions

In order to validate the numerical model proposat.entire two story masonry
building reinforced in various ways with FRP strimsd experimentally tested at

Georgia Tech under earthquake excitation has bdensvely analyzed.

Collapse load [kN]

i == Numerical
600 - results

| Experimental

] ithout FRP
500 - — = wiEod

] N Experimental

1 with FRP
400 -
300
200 —TTT T T T T fb [MPa]

0 0.2 0.4 0.6 0.8 1

Figure5.20 Seismic load along +Y direction: sensitivity arsdyon the collapse load
varying fb masonry/FRP interface strength.

Good agreement between present results and awadatd has been found both in
presence and absence of reinforcement, meaninghthgtrocedure proposed may
be used by practitioners for a reliable evaluatidncollapse loads and failure

mechanisms of complex 3D strengthened masonrytstasc
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Chapter 6.

Conclusion

The aim of this thesis is to propose a new efficimummerical tool, based on the
kinematic theorem of limit analysis, for the study masonry shell and 3D
structures with or without FRP reinforcement.

The approach consists of two steps. In step | oforied masonry strength
domains are obtained by means of FE limit analysiscedure applied to a
representative element of volume constituted bgreral brick interacting with its
six neighbours trough rigid plastic interfaces (tao joint). In step Il, the
unreinforced strength domains are implemented mo\&el upper bound FE limit
analysis code for the analysis at collapse of entirasonry curved and 3D
structures.

Two structural models are proposed:
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1) A Six-nodes triangular curved rigid element withsgible
velocities discontinuities along the edges of adiw elements

is developed:;

2) Rigid infinitely resistant wedge-shaped 3D elememtish
possible velocities discontinuities along the edgfeadjoining

elements is developed.

After a brief introduction reported in Chapterd Ghapter 2 a kinematic simplified
identification model for the determination of awggd masonry macroscopic
properties at failure has been discussed. The maslmes as representative
element of volume (REV) a central brick intercortedowith its six neighbours by
means of mortar joints reduced to interfaces witttibnal behaviour and limited
tensile and compressive strength. Suitable macposaaternal actions have been
imposed on the REV in order to comply, at leasamapproximate manner, the
homogenization theory requirements. In order to enigally evaluate a piecewise
linear approximation of masonry failure surfaceus® at a structural level, the
REV has been discretized by means of flat six-nddeedge rigid elements and a
flat three-nodded triangular rigid element for #tedy of ribbed cross vault. Since
no dissipation is allowed inside the element, failumay occur only at the
interfaces between contiguous elements. A posfalilere of bricks has been also
taken into account assuming a limited strengttbf@k-brick interfaces. A simple
linear programming problem is obtained at the magale, which allowes, solving
several optimization problems at fixed internal i@td combinations, to
numerically evaluate a piecewise linear approxiomtf masonry failure surface.
In Chapter 3 a kinematic limit analysis model foe structural analysis of masonry
curved shells is presented. In the simulationsnentes curved triangular elements

are used, with possible plastic dissipation at ititerfaces between adjoining
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elements. For the sake of simplicity, a kinemapipraach is employed assuming
curved six-nodes triangles rigid-infinitely resista with possible velocities
discontinuities along the edges of adjoining eleimedissipation is allowed only at
the interfaces (generalized cylindrical hingesweetn adjoining elements. In this
way, an upper bound of the collapse load is obthileorder to take into account
all possible failure modes along triangles edgetfion, stretching, and sliding), it
Is assumed that dissipation occurs for bending montersion, out-of-plane shear
and in-plane actions, as usually accepted for theyais of thick moderately
(Reissner-Mindlin) shells.

Plastic dissipation is evaluated assuming for thmerfaces between adjoining
elements an upper bound approximation of the atimalogenized masonry failure
surface, obtained by means of a standard UB feleeent procedure, once that a
suitable elementary cell is identified for the eoitexture under consideration.

In chapter 4 a homogenized FE limit analysis apgrofor the numerical
evaluation of collapse loads and failure mechanismBRP-reinforced masonry
curved structures is presented.

Unreinforced masonry homogenized failure surfadesined in chapter 2 have
been used to evaluate plastic dissipation at tieefates between adjoining wedge-
shaped elements. A possible dissipation at thagular interfaces between FRP
and masonry elements is also considered in orderottel, in an approximate but
effective way, the possible delamination of thdpstrfrom the supports. Italian
code CNR DT 200/2006 formulas have is to evaluaakpinterface tangential
strength.

Several numerical examples are analyzed, consisfibgo different typologies of
masonry arches (a barrel vault and an arch in eaed “skew” disposition), a

ribbed cross vault, a hemispherical dome and atelovault.
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For all the cases, both the unreinforced and FR#oreed case are discussed,
analyzed with six-nodes triangular curved rigidnedait (Chapter 3) and rigid

infinitely resistant wedge-shaped 3D elements. foldal non-linear FE analyses
are conducted (employing DIANA F.E. program) fok thle examples presented,
modelling masonry through both a heterogeneousaanedquivalent macroscopic
material with orthotropic behaviour, in order teess limit analysis results.

Finally, an entire two story masonry building reirded in various ways with FRP

strips and experimentally tested at Georgia Tecdlsisussed.
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