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SOMMARIO 
Lo scopo della seguente tesi è di proporre un nuovo efficiente modello numerico 

basato sul teorema cinematico dell’analisi limite, per lo studio di volte e strutture in 

muratura con o senza fibrorinforzi in FRP. 

L’approccio consiste in 2 Step. Al primo step si definiscono le superfici di rottura 

della struttura in muratura senza FRP attraverso una procedura di analisi limite. Si 

considera  una cella rappresentativa costituita da un elemento centrale collegato 

con gli altri elementi attraverso delle interfacce rigide-plastiche (giunti di malta). 

Nel secondo step le superfici di rottura vengono implementate in un innovativo 

codice agli elementi finiti per l’analisi al collasso di volte o interi edifici in 

muratura. 

 

 

ABSTRACT 
 
The aim of this thesis is to propose a new efficient numerical tool, based on the 

kinematic theorem of limit analysis, for the study of masonry shell and 3D 

structures with or without FRP reinforcement. 

The approach consists of two steps. In step I unreinforced masonry strength 

domains are obtained with a FE limit analysis procedure applied to a representative 

element of volume constituted by a central brick interacting with its six neighbours 

by means of rigid plastic interfaces (mortar joint). In step II, the unreinforced 

strength domains are implemented in a novel upper bound FE limit analysis code 

for the analysis at collapse of entire masonry curved and 3D structures. 
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Chapter 1. 

Introduction 

The recent earthquakes occurred in Umbria and Marche (Italy 1997-1998), Molise 

(Italy 2002) and Abruzzo (Italy 2009) indicated that the historical Italian buildings, 

essentially constituted by masonry structures, are scarcely resistant to horizontal 

loads and highly vulnerable to seismic actions. Such inadequate behavior of 

brickwork under earthquakes is a common issue of masonry buildings in many 

countries worldwide. Inadequate resistance under seismic actions may be observed 

also for curved masonry structures, as for instance vaults, domes and arches, which 

typically are designed to withstand vertical loads under membranal regimes only. 

Great impact on the scientific community and on common people had the collapse 

of one vault of the S. Francesco Basilica in Assisi during Umbria earthquake (26 

September 1997), which caused both the death of 4 persons and an unquantifiable 

artistic loss, due to the almost total destruction of frescos realized by the great 

Italian medieval artist Cimabue.  
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The need of designing efficient and non invasive strengthening interventions to 

masonry structures in seismic area appeared almost immediately clear to all 

technicians involved in the reconstruction of collapsed vaults after Umbria and 

Marche earthquakes. Therefore, the utilization of FRP strips as reinforcement 

instead of conventional methods seems the most suitable solution for the seismic 

upgrading, thanks to the limited invasiveness, durability and good performance at 

failure [1]-[7] of carbon fibbers.  

Despite the great importance and the increasing diffusion of such innovative 

strengthening technique, no numerical models devoted to the prediction of the 

ultimate load bearing capacity of vaults and entire masonry buildings reinforced 

with FRP strips are nowadays available. The international scientific community is 

producing and has recently proposed several numerical models for the analysis of 

masonry structures with and without FRP but the problem is still open. The 

difficulty in modeling masonry structures depends on many causes; among the 

others, the most important are of course, the heterogeneous character of masonry 

(since it is a regular assemblage of blocks between which mortar joints are laid) 

and the brittle behavior of joints. Another important remark is that a general 

approach, able to predict the ultimate load bearing capacity of masonry under in- 

and out-of-plane loads is still far to be proposed. Especially in presence of out-of-

plane actions, the important role of compressive membrane actions has not been 

taken into account with sufficient care, probably because experimental tests mainly 

deal with pure flexion (maybe a consequence of the complexity of the 

experimentation in presence of multiple loads). Sophisticated numerical methods 

began to emerge during the last decade, and have been used as valuable tools for 

the analysis of masonry, see for instance the works by Lourenço et al. [8], [9], [10], 

Berto et al.[11],[12],[13], Luciano and Sacco [14],[15],[16] Marfia and Sacco [17], 



Introduction 

 

3

Gambarotta and Lagomarsino [18],[19], Pietruszczak and Ushaksarei [20], [21] and 

Massart et al. [22]. 

In general, numerical models are based on three different approaches: micro-

modeling, macro-modeling and homogenization.  

The micro-modeling consists in representing separately mortar joint sand units. In 

some cases, reasonable simplifications have been introduced, for example utilizing 

zero-thickness interfaces for the joints (see for instance Lourenço and Rots [10] 

and Lotfi and Shing [23]). An evident drawback of this approach, which in some 

cases limits its applicability to small panels, is connected to the necessity of 

modeling separately units and mortar. Of course, micro-modeling allows to capture 

a point-to-point prediction of stress and strain state on masonry panels to compare 

with experimental evidences. On the other hand, the difficult applicability of this 

method for the structural analysis of complex walls belonging to existing real 

buildings is evident. The alternative macro-modeling is intended for large-scale 

structural calculations. With this end in mind, it does not make any distinction 

between masonry units and joints, so averaging the effect of mortar through the 

formulation of a fictitious continuous material [24]. Among the others, it is worth 

mentioning the classical approach which models masonry as a no tension material 

(NTM). In this framework, many technical and theoretical papers have been 

published in the past thirty years, mostly by Italian researchers [25]-[29]. In spite 

of the attractive simplicity of the mechanical assumptions of this approach ,robust 

numerical tools seem to be difficult to obtain, even if some FE codes have been 

recently implemented with success [30],[31]. Furthermore, even if the classical 

theorems of limit analysis can be extended to NTM (see [28]) some difficulties are 

still present. In particular: 
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• The origin of the axes in the stress space (σ = 0 ) belongs to the boundary 

of the strength domain, so making the use of standard FE packages 

difficult. 

• It should be noted that a key aspect which determines the strength of 

masonry panels subjected to horizontal actions is friction between the 

blocks, as pointed out in [32]; as a consequence, constitutive equations for 

masonry are generally non associated (see for instance [33]). Furthermore, 

even if an associated flow rule is assumed, a plane stress state in which 

shear stress and a vertical compressive pressure are acting, while 

horizontal normal stress is absent (typical situation for load-bearing shear 

walls), provides a positive principal stress, not admissible for a NTM. 

Several other models belonging to macro-modeling can be found in the technical 

literature, some of which with a marked phenomenological nature. In order to take 

into account some distinctive aspects of masonry, such as anisotropy in the 

inelastic range and the post-peak softening behavior, closely related to the 

constituent materials (mortar and units) and to its geometry (bond pattern, 

thickness of joints, etc.), some recent macro-models have been “ad hoc” developed 

(see [8] and [12] for instance), featuring orthotropic elastic-plastic behavior with 

softening. Usually, the mechanical properties required by the model are derived 

from experimental data and the results are limited to the conditions under which 

the data are obtained. Obviously, the introduction of new materials might require a 

different set of experimental programs.  

The third alternative is represented by the application of homogenization. It 

consists in identifying an elementary cell, which generates an entire panel by 

regular repetition. There are, indeed, important contributions for masonry in the 

inelastic range. For instance, Luciano and Sacco [14] proposed a brittle damaging 

model characterized by a unit cell composed by blocks, mortar and a finite number 
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of fractures on the interfaces. Massart [34] and Anthoine and Pegon [35] adopted a 

finite element approach to represent the non linear behavior of the homogenized 

material, assuming either elastic plastic or damaging constitutive laws for blocks 

and mortar. Nevertheless, this kind of FE approach requires a great computational 

effort, since the field problem has to be solved numerically for every time step in 

any Gauss point. De Buhan and de Felice in [36] proposed a suitable model for a 

homogenized limit analysis of masonry by means of the kinematic theorem, where 

the blocks are supposed infinitely resistant and the joints interfaces of zero 

thickness with a pure Mohr Coulomb failure criterion. 

Limit analysis combined with homogenization appears very attractive because it is 

able to reproduce some distinctive aspects of masonry, such as the anisotropy at 

collapse and the scarce tensile strength, requiring only a reduced number of 

mechanical parameters of the constituent materials. Moreover, limit analysis can be 

easily applied to entire panels, once we dispose of the homogenized strength 

domains for masonry. 

 

1.1 Masonry curved elements 

Masonry curved elements -as for instance arches, domes and vaults- represent one 

of the most diffused structural typologies in historical buildings of both Eastern and 

Western architecture. Moreover, the growing interest in the preservation and 

rehabilitation of historic constructions has created a need for the development of 

new efficient tools for the analysis and the evaluation of load-bearing capacity of 

these structures. 

The first “scientific” graphical attempts for the study of the equilibrium of masonry 

domes go back to the early 18th century and are due to, e.g. Bouguer (1734), Bossut 

(1778) and Mascheroni (1785), who stated simple mono-dimensional equilibrium 
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equations, neglecting the role of circumferential forces. Anyway, what appeared 

clear from the beginning, was that cracking occurs on curved masonry elements in 

presence of self-weight and of very low tensile stresses. In this context, a 

considerable improvement in the analysis of spherical domes was achieved when 

Levy (1888) proposed a graphical analysis aimed at finding the circle on which 

circumferential forces vanish. For an exhaustive history of the theories of masonry 

vaults we remand to the classical treatise of Benvenuto [37]. Nowadays it can be 

affirmed (Huerta [38]) that “the modern theory of limit analysis of masonry 

structures, which has been developed mainly by Heyman [39], is the tool to 

understand and analyze masonry structures”. 

Despite the considerable research efforts done in the last decades and the wide 

spreading of Finite Elements programs (FE), traditional approaches based on the 

assumption of a 1D behavior (Heyman [40], Oppenheim et al. [41], Pesciullesi et 

al. [42]) are still the most diffused in engineering practice. In this context, modern 

and efficient computerized models have been presented in the framework of both 

thrust lines method (O’Dwyer[43], Block at al. [44]) and limit analysis (Roca et al. 

[45]), to predict possible collapse modes of masonry arches and axis-symmetrical 

domes.  

One the other hand, when dealing with the study of complex 2D curved masonry 

shells, thrust lines methods and at hand calculations are hardly applicable: 

therefore, FE approaches in the inelastic range have been preferred for these kind 

of problems, assuming for masonry either a no tension (Lucchesi et al. [46] and 

[47]), a damaging (Creazza et al. [48] and [49]) or an orthotropic elasto-plastic 

behavior with low tensile resistance (Lourenço et al. [9], Lourenço [10]). 

In the present degree, a novel finite element approach for the limit analysis of 

masonry vaulted structures is presented. A six-nodes triangular curved element is 

used in order to correctly take into account, as far is possible, the actual geometry 
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of the vault. For the sake of simplicity, a kinematic approach with possible velocity 

discontinuities along the edges of adjoining elements is considered. On the other 

hand, it has been demonstrated (see Sloan and Kleeman [50]) that the introduction 

of discontinuities at the interfaces between contiguous elements is suitable for the 

analysis at collapse of purely cohesive or cohesive-frictional materials, which is the 

case of masonry. Following a general approach widely diffused in the technical 

literature for the analysis of masonry flat plates (Sinha [51]) plastic dissipation is 

allowed only at the interfaces (generalized cylindrical hinges) between adjoining 

elements. In this way an upper bound of the collapse multiplier is obtained, since, 

looking at the dual formulation, the admissibility of the stress state is imposed ( i.e. 

the thrust surface is obliged to be inside the vault depth when a no tension material 

is considered) only at the element boundaries. In order to take into account all 

possible deformation modes along triangles edges (i.e. rotation, stretching, and 

sliding) it is assumed that plastic dissipation occurs as a combination of bending, 

torsion, out-of-plane shear and membrane actions. Such an assumption is necessary 

when dealing with thick masonry shells (Reissner-Mindlin hypotheses). When in- 

and out-of-plane sliding phenomena occur, masonry exhibits a typical frictional 

behavior, which should be represented by non-associated flow rules. Despite this 

consideration, as it will be discussed throughout the Chapter 3, an associate flow 

rule is here adopted for the interfaces, in order to tackle large scale engineering 

problems with homogenization combined with simple LP routines. Thus, plastic 

dissipation is evaluated assuming for the interfaces between adjoining elements an 

upper bound approximation of masonry failure surfaces, obtained by means of a 

standard UB finite element procedure, once that a suitable elementary cell is 

identified for the curved texture under consideration. It is worth noting that, for 

double-curvature shell like masonry domes, the identification of an elementary cell 

which generates the whole structure it is not always possible. However, in these 
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cases, the technically meaningful simplification of assuming masonry constituted 

by the assemblage of bricks with variable sizes (depending on the value of 

principal curvatures) can be adopted. 

This is the reason why, in the Chapter 2 a simple heuristic method based on a 

compatible identification between discrete model and equivalent continuum is 

preferred. In Chapter 2 the upper bound FE homogenization procedure adopted to 

obtain an upper bound approximation of the actual failure surfaces for masonry 

vaults is presented. Several examples of curved REVs (parabolic arch, ribbed cross 

vault, hemispherical dome, barrel vault) are analyzed and discussed in detail. The 

anisotropy induced by the non null curvature of the REV is particularly evident if 

compared with results obtained in the flat case. 

 

1.2 Masonry reinforced with FRP 

 

As previously discuss, the utilization of FRP strips as reinforcement instead of 

conventional methods seems the most suitable solution for their limited 

invasiveness, durability and good performance at failure for the rehabilitation of 

domes and entire masonry building.  

Nevertheless, it is worth noting that, despite the great importance and the 

increasing diffusion of such innovative strengthening technique, few numerical 

models devoted to the prediction of the ultimate load bearing capacity of out-of-

plane loaded FRP-reinforced masonry [52][53] are nowadays at disposal.  

Very recently, limit state approaches have been attempted for masonry arches also 

in presence of FRP reinforcement strips, see e.g. Caporale et al. [54] and Roca et 

al. [45].  
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As a matter of fact, non linear complex damaging models (e.g. [15]) should be used 

for the analysis FRP reinforced masonry. The FRP delamination from the support 

is, indeed, typically brittle, as well as the tensile cracking of mortar joints. These 

aspects preclude, in principle, the utilization of limit analysis, which is based on the 

assumption of perfect plasticity for the constituent materials. 

Despite the aforementioned limitations connected to the hypotheses at the base of 

the approach proposed, following also what suggested in the Italian Code CNR-

DT200 [55], limit analysis may be useful for design purposes, to provide a fast and 

reliable estimation of collapse loads at a structural level. On the contrary, no 

information is given by limit analysis concerning displacements reached near 

collapse. However, such displacements are relatively small and a rough estimation 

could be obtained by means of an elastic analysis of the structure modelling the 

crack pattern previously evaluated by means of limit analysis. 

The most important effect of a generic strengthening intervention executed with 

FRP strips is, indeed, to preclude the formation of the failure mechanism which 

causes the collapse of the unreinforced structure, with the subsequent formation of 

a new collapse mechanism different from the un-strengthened case, with higher 

internal dissipation. Obviously, “hand” calculations may not be performed easily 

for complex structures, especially in presence of curved shells with unsymmetrical 

loads. Therefore, the adoption of an upper bound approach combined with FEM 

seems particularly suited for the prediction of FRP-masonry behavior prone to 

collapse.  

The most suitable way for the analysis of FRP reinforced walls is the utilization of 

a two-steps approach based on homogenization concepts. First step, relying in the 

simplified homogenization of unreinforced masonry with a curved representative 

volume element has been widely illustrated in Chapter 2 and the reader is referred 

there for a proper discussion of the limitations and the capabilities of the method.  
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In the second step the macroscopic anisotropic strength domains obtained in 

Chapter 2 are implemented in a novel upper bound FE limit analysis code for the 

analysis at collapse of entire FRP reinforced masonry curved structures. Rigid 

infinitely resistant wedge-shaped 3D elements are used to model masonry at 

structural level. The utilization of 3D elements is suitable to simulate the flexural 

strength increase obtained by the introduction of FRP strips. On the other hand, 

wedge-shaped elements are utilized with the aim of reproducing possible diagonal 

out-of-plane failures, due to the development of cracks (caused by bending and 

torsion) which zigzag between contiguous bricks. 

FRP strips are modelled by means of triangular rigid elements. Masonry and FRP 

layers interact by means of interfacial tangential actions between triangles (FRP) 

and wedges (masonry). Furthermore, a possible limited tensile strength for the FRP 

reinforcement is considered at the interfaces between adjoining triangular elements. 

In this way, both delamination phenomenon at the FRP/masonry interface and FRP 

tensile failure may be taken into account. Despite the fact that delamination is a 

typical fragile phenomenon, an equivalent ultimate shear strength for FRP/masonry 

interfaces is assumed in the framework of limit analysis, following formulas 

provided by the recent Italian norm CNR-DT 200 [55] for the peak delamination 

strength. It has to be emphasized that the limit analysis approach here proposed is 

based on the use a perfectly-plastic material response for masonry and for the 

FRP/masonry interface, i.e. softening effect and limited ductility cannot be 

considered.  

In order to validate the numerical model proposed, a number of different structural 

examples are analyzed, consisting of two arches tested by Vermeltfoort [56] 

without reinforcement, a masonry ribbed cross vault by Faccio et al. [57], a 

hemispherical dome and a cloister vault, both tested by Foraboschi [58] in presence 

and absence of reinforcement (Chapter 3). Finally in Chapter 5 a set of numerical 
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simulations on an entire building reinforced with FRP strips and experimentally 

tested until collapse by Yi et al. [59],[60] is reported in presence and absence of 

reinforcement. 

Results obtained with the model proposed fit well both experimental data and 

alternative non linear FEM simulations results. From an overall analysis of the 

performance of the numerical tool proposed, it can be deduced that the approach 

presented may be a valuable software for practitioners involved in an inexpensive 

evaluation of ultimate loads of masonry buildings reinforced with FRP strips 
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Chapter 2.                                         

Masonry curved shells homogenized 

failure surfaces 

The study of masonry vaults should take into account the essentials of the material 

“masonry” -i.e. heterogeneity, almost no resistance to tension combined with a 

good compressive strength and a high friction coefficient- as well as the overall 

importance of the geometry for achieving the equilibrium. 

In particular, the definition and the use of suitable material constitutive laws for 

masonry remains an open issue. In the recent past, several authors (e.g. Luciano 

and Sacco [1], Pegon and Anthoine [2], Massart et al. [3]) proposed different 

complex modelling strategies for the analysis of masonry structures in the non-

linear field. As a rule, three different approaches are possible, usually known as 

macro-modelling, micro-modelling and homogenization. 

While in micro-modelling (e.g. [4]) a separate discretization of bricks and mortar 

(usually reduced to interfaces) is assumed, macro-models (e.g. [5]) substitute the 
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heterogeneous material with a fictitious anisotropic homogeneous one, thus 

needing much less time to be performed in complex non linear analyses, but 

requiring a calibration of the model with expensive experimental data fittings. 

Homogenization (e.g. [6] [1] [8] [9]) may be regarded as a compromise between 

micro and macro-modelling, since macroscopic masonry behavior is obtained 

solving suitable boundary values problems on the unit cell, thus taking into account 

constituent materials mechanical properties and geometry only at the micro-scale. 

 

The aim of this Chapter is to present the upper bound FE homogenization 

procedure adopted to obtain an upper bound approximation of the actual failure 

surfaces for masonry vaults. In particular a FE limit analysis discretization of the 

elementary cell with 7 brick elements and mortar-joints reduced at the interface is 

used. The failure surfaces obtained, are implemented at the macro-scale level in an 

upper bound FE limit analysis code to obtain the collapse load and deformed shape 

at the collapse of entire masonry shells (Chapter 3 and Chapter 4).  

Obviously, it should be remarked that rigorous homogenization can not be easily 

applied in the case of curved structures, since the identification of both a curved 

elementary cell and suitable periodicity conditions on boundaries is not an easy 

task. This is the reason why, in the present chapter a simple heuristic method based 

on a compatible identification between discrete model and equivalent continuum is 

preferred. In section 2.1 and 2.2 the upper bound FE homogenization procedure 

adopted to obtain an upper bound approximation of the actual failure surfaces for 

masonry vaults is presented. In sub-section 2.3 several examples of curved REVs 

(parabolic arch, ribbed cross vault, hemispherical dome, barrel vault) are analyzed 

and discussed in detail. The anisotropy induced by the non null curvature of the 

REV is particularly evident if compared with results obtained in the flat case. 
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2.1 Homogenization background 

 

       

 

Figure 2.1: Typical double curvature shell structures (Ω ) and different bricks  
dispositions. 
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In this section, a FE procedure for obtaining in- and out-of-plane masonry failure 

surfaces in case of curved shells is outlined. A linearization with several planes of 

such surfaces will be then implemented in the 3D kinematic FE limit analysis code 

described in the following chapter for a kinematic limit analysis of entire masonry 

shells.  

The general case of curved masonry vaults constituted by a finite number of 

infinitely differentiable surfaces ( )xif  is considered (Figure 2.1 and Figure 2.2). 

Since in the homogenized FE procedure, plastic dissipation on the interfaces 

between adjoining elements can occur as a combination of in-plane actions, 

bending moment, torsion and out-of-plane shear, Reissner-Mindlin thick plate 

hypotheses are adopted (Cecchi et al. [10], Cecchi and Milani [11]). It must be 

noted that the introduction of a limited shear strength under out-of-plane actions 

could play an important role for instance in presence of monolithic arches and thin 

shells subjected to concentrated loads, for which failure can occur for out-of-plane 

sliding of the blocks, Figure 2.3 (Drosopoulos et al. [12]). 

Masonry is a composite material made by units bonded together with mortar joints. 

In most cases of building practice, units and mortar are periodically arranged, i.e. 

walls are constituted by the regular repetition of bricks bonded with joints. When 

dealing with flat panels, such periodicity allows to consider an entire structure Ω
as the repetition of a suitable representative element of volume Y (REV or 

elementary cell) – see Figure 2.4. Y contains all the information necessary for 

describing completely the macroscopic behaviour of Ω . In particular, if a running 

bond pattern is considered, as shown in Figure 2.4, it has been shown that a 

rectangular elementary cell may be adopted. 
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Figure 2.2: Typical double curvature shell structures Ω  constituted by more that one 

infinitely differentiable surface (e.g. 1f , … 4f ). In the figure principal curvature radii at a 

point P are also represented (sρ  and rρ ). 

 

Figure 2.3: Possible sliding of a thick arch. 

 

On the other hand, when a curved masonry surface Ω , identified at a point P by 

the two principal curvatures sρ/1  and rρ/1  Figure 2.2 is considered, it is very 

straightforward to conclude that it is not always possible to rigorously consider Ω  
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as a regular repetition of the elementary volume Y, thus precluding in principle the 

utilization of homogenization in the most general case. Nevertheless, a heuristic 

but technically suitable approach is to identify in any case a representative volume 

element, as depicted in Figure 2.4, which generates the double curvature shell by 

repetition.  

Without loss of generality, let us consider a masonry shell constituted by a finite 

number of regular curved surfaces Ω . In correspondence of a point x  of Ω , two 

versors r  and s  can be identified, corresponding to two orthogonal directions 

disposed parallel to the principal curvature planes of the vault in x , see Figure 2.4. 

Let the principal curvature radii along r  and s  be denoted with )(xsρ  and )(xrρ  

respectively. Internal actions acting at each point Ω∈x  are constituted by both in-

plane (meridian, hoop and shear stresses) and out-of-plane (meridian, parallel 

bending and torsion) actions. 

When ∞→)(xrρ  and Ω∈∀= xx ss ρρ )( , the special cases of cross vaults, 

barrel and cloister vaults are obtained. For all these cases of technical interest, the 

curved elementary cell Y shown in Figure 2.5 can be identified, which generates the 

curved surface by repetition. 

Furthermore, we define on Y the local curved frame of reference 321 yyy −− , 

with 3y  normal to the vault middle surface, 1y  and 2y  parallel to r  and s  

respectively (see Figure 2.4). For this special sub-class of problems, rigorous 

homogenization theory can be applied in combination with classic limit analysis 

theorems for the evaluation of the homogenized in- and out-of-plane strength 

domain homS  of masonry.  

Despite the fact that classic homogenization theory has never been applied to 

masonry vaults, but only to flat walls, homogenization concepts has been recently 

used, for instance, by Slinchenko and Verijenko [13] for lattice shells of revolution, 



Masonry curved shells homogenized failure surfaces 

 

23 

for cylindrical shells by Andrianov et al. [14] and by Habbal [15] in the case of 1D 

wrinkled arches. 

 

  

-a- 

 

 

 

-b- 

Figure 2.4: Comparison between homogenization 

procedure and the kinematic approach here proposed. –

a: rigorous elementary cell identification in the flat case. 

–b: heuristic identification of the elementary cell for a 

double curvature masonry shell and kinematic  
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-a 

 

-b 

Figure 2.5: -a: Unit cell for a barrel vault with mss 2)( == ρρ x . –b: Arch ( 2=sρ  m) 

elementary cell and its discretization by means of 288 FE flat triangular elements.  
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As a rule, when dealing with curved structures, equilibrium equations in the unit 

cell have to be written in a non Cartesian frame of reference, thus being 

substantially different with respect to the flat case. 

The basic idea of the homogenization procedure consists in introducing averaged 

quantities representing the macroscopic membrane actions and strain tensors 

(respectively N  and E) for in-plane actions, the macroscopic bending moment 

and curvature tensors for the out-of-plane problem (respectively M  and χ ) and 

the out-of-plane sliding and shear (respectively 3Γ  and 3T ) defined as follows 

(here the direction 3  is assumed perpendicular to the masonry middle plane, 

Figure 2.4):  
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where V is the volume of the elementary cell, t the transverse thickness, u  is the 

displacements vector (components iu ), ε  and σ  stand for the local quantities 

(stress and strain tensors with components ijε  and ijσ  respectively) and <*> is the 

averaging operator. It is worth noting that, in this way, the behaviour of a 

moderately thick shell (Reissner-Mindlin hypotheses) may be modelled. 

Anti-periodicity and periodicity conditions are imposed respectively to the stress 

field σ  and the displacement field u :  

 




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(2.2 ) 

where: 

- peru  stands for a periodic displacement field; 

- Y∂  is the cell internal boundary (see Figure 2.4); 

- [ ]0;
~ TOOEE =  (O  is a 2× 1 zero vector); 

- [ ]( )[ ]02/1~
213

TTyyy χOχχ = ; 

- Γ
~

 is a 3 3 matrix with all zeros except )1(
~

331 ΓΓ =  and )2(
~

332 ΓΓ = . 

 

Let mS , bS  and homS  denote respectively the strength domains of mortar (or 

more properly of the interface between mortar and bricks, see Lourenço and Rots 

[4]), of the units and of the homogenized macroscopic material. homS  domain of 

the equivalent medium is defined in the space of the macroscopic stresses as 

follows (Suquet [16]):  

×
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( 2.3 ) 

Here, [ ][ ]σ  denotes the jump of micro-stresses across any discontinuity surface of 

normal intn . Conditions (a) is typical of homogenization, condition (d) is derived 

from anti-periodicity, condition (b) imposes the micro-equilibrium and condition 

(e) represents the yield criteria for the components (brick and mortar). 

The kinematic definition of homS , used in this chapter, is obtained by means of the 

dual formulation of (2.3), assuming in the elementary cell a velocity field v  equal 

to per~~~
vyΓyχyE +++ &

&
&

, where D&  is a macroscopic strain rate field, χ&~  contains 

the macroscopic curvature rate field, Γ&
~

 contains the macroscopic out-of-plane 

sliding rate, and perv  is a periodic velocity field. Under these hypotheses, the so 

called support function homπ  can be evaluated as follows: 
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Where ( )vP  is the power dissipated in the elementary cell for a given v . 

From (2.4), it has been shown that a kinematic definition of homS  can be obtained 

as follows:  
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where: 

S is any discontinuity surface of v in Y, n is the normal to S; 

( ) ( )]][[]][[2/1]];[[ vnnvnv ⊗+⊗=π ; 

( ) ( ){ }yσd:σd
σ

S∈= ;max &&π ; 

N , M  and T are the ultimate homogenized membrane, bending and out-of-plane 

shear actions respectively. 

It is worth noting that, using the kinematic definition given by (2.5), it is possible 

to explicitly determine the homogenized strength domain of masonry in the space 

of the macroscopic stresses using a FE limit analysis discretization of the 

elementary cell (Figure 2.4 -b). 

In particular, homS  is obtained by means of the following constrained minimization 

problem: 
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where  

-λ  is the kinematic limit multiplier of the assigned macroscopic actions (moments, 

membrane actions or out-of-plane shear); 
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- 0M , 0N  and 0T  are respectively unitary bending, membrane actions and out-of-

plane shear tensors/vectors (i.e. they define only the direction in the homS   

generalized stress space at which λ  is evaluated, see also Figure 2.6) 

- ( )d&P  is the local plastic dissipation over the REV; 

- y  is a point of the REV in the local frame of reference.  

 

2.2 Derivation of masonry homogenized failure 
surfaces by means of a FE discretization of the 
unit cell 

A strategy for obtaining an accurate estimation of homS  is to solve problem (2.6) 

for several assigned 0M  - 0N - 0T  directions of the macroscopic actions by means 

of a limit analysis FE approach.  

In what follows, a FE upper bound approach is adopted, in which dissipation 

occurs only at the interfaces between adjoining elements, both for in-plane and out-

of-plane actions.  

For the study of the masonry structures by means of shell elements (Chapter 3), the 

discretization of the elementary cell is with a triangular FE infinitely resistant 

elements, as shown in Figure 2.5-b; plastic dissipation can occur only at interfaces 

between adjoining elements.  
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-a 

 

-b 

Figure 2.6: Meaning of 0N , 0M  and 0T  -a vector 1Σ  determines the optimization 

direction in the homogenized space of in- and out-of-plane actions. In this case 

( ) ( )[ ]T000sincos1 Kαα=Σ ;-b vector Σn  determines, in this case, 

[ ]2331
0 nn;nn ΣΣΣΣ=M  
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Instead, for the whole structures studies with wedge elements (Chapter 4), the REV 

are discretized by means of 3D rigid infinitely resistant six-noded wedge elements, 

whereas mortar joints are reduced to interfaces with frictional behaviour and 

limited tensile and compressive strength (Figure 2.7). In this way, plastic 

dissipation may occur only at bricks-bricks interfaces and on mortar joints. 

Nonetheless, it is worth noting that, since 3D wedge elements are used at a 

structural level, only failure surfaces sections in terms of membrane and out-of-

plane shear are needed, since flexural and torsional behaviour are derived directly 

at a structural level by means of an integration along the thickness. In any case, 

here both in-plane and out-of-plane failure surfaces are recovered for the sake of 

completeness. 

Three different typologies of interfaces occur when a masonry elementary cell is 

considered, namely internal mortar-mortar, brick-brick and brick-mortar interfaces. 

Typically, cracking occurs in practice with a cohesive frictional behaviour at the 

interface between bricks and mortar or directly inside the joint. On the other hand, 

as experimental evidences show, sliding occurs in mortar joints with almost zero 

dilatancy with typical non-associated flow rule. This violates one of the hypotheses 

of classic limit analysis theory (see for instance Ferris and Tin Loi [17], Orduna 

and Lourenço [18] and [19]), implying that the uniqueness of the ultimate load may 

be lost and a multiplicity of solutions may exist for limit analysis problems, see for 

instance Begg and Fishwick [20]. 

On the other hand, classical limit analysis theorems assure the uniqueness of the 

ultimate load factor and lead to simple optimization problems. For the above-

mentioned reasons, in this case associated flow rules are assumed for the 

constituent materials.  
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Figure 2.7: Simplified micro-mechanical approach adopted. Brick is supposed to interact 
with its 6 neighbours and joints are reduced to interfaces with zero thickness. Then, brick 

with its neighbours is meshed by means of 6-noded wedges. 

 

In general, any non-linear failure criterion ( )σφφ =  for mortar-mortar and bricks-

mortar interfaces can be assumed. Nonetheless, as experimental evidences show, 

basic failure modes for masonry walls with weak mortar are a mixing of sliding 

along the joints (a), direct tensile splitting of the joints (b) and compressive 

crushing at the interface between mortar and bricks (c). These modes may be 

gathered adopting a Mohr-Coulomb failure criterion combined with tension cut-off 

and cap in compression, see Figure 2.8, as suggested by Lourenço and Rots [4]. 

For what concerns brick-brick interfaces, a classic Mohr-Coulomb failure criterion 

in plane stress ( ( )σbb φφ = ) is assumed.  
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Figure 2.8: Piecewise linear approximation of typical failure criterions adopted for joints 
and brick-brick interfaces (respectively Linearized Lourenço and Rots 1997 and classic 

Mohr-Coulomb failure criterion). 

 

 

Let us consider a generic interface I  between adjoining triangular elements M  

and N , as shown in Figure 2.9.  
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a- 

 

-b                                                                                      -c 

Figure 2.9: (-a)  Triangular three-nodes elements used for the FE discretization of the 
elementary cell and identification of interface I  frame of reference; (-b)  Rigid infinitely 

resistant six-noded wedge element used for the REV discretization and 12Γ  interface 

between contiguous elements (-c). 

 

We denote with 321 ξξξ −−  an interface local frame of reference, with 3ξ  axis 

perpendicular to the interface and 21 ξξ −  laying on the interface plane. 
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[ ]231333 σσσ=σ  in Figure 2.9. is the stress vector field acting on the 

interface, with 33σ  component normal to the interface (i.e. the stress acting parallel 

to 3ξ  axis) and 13σ  and 23σ  the tangential stresses lying on the interface and 

parallel to axes 21 ξξ −  respectively. 

Thus, for each triangular or wedge element, Figure 2.9, six velocities unknown are 

introduced, namely three centroid velocities (xu , yu , zu ) along x , y, z  axes and 

three rotations xΦ , yΦ , zΦ . Let us denote with 

( ) [ ]Twww 32121 ]],[[ ∆∆∆=ξξw  the jump of velocity field on I , jw∆  

corresponding to the velocity jump along the direction j  with respect to 

321 ξξξ −− . Trivial algebra permits to conclude that the jump of the velocity 

field [ ][ ]w  is linear on I .  

Aiming at treating the problem within the framework of linear programming, 

within each interface I  of area IA , a piecewise linear approximation of the failure 

surface ( )σφφ =  is adopted. ( )σφφ =  is generally constituted by linn  planes of 

equation lin
I
i

TI
i nic ≤≤= 1σA . In Figure 2.8, for instance, two different 

linearized failure surfaces for both mortar-mortar interfaces and brick-mortar 

interfaces are shown.  

Since in the FE model adopted, the jump of velocity on interfaces is assumed to 

vary linearly, linn⋅3  independent plastic multiplier rates are assumed as 

optimization variables for each interface. 

Normality rule at the interfaces is expressed by three equality constraints per point 

of the interface, involving plastic multiplier rates fields ( )PI
iλ&  and the jump of 

velocity [ ])(
~

PU  field is given by:  
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Where ( )PI
iλ&  is the i th plastic multiplier rate field of I , associated with the i th 

linearization plane of the failure surface. 

In order to satisfy equation (2.7) for each point of I , nine equality constraints must 

be imposed, i.e. it is necessary to evaluate (2.7) in correspondence of three 

different positions ( )kkkk zyxP ,,=  on I  (for instance at1P , 2P , 5P  of 12Γ , 

Figure 2.9): 

( )[ ] ( ) 3,2,1
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∂
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I
ik

σ
U

φλ&  ( 2.8) 

Where ( )k
I
i Pλ&  is the i th plastic multiplier rate of I  corresponding to point 

( )kkkk zyxP ,,= . 

From equations (2.8)  (2.7) and (2.6), internal power dissipated on the I th interface 

is expressed by the following equation: 
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It is interesting to notice from equation (2.9) that internal power estimation 

depends on plastic multiplier rates variables of points kP  only. Finally, it is 

stressed that the set of plastic multipliers ( )4PI
iλ& , obviously linear dependent with 

respect to plastic multipliers of points 1P , 2P  and 3P , is introduced only for the 

sake of clearness. 

External power dissipated may be written as: 

( )vΣΣ
TT

ext 10 λπ +=  ( 2.10) 
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where 0Σ  is the vector of permanent loads, λ  is the load multiplier, T
1Σ  is the 

vector of unitary loads dependent on the load multiplier (i.e. the optimization 

direction in the space of macroscopic stresses) and v  is the assembled velocity 

vector of elements, which collects elements centroid velocities and rotations.  

Let us remark that, when dealing with masonry vaulted structures, dead loads play 

a crucial role and contribute in a not negligible manner to the external power. 

Obviously, periodicity conditions (2.6) are imposed on v  in the framework of 

classic FE procedures by means of standard Dirichlet boundary conditions (Pegon 

and Anthoine [2]). 

As the amplitude of the failure mechanism is arbitrary, a further normalization 

condition 11 =vΣ
T  is usually introduced. Hence, the external power becomes 

linear in v  and λ  and can be written as λπ += vΣ
T

ext 0 . 

Both by equations (2.7), (2.8), (2.9) and the kinematic formulation of limit 

analysis, the following constrained minimization problem is obtained: 

( )

( ) ( )













∈
∂
∂=

=

−=

∑

∑

=

==

IPP k

n

i

PPI
ik

T

n

I

TI

P

lin

kk

I

k
I
i

σ
w

vΣ

vΣ
vx

φξξλ

πλ
λ

1
21

1

1
0int

],[ˆ

,]][[

1

min

&

 

( 2.11) 

where In  is the total number of interfaces considered and x̂  is the vector of total 

optimization unknowns. In general, problem (2.11) may be easily handled 

numerically both by means of well know simplex and interior point methods.  
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2.3 Numerical results 

Several structural examples of curved masonry structures are proposed. In 

particular, two masonry arches experimentally tested by Vermeltfoort [21], a 

ribbed cross vault, a masonry spherical dome and a cloister vault experimentally 

tested by Faccio et al. [22] and Foraboschi [23][24] are reported. Comparisons with 

both experimental data available and numerical analyses conducted through the 

commercial software DIANA 9.3 [25] will be discussed in chapter 3 and 4. In this 

section, as a preliminary step for the structural analyses, macroscopic masonry 

failure surface sections for each different structural example analyzed. In general, it 

is interesting to note that homS  depends not only on the mechanical properties of 

the constituent materials, but also on the curvature of the elementary cell.  

For all the examples presented, a number of two dimensional projections of the 

eight dimensional macroscopic masonry failure surface, obtained with the 

numerical procedure previously discussed, are reported. In particular (see Figure 

2.10), both the in-plane behaviour of the representative element of volume when 

subjected to membrane loads (sσ  and rσ ) at different orientations with respect to 

the bed joint and the out-of-plane response (bending moments along direction 11 

and 22 as well as torsion 12, Figure 2.10) at fixed out-of-plane shear (13T , 23T ) are 

investigated. 

2.3.1 Parabolic arches by Vermeltfoort 

The representative element of volume (with its geometry and the discretization by 

means of wedge elements) considered for the analysis of two parabolic masonry 

arches (a straight and a skew one) tested by Vermeltfoort [21] is depicted in Figure 

2.11.  
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Figure 2.10: Generic curved elementary cell. Meaning of directions 11 and 22, ϑ  angle 

with respect to bed joint orientation, membrane stresses sσ  and rσ , out-of-plane bending 

11M  and 22M , torque 12M  and out-of-plane shear (13T  and 23T ). 

 

Bricks dimensions are 200 × 100 × 52 mm3 (Rijswaard soft mud bricks) and mortar 

joints are reduced to interfaces. It is interesting to underline that, since curvature of 

the arch is not constant, a number of elementary cells should be considered. 

Nevertheless, here only the REV located at the middle span of the structure (see 

Figure 2.11) is taken into consideration for the sake of conciseness (differences in 

curvature from supports to the middle span are, indeed, sufficiently small). 

For joints reduced to interfaces, a Lourenço and Rots [4] failure criterion with 

mechanical properties summarized in Table I has been adopted. For bricks-bricks 

interfaces, a Mohr-Coulomb failure criterion is assumed, see Table I. 
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It is worth noting from Table I that joints compressive strength has been taken 

equal to masonry vertical compressive strength. Such a choice is related to the fact 

that the rigid plastic model adopted assumes a ductile behaviour of the bricks and 

3D effects are neglected. Therefore, it is not possible to reproduce numerically 

masonry crushing in compression, which results in an ultimate resistance 

intermediate with respect to bricks and mortar compressive strength. Thus, 

mechanical properties of joints in compression are assumed with the sole aim of 

fitting experimental masonry strength. On the other hand, for the structural 

examples reported in what follows, compression regime is scarcely active and 

influences marginally failure loads. In Figure 2.12, a synopsis of resultant 

numerical in- and out-of-plane macroscopic masonry failure surface sections is 

reported. In particular, in Figure 2.12 –a and -b, in-plane strength in the tension-

tension range and in the compression-compression range at different orientations of 

the bed joint with respect to 11 axis (see Figure 2.12 for the meaning of the 

symbols) are depicted.  

 

Table I: Parabolic arch. Mechanical characteristic assumed for joints and bricks. 

Joint (Lourenço Rots failure criterion) 

[ ]2/ mmNf t  Tensile strength 0.32 

[ ]2/ mmNf c  Compressive strength 2.5 

c  Cohesion 1.2 tf
 

Φ  Friction angle 20° 

2Φ  Angle of the linerized compressive cap 40° 

Brick (Mohr-Coulomb failure criterion with compressive cutoff) 

[ ]2/ mmNf c  Compressive strength 30 

[ ]2/ mmNc  Cohesion 1 

Φ  Friction angle 45° 
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Figure 2.11: Vermeltfoort masonry arches. Representative element of volume adopted for 
the simulations and FE discretization 

 

Furthermore, in Figure 2.12 from –c to –f M11-M22 and M11-M12 failure surfaces 

at increasing (imposed) T13 and T23 out-of-plane shear are represented. From an 

overall analysis of the results, it is particularly evident (1) the anisotropic behavior 

of the REV at failure and (2) the effect of out-of-plane shear on ultimate bending 

moment and torsion. 

For the sake of completeness, in Figure 2.13, three typical deformed shapes at 

collapse in presence of N11 membrane action (-a) torsion (-b) and N22 (-c) are 

illustrated.  

The curvature of the elementary cell is, in this case, not particularly pronounced. 

Furthermore, bricks are disposed with their larger dimension along the direction 

with null curvature, therefore failure surface sections are very near to those 

obtained in the flat case (compare, for instance Figure 2.12 with Errore. L'origine 

riferimento non è stata trovata. results).  

Only for N22 (see Figure 2.13-c) a marked out-of-plane effect is visible, obviously 

due to the curvature of the REV. 
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-a -b 

 

 

-c -d 

 

 

-e -f 

Figure 2.12: Vermeltfoort masonry arches. –a and -b: In-plane homogenized failure surface 
(-a: compression region, -b: tension region) at different orientations of the load with respect 

to bed joint ϑ  direction. –c and -d: M11-M22 (-c) and M11-M12 (-d) failure surfaces at 
different values of out-of-plane shear T13. –e and -f: M11-M22 (-c) and M11-M12 (-d) 

failure surfaces at different values of out-of-plane shear T23. 
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-a 

 

-b 

 

-c 

Figure 2.13: Vermeltfoort masonry arches. Typical REV deformed shapes for (-a) 
N11 membrane action, (-b) pure M12 torsion and (-c) N22 membrane action. 

 

Finally, it is worth noting that, when dealing with membrane actions, being non-

null only curvature along 22 direction, ultimate strength along 11 direction remains 

almost equal to that obtained in the flat case. 
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2.3.2 Ribbed cross vault 

The geometry of the elementary cell utilized for the construction of a ribbed cross 

vault experimentally tested in [23] is represented in Figure 2.14. The REV 

geometry presents negligible differences with respect to the cloister vault 

elementary cell analyzed in the last example. The reader is therefore referred there 

for a full description of the homogenized failure surface obtained with the model 

proposed and for a discussion on numerical results. Here, we focus on an 

alternative disposition of bricks, equally utilized in practice and illustrated in 

Figure 2.14 (second configuration). Despite the fact that this disposition was not 

used during experimentation carried out by Faccio et al. [23], it is particularly 

interesting from a numerical point of view, since the larger dimension of bricks is 

disposed along axis with non null curvature. For this reason, a meaningful 

deviation from the flat case is expected.  

Common Italian bricks of dimension 250×120×55 mm3 were used by Faccio et al. 

[23] to build the vault, with mortar joints of thickness approximately equal to 10 

mm (here joints are reduced to interfaces for the sake of simplicity).  

11 axis in Figure 2.14 is the direction of non null curvature, with 22 axis 

perpendicular to 11. 11 curvature is, in this case constant, therefore only one 

representative volume element is needed for the analysis of the cross vault at a cell 

level.  

Mechanical properties adopted for the constituent materials are summarized in 

Table II. As in the previous case, a Lourenço-Rots failure criterion is adopted for 

joints reduced to interfaces whereas for bricks a Mohr-Coulomb strength domain is 

assumed. 
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1st configuration 

 

 

2nd configuration 

 

 

Figure 2.14: Ribbed cross vault. Representative element of volume adopted for the 
simulations and FE discretization (first experimental bricks configuration and second 

disposition with bricks larger length along the axis of non-null curvature). 

 

 

Similarly to the previous example, in- and out-of-plane homogenized failure 

surfaces obtained with the model proposed are reported in Figure 2.16. Also in this 

example, masonry homogenized failure surface and in-plane failure mechanisms on 

the curved elementary cell are reported in Figure 2.15 and Figure 2.17, obtained by 

means of the homogenization technique with flat triangular element.  
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Nevertheless, due to bricks disposition (REV longer dimension is disposed along 

the non null curvature axis, see Figure 2.14) differences between present failure 

surfaces and those obtained for a flat elementary cell are rather evident. In 

particular, observing failure surfaces involving M11 bending moment (Figure 2.16 

from –c to –f), it is rather evident the anisotropic behaviour between positive and 

negative M11, corresponding to compression of intrados and extrados respectively. 

Obviously, in this case, curvature reduces masonry strength along 11 direction, 

whereas REV ultimate resistance along 22 axis remains essentially the same of the 

flat case. This is confirmed by failure mechanisms observed, for instance, after the 

application to the REV of N11 membrane action (Figure 2.18-a), pure torsion 

(Figure 2.18-b) or pure bending moment along 11 direction (Figure 2.18-c). In 

particular, it is interesting to notice the non negligible out-of-plane velocity 

components (obviously due to the REV curvature) of bricks resultant solving linear 

program ( 2.11) when an external N11 action is applied, see Figure 2.18-a. 

 

Table II: Ribbed cross vault. Mechanical characteristic assumed for joints and bricks. 

Joint (Lourenço Rots failure criterion) 

[ ]2/ mmNf t  Tensile strength 0.05 

[ ]2/ mmNf c  Compressive strength 2.3(*) 

c  Cohesion 1.2 tf
 

Φ  Friction angle 25° 

2Φ  Angle of the linerized compressive cap 40° 

Brick (Mohr-Coulomb failure criterion with compressive cutoff) 

[ ]2/ mmNf c  Compressive strength 30 

(*): the value adopted corresponds to masonry vertical compressive strength adopted by 
Creazza et al. (2000). 
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Figure 2.15: In-plane homogenized failure surface at different orientations of the load with 
respect to bed joint ϑ  direction, ribbed cross vault. 
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-a -b 

 

 

-c -d 

  

-e -f 

Figure 2.16: Ribbed cross vault. –a and -b: In-plane homogenized failure surface (-a: 
compression region, -b: tension region) at different orientations of the load with respect to 

bed joint ϑ  direction. –c and -d: M11-M22 (-c) and M11-M12 (-d) failure surfaces at 
different values of out-of-plane shear T13. –e and -f: M11-M22 (-c) and M11-M12 (-d) 

failure surfaces at different values of out-of-plane shear T23. 
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Figure 2.17: In-plane failure mechanisms on the curved elementary cell. –a: pure rrN  

action and detail of elementary cell out-of-plane curvature (ribbed cross vault elementary 

cell). –b: complex in-plane failure in presence of rrN , rsN , ssN  

 

2.3.3 Emi-spherical dome 

The double curvature representative element of volume with its discretization in 

Finite Elements, considered for the analysis at a cell level of a spherical dome 

experimentally tested in [24], is depicted in Figure 2.19. Bricks dimensions are 

250×120×55 mm3 and mortar joints are reduced to interfaces. We denote with the 

symbol “11” the direction tangent to the REV in correspondence of the centroid of 

the central brick and laying on a horizontal plane and with the symbol “22” axis 

tangent to the elementary cell and perpendicular to “11”.  

It is interesting to notice that, differently from previous examples, both 11 and 22 

directions correspond to axes of non null curvature. As already discussed, in this 

case the REV chosen for the simulation should be suitably scaled passing from the 

supports to the top of the dome, if we suppose that the cupola is generated by 

repetition of the REV here considered. 
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-a 

 

-b 

 

-c 

Figure 2.18: Ribbed cross vault. Typical REV deformed shapes for (-a) N11 
membrane action, (-b) pure M12 torsion (-c) pure M11 bending moment. 

 

Obviously, this should require that bricks dimensions are scaled from their original 

dimensions (an approximation here accepted in order to have a numerical 

estimation of masonry behaviour). 

Mechanical properties adopted for the constituent materials are summarized in 

Table III and correspond to experimental data collected by Foraboschi [23][24], see 

also [26]. 
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Figure 2.19: Masonry dome. Representative element of volume adopted for the 
simulations and FE discretization 

 

Membrane and out-of-plane homogenized failure surfaces obtained solving 

optimization problem ( 2.11) for a number of different directions of the unitary 

vector T
1Σ  (representing the load direction in the 8-dimensional space of in-, out-

of-plane and shear actions) are depicted in Figure 2.20 following the scheme 

adopted in the previous examples. Due to the double curvature of the elementary 

cell, the homogenized masonry failure surface is clearly different from the flat 

case, remaining sensibly anisotropic. The different strength when respectively 

positive or negative M11 and M22 bending moments are considered (see for 



Chapter 2 

 

52 

instance Figure 2.20-c and –e) are obviously a direct consequence of the REV 

curvature. 

This is confirmed by deformed shapes at collapse represented in Figure 2.21. In 

particular, in Figure 2.21-a field of velocities at collapse for bending along 11 axis 

(both positive and negative) is depicted, whereas in Figure 2.21-b failure 

mechanism corresponding to pure torsion (M12) is represented. 

2.3.4 Cloister vault 

The single curvature REV constituting by repetition a cloister vault with square 

plane and experimentally tested by Foraboschi [24] is here analyzed. REV with its 

discretization by means of six-noded wedge elements is depicted in Figure 2.22. 

Common Italian bricks of dimension 250×120×55 mm3 were used by Foraboschi 

[24] to build the vault, with mortar joints of thickness approximately equal to 10 

mm (here joints are reduced to interfaces for the sake of simplicity).  

 

Table III: Hemispherical dome. Mechanical characteristic assumed for joints and 
bricks. 

Joint (Lourenço Rots failure criterion) 

[ ]2/ mmNf t  Tensile strength 0.1 

[ ]2/ mmNf c  Compressive strength 1.8 

c  Cohesion 1.2 tf  

Φ  Friction angle 20° 

2Φ  Angle of the linerized compressive cap 45° 

Brick (Mohr-Coulomb failure criterion with compressive cutoff) 
[ ]2/ mmNf c  Compressive strength 30 

[ ]2/ mmNc  Cohesion 1 

Φ  Friction angle 45° 
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-a -b 

 
-c -d 

 
-e -f  

Figure 2.20: Masonry dome. –a and -b: In-plane homogenized failure surface (-a: 
compression region, -b: tension region) at different orientations of the load with 

respect to bed joint ϑ  direction. –c and -d: M11-M22 (-c) and M11-M12 (-d) failure 
surfaces at different values of out-of-plane shear T13. –e and -f: M11-M22 (-c) and 

M11-M12 (-d) failure surfaces at different values of out-of-plane shear T23. 
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-a 

 

 

-b 

Figure 2.21: Masonry dome. Typical REV deformed shapes for (-a) pure M11 
horizontal bending moment (left: intrados compressed; right: extrados compressed), (-

b) pure M12 torsion. 

 

We indicate with the symbol “11” the horizontal axis (curvature equal to zero) and 

with the symbol “22” the axis perpendicular to “11” and tangent to the elementary 

cell in the centroid of the central brick. 
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Analogously to previous cases, a Lourenço-Rots failure criterion is adopted for 

joints reduced to interfaces (mechanical properties, where available, are collected 

from Foraboschi [23][24]), whereas for bricks a Mohr-Coulomb strength domain is 

assumed (see Table IV). 

 

 

 
Figure 2.22: Cloister vault. Representative element of volume adopted for the simulations 

and FE discretization 

 

Homogenized failure surfaces obtained applying the numerical approach 

previously presented are reported in Figure 2.23 In particular, in Figure 2.23-a and 

–b, in-plane masonry ultimate behavior at different orientations of the bed joints 

with respect to load direction in the compression-compression and tension-tension 

region respectively are represented. 
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Table IV: Cloister vault. Mechanical characteristic assumed for joints and bricks. 

Joint (Lourenço Rots failure criterion) 

[ ]2/ mmNf t  Tensile strength 0.018 

[ ]2/ mmNf c  Compressive strength 2.3 

c  Cohesion 1.2 tf  

Φ  Friction angle 20° 

2Φ  Angle of the linerized compressive cap 40° 

Brick (Mohr-Coulomb failure criterion with compressive cutoff) 
[ ]2/ mmNf c  Compressive strength 20 

[ ]2/ mmNc  Cohesion 1 

Φ  Friction angle 45° 
 

 

Similarly, in Figure 2.23 from –c to –f, out-of-plane ultimate strength (for both 11 

and 22 directions) is evaluated at increasing assigned out-of-plane shear actions 

T13 and T23. 

As it is possible to notice, results are similar to those obtained for the parabolic 

arch by Vermetfoort [21], being REV almost flat in this case. Small differences 

occur between present results and Cecchi et al.[11] analyses, except for a reduction 

of 22 axis ultimate strength, consequent to a small out-of-plane effect due to the 

non null curvature. Such a behaviour is confirmed by the deformed shape at 

collapse observed loading the REV with a membrane action along 22 axis, as 

illustrated in Figure 2.24. 
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-a -b 

  

-c -d 

  

-e -f  

Figure 2.23: Cloister vault. –a and -b: In-plane homogenized failure surface (-a: 
compression region, -b: tension region) at different orientations of the load with respect 
to bed joint ϑ  direction. –c and -d: M11-M22 (-c) and M11-M12 (-d) failure surfaces at 
different values of out-of-plane shear T13. –e and -f: M11-M22 (-c) and M11-M12 (-d) 

failure surfaces at different values of out-of-plane shear T23. 
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Figure 2.24: Cloister vault. Typical REV deformed shape at collapse for pure membrane 
action along 22 axis 

 

2.4 Conclusion 

In the present chapter, a kinematic simplified identification model for the 

determination of averaged masonry macroscopic properties at failure has been 

discussed.  

The model assumes as representative element of volume (REV) a central brick 

interconnected with its six neighbours by means of mortar joints reduced to 

interfaces with frictional behaviour and limited tensile and compressive strength. 

Suitable macroscopic internal actions have been imposed on the REV in order to 

comply, at least in an approximate manner, the homogenization theory 

requirements. In order to numerically evaluate a piecewise linear approximation of 

masonry failure surface to use at a structural level, the REV has been discretized by 

means of flat six-nodded wedge rigid elements and a flat three-nodded triangular 

rigid element for the study of ribbed cross vault. Since no dissipation is allowed 

inside the element, failure may occur only at the interfaces between contiguous 

elements. A possible failure of bricks has been also taken into account assuming a 

limited strength for brick-brick interfaces. A simple linear programming problem 
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has been obtained at the micro-scale, which allowed, solving several optimization 

problems at fixed internal actions combinations, to numerically evaluate a 

piecewise linear approximation of masonry failure surface.  

Four cases of technical relevance have been discussed in detail, namely a parabolic 

arch, a ribbed cross vault, a dome and a cloister vault. For each case, macroscopic 

masonry behaviour at failure in presence of membrane and flexural loads has been 

investigated. The differences with respect to the flat case are sometimes rather 

evident, especially when bricks are disposed with their longer dimension along the 

axis with non null curvature or when double curvature REVs are considered. 
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Chapter 3.                                              

Limit analysis of masonry vaults by curved 

shell Finite Elements 

Masonry curved elements -as for instance arches, domes and vaults- represent one 

of the most diffused structural typologies in historical buildings of both Eastern and 

Western architecture. Moreover, the growing interest in the preservation and 

rehabilitation of historic constructions has created a need for the development of 

new efficient tools for the analysis and the evaluation of load-bearing capacity of 

these structures. 

In the present chapter, a novel finite element approach for the limit analysis of 

masonry vaulted structures is presented. A six-nodes triangular curved element is 

used in order to correctly take into account, as far is possible, the actual geometry 

of the vault. For the sake of simplicity, a kinematic approach with possible velocity 

discontinuities along the edges of adjoining elements is considered. On the other 

hand, it has been demonstrated (see Sloan and Kleeman [1]) that the introduction of 
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discontinuities at the interfaces between contiguous elements is suitable for the 

analysis at collapse of purely cohesive or cohesive-frictional materials, which is the 

case of masonry.  

In Section 3.1, the novel triangular six-nodes curved element is presented, whereas 

in Section 3.2, several numerical simulations on a number of masonry shells 

experimentally tested until collapse are performed. In particular, the dependence of 

the collapse load from the mesh refinement and constituent materials parameters 

(sensitivity analysis) is thoroughly discussed. 

3.1 The curved triangular F. E. model 

3.1.1 Basic assumptions 

In this Section, a kinematic FE approach for the homogenized upper bound limit 

analysis of masonry curved shells is presented. A Six-nodes triangular curved rigid 

element with possible velocities discontinuities along the edges of adjoining 

elements is developed. Following a general approach widely diffused in the 

technical literature for the analysis of masonry flat plates (Sinha [2]), in the model, 

plastic dissipation is allowed only at the interfaces between adjoining element.  

The utilization of six-nodes curved elements is particularly important for the 

structural analyses reported in what follows, since it is possible to accurately 

approximate the actual shape of curve surfaces even with few elements (Chapelle 

and Bathe [3]), and therefore permitting a reliable estimation of both internal and 

external (e.g. dead loads) dissipation. 

On the other hand, it is stressed that an important limitation of the limit analysis 

approach here adopted is its impossibility to give information (required by some 

codes of practice) on displacements. In any case, once that a failure mechanism is 

known from limit analysis, an elastic FE analysis of the resistant structure 
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immediately before the collapse may be used to have information on the 

displacements. 

3.1.2 Six-nodes curved shell elementary 

 

Let a six-nodes triangular curved shell element E  be considered, as shown in 

Figure 3.1-a, with nodes coordinates ( ) 6,...,1,,, =izyx iii  and node numbers 

disposed in counter clockwise, with vertex node numbers from 1 to 3. Let the 

symbol Ω  indicate the surface of E , Figure 3.1. 

Let us introduce the two natural coordinates t  and p  varying respectively from 0 

to 1 and from 0 to 1-t  (Zienkiewicz and Taylor [4]). Hence the global coordinate 

( )zyx ,,  of a point P  within the triangular element E  can be expressed as: 

[ ] ( )[ ]Tiii
i

i
T zyxptNzyxP ∑

=

=≡
6

1

,  
( 3.1) 
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z
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-a -b 

Figure 3.1 Six-nodes curved element (-a) and its implementation in Matlab (-b). The green 

line refers to e
12Γ  edge. 



Chapter 3 

 

66 

Where ix , iy  and iz  are global coordinates of node iP  ( 6,...,1=i ) and iN  is the 

node i  shape function. iN  are given by: 
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( 3.2 ) 

 

Natural coordinates of nodal points are respectively ( ) ( )0,0,1 =ptP , 

( ) ( )0,1,2 =ptP , ( ) ( )1,0,3 =ptP , ( ) ( )0,2/1,4 =ptP , ( ) ( )2/1,2/1,5 =ptP , 

( ) ( )2/1,0,6 =ptP . 

Let us consider the e
12Γ  edge of the element E , connecting 1P  and 2P  nodes. 

Similar considerations can be repeated for 31−  and 32−  edges respectively, with 

no conceptual differences. Since the edge is constrained to pass through 1P , 4P  

and 2P  nodes, each point P  on e
12Γ  is given in parametric form (assuming i.e. 

0=p ) as follows: 
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( 3.3 ) 

where 
iPx , 

iPy  and 
iPz  are respectively x , y  and z  coordinates of node iP  and 

[ ]10∈t .  
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Figure 3.2 e
12Γ  edge with thickness t  and eee qrs −−  curved local frame of reference 

From (3.3), it follows that for an arbitrary edge eijΓ  of an element E  which 

connects nodes ji − , a suitable local curved frame of reference eee qrs −−  with 

origin on vertex i  can be identified, as shown in Figure 3.2. 

We consider curved elements as rigid bodies infinitely resistant, with possible 

plastic dissipation only at the edges between adjoining elements. In this context, 

thus, it is necessary to evaluate jump of velocities between adjoining elements in 

the local coordinate system eee qrs −− . 

From equations (3.1)-(3.3), we obtain by differentiation vectors eee qrs −−  in the 

global coordinate system: 

( ) ( )
( ) ( )

eee

e

e

dt

tdP

dt

tdP
pPpPtPtP

rsq

s

nnr

×=

=

∂∂∂∂×∂∂∂∂−=×−=

/

//////21

 

( 3.4 ) 

at each point ( )tP  belonging to the edge e12Γ . 

From (3.4), trivial algebra leads to determine the rotation matrix ( )tT  which 

permits to pass from the global coordinate system to the local (see Figure 3.3). 
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Figure 3.3 Global and local frame of reference. Determination of eΦ  and eΨ . 
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( 3.5 ) 

On the other hand, for a generic point P  on e
12Γ , local abscissa es  (from 1P ) is 

determined by means of: 

( ) ( ) ( ) ( )∫ ∫ ++==
t t

ee dtdtdzdtdydtdxdsts
0 0

222 ///  
( 3.6) 

Coordinates of element centroid (i.e. ∫
Ω

Ω
Ω

= xdxG

1
, ∫

Ω

Ω
Ω

= ydyG

1
, 

∫
Ω

Ω
Ω

= zdzG

1
) are evaluated by means of numerically tackled surface integrals, 

taking into account that dpdtpPtPd ∂∂×∂∂=Ω // . 
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Since curved triangular elements here adopted are rigid, velocity field interpolation 

inside each element depends only on 6 independent variables representing centroid 

velocities [ ]TG
z

G
y

G
xG uuu=u  and rigid rotations [ ]TG

z
G
y

G
xG ΦΦΦ=Φ  

along coordinate axes. 

Therefore, velocities field of a generic point P  on e
12Γ  edge is expressed in the 

global frame of reference as: 
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(3.7) 

 

From (3.7), it follows that velocity field in the local coordinate system results 

dependent on t  non linearly (see equation (3.3)). 

In order to evaluate internal power dissipated at the interfaces by means of 
homS , 

the jump of velocities vector =− ][ NMu [ q∆&  s∆&  nnϑ&∆  ntϑ&∆  r∆& ] for each point 

of the interface has to be evaluated as a function of elements centroids velocities 

and rotations. q∆&  and s∆&  represent the in-plane normal and tangential velocity 

jumps, nnϑ&∆  and ntϑ&∆  are the flexion and torsion rotation rates jumps, whereas 

r∆&  is the out-of-plane tangential velocity jump (see Figure 3.4).  

By means of ( 3.5 ) and (3.7), jump of velocities field between elements M  and 

N  in the local coordinate system (q∆&  s∆&  r~∆& ) can be written as follows: 
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(3.8 ) 
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Where ( )esr~∆&  is the total out-of-plane jump of velocities, containing contributions 

of ( )esr∆&  and ntϑ&∆ .  

On the other hand, nnϑ&∆  and ntϑ&∆  can be determined by means of the following 

expression (see Figure 3.3 for the definition of angles eΦ , eΨ  and eϑ ): 
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( 3.9 ) 
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Figure 3.4 Triangular elements utilized for the structural analyses. In- and out-of-plane 
dissipation, possible plastic dissipation at the interface due to in-plane normal action, in-

plane shear, bending moment, torsion and out-of-plane shear. 
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Figure 3.5 Internal actions It  at the interface I  in the local coordinate system. 

 

Thus, from equations (3.8) and (3.9), for a generic point of abscissa es  it yields: 
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( 3.10 ) 

Where 12L  is the interface length. 

3.1.3 Plastic flow relationships and power dissipation 

We introduce for each interface I  between contiguous elements, macroscopic 

specific actions collected in the vector It , Figure 3.5, defined as 

[ ]I
rr

I
nt

I
nn

I
ss

I
qq

TI TMMNN=t , constituted by membrane actions acting 

along local axis eq ( I
qqN ) and local axis es ( I

ssN ), bending moment ( I
nnM ), torsion 

( I
ntM ) and out-of-plane shear (IrrT ). 
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Power dissipated at the interface can be evaluated solving analytically the integral 

(3.11). 

For each interface I of length 12L , we suppose to have at disposal the homogenized 

(linearized) strength domain constituted by Im  planes in the local coordinate 

system (a generic linearization plane Iq  has equation 

IIq
I

I
rr

q
rr

I
nt

q
nt

I
nn

q
nn

I
ss

q
ss

I
qq

q
qq mqCTAMBMBNANA

IIIIII

≤≤=++++ 1 ). Such a 

linearization for each interface (and, in principle, for each point of the interface) 

can be obtained from homS  exploiting the procedure recommended by Krabbenhoft 

et al. [5], and the reader is referred there for further details. Introducing plastic 

multipliers fields at the interface (one for each linearization plane) from equations 

(3.11), power dissipated at the interface can be re-written as: 

( )( )dsATBMBMANANsP
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(3.12) 

Obviously, field ( )eI

q
sIλ&  assumes the same analytical expression found for the 

velocity field, i.e. is quadratic in t , see equations  (3.3) and (3.7). 

Therefore, ( )eI

q
sIλ&  field is fully determined introducing only three plastic 

multipliers for each internal interface and for each linearization plane, 

corresponding to nodes 1, 6, 3.  

On the other hand, the numerical evaluation of integral (3.12)  case by case is time 

consuming and should involve several variables for each interface. Thus, in order 

both to reduce the computational cost and to be able to tackle complex 3D 

analyses, a symbolic integration is performed making use of Symbolic MatlabTM 

toolbox. In this way, plastic dissipation at a generic interface can be obtained with 

a very limited computation effort as: 
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( 3.13 ) 

where 3,6,1=iWi  are predetermined numerical coefficients obtained 

symbolically. 

External power dissipated can be written as ( )wPP TTexP 10 λ+= , where 0P  is the 

vector of permanent loads, λ  is the load multiplier for the structure examined, T
1P  

is the vector of variable loads and w  is the vector of assembled centroid elements 

velocities. As the amplitude of the failure mechanism is arbitrary, a further 

normalization condition 11 =wPT  is usually introduced. Hence, the external power 

becomes linear in w  and λ . 

 

3.1.4     The Linear Programming (LP) problem 

After some elementary assemblage operations, a linear programming problem is 

obtained, where the objective function consists in the minimization of the total 

internal power dissipated: 
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( 3.14) 

where: 

U  is the vector of global unknowns and collects the vector of elements centroids 

velocities (w ) and rotations (Φ ) and the vector of assembled interface plastic 

multiplier rates ( assI,
λ& ). 
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eqA  is the overall constraints matrix and collects normalization conditions, 

velocity boundary conditions and constraints for plastic flow in velocity 

discontinuities. 

assin
I

,P  collects the coefficients 
Iq

Ii CW  of equation (3.13) of all the In  interfaces. 

The reader is referred to Sloan and Kleeman [1] for a critical discussion of the most 

efficient tools for solving the linear programming problem reported in equation 

(3.14). 

It is interesting to note that an estimation of membrane actions and moments 

associated to the failure mechanism can be obtained via the dual problem of (3.14): 
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 ( 3.15) 

Where :Σ  collects elements membrane actions and moment of each element and 

λ̂  is the collapse multiplier. 

 

3.2 Structural examples 

In this section, several numerical results on a number of masonry vaults are 

presented and compared with experimental data available from the technical 

literature.  

The first two examples are respectively a barrel rectangular vault and a skew arch, 

both tested by Vermeltfoort [10]. The third example relies on a ribbed cross vault 
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experimentally tested by Faccio et al. [8], whereas the last example is a 

hemispherical dome (related experimental results are available from Creazza et al. 

[6][7]. 

For each example, the homogenized limit analysis approach presented in the 

previous section has been employed to predict ultimate load and failure 

mechanism, assuming for the constituent materials (where available) mechanical 

properties experimentally determined (Vermeltfoort [10], Faccio et al. [8], Creazza 

et al. [7] and [6], Foraboschi [9]). 

Both a mesh dependence study and a sensitivity analysis, varying in a wide range 

mortar cohesion and friction angle, are finally reported. 

3.2.1 Barrel rectangular vault 

The first analysis relies on the determination of the ultimate strength of a barrel 

rectangular vault experimentally tested by Vermeltfoort [10]. The vault is a 

parabolic arch with a clear span of 3 m, an inner radius of 2.5 m, a width of 1.5 m 

and a sagitta of 0.5 m. 

The mechanical properties assumed for joints and bricks to calculate failure 

surfaces are reported in chapter 2.  

In Figure 3.8, a comparison between the numerical failure load and the 

experimental result is represented: the good agreement between numerical and 

experimental results is worth noting. 

In order to evaluate the influence of the mechanical properties adopted for joints on 

both collapse load and failure mechanism, a sensitivity analysis has been conducted 

on the example at hand. Three different values of friction angle Φ  have been 

considered, respectively equal to 20°, 25° and 30°. Similarly, four different values 

of the tensile strength tf  have been inspected, respectively equal to 0.05, 0.1, 0.3 

and 0.5 2/ mmN . 
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Figure 3.6 Barrel rectangular vault. Geometry and loading condition. 

 

Collapse load numerically evaluated at different friction angles and cohesions is 

reported in Figure 3.9 -a and -b.  

It is interesting to note from the sensitivity analysis that, for high values of tensile 

strength, the failure load does not depend on mortar friction angle, being failure 

essentially due to pure bending, as shown in Figure 3.10 -a. In Figure 3.10 –b, the 

internal power dissipation patch is also represented. As it possible to note, internal 

dissipation is concentrated under the line of application of the external load, 

meaning that, in this case, failure occurs as a consequence of the formation of two 

flexural “plastic” hinges. A total of four hinges is present at collapse (two 

geometrical and two plastics), a result clearly in agreement with simple mono-

dimensional predictions based on at hand calculations (kinematical chains). The 

numerical collapse load turns out to be very near to that found by Vermeltfoort [10] 

during experimentation (see Figure 3.8). 
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Finally, in order to evaluate internal forces acting on the arch, in Figure 3.11 

bending moment and axial compressive load eccentricity (defined as the ratio 

between bending moment and axial load) along arch length are reported. 

 

 
-a 

 
-b 

 

Figure 3.7 Barrel rectangular vault. –a: Mesh 4: 320 elements and 729 nodes –b: Mesh 
dependence study. 
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Figure 3.8 Barrel rectangular vault. Comparison between experimental and numerical 

(dashed line) results. 

 

Numerical data are collected from the solution vector of the dual problem (3.15). It 

is particularly evident both the formation of two plastic hinges with position 

corresponding to the maximum positive and negative eccentricities, as well as the 

effect of the small tensile strength adopted for mortar joints, which allows that 

maximum eccentricities are major  than one half of the arch thickness.  

 

3.2.2 Skew arch 

The second numerical simulation relies on a skew parabolic arch with a clear span 

of 3 m, an inner radius of 2.5 m, a width of 1.5 m, a sagitta of 0.5 m tested by 

Vermeltfoort [10].  

Mechanical properties assumed for joints and bricks are the same of the barrel 

rectangular vault. In Figure 3.12 the geometry and the loading condition are 

reported. 
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-a 

 

-b 

Figure 3.9 Barrel rectangular vault. –a: Sensitivity analysis varying mortar tensile strength 
and mortar friction angle. –b: Failure load-mortar friction angle diagram. 
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-a 

  

-b 

 

Figure 3.10 Barrel rectangular vault. -a: Numerical failure mechanism compared with 
experimental evidences by Vermeltfoort (2001). -b: Normalized power dissipated patch (

maxP  is the maximum nodal power dissipation value). 
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\  

Figure 3.11 Barrel rectangular vault. Bending moment and compressive stress eccentricity 
evaluated from the dual problem. 

 

Three different meshes, with increasing level of refinement, have been tested (the 

third mesh is represented in Figure 3.13 –a), in order to perform the mesh 

dependence study reported in Figure 3.13 –b, where the numerical failure load 

obtained with the different meshes considered is reported. Failure mechanism and 

plastic dissipation obtained with mesh 3 is also reported in Figure 3.14. 

No experimental force-displacement curves are at disposal for the example at hand. 

From Vermeltfoort [10], only the experimental collapse load (around 26 kN) is 

available. When mechanical properties reported in Table I in sub-section 2.3.1 are 

adopted, a numerical collapse load of 34 kN is obtained, in acceptable agreement 
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(when an associated limit analysis approach is adopted) with experimental 

evidences.  

 

 

Figure 3.12 Skew vault. Geometry and loading condition. 

 

In order to investigate how joints mechanical properties influence both collapse 

load and failure mechanism, a sensitivity analysis has been conducted on the 

example at hand (results are reported in Figure 3.15 -a and -b).  

Three different values of friction angle Φ  have been considered, respectively 

equal to 20°, 25° and 30°, with four different values of tf  tensile strength, 

respectively equal to 0.05, 0.1, 0.3 and 0.5 2/ mmN . 
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-a 

 

-b 

Figure 3.13 Skew vault. –a: Mesh 3: 348 elements (and 755 nodes) –b: Mesh dependence 
study. 
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It is interesting to note that, at a fixed value of tensile strength, the failure load 

varies considerably varying mortar friction angle (see Figure 3.15 -b), meaning that 

failure is due to a non-trivial combination of out-of-plane shear, bending and 

torsion, as shown in Figure 3.14 -a, where the failure mechanism of the arch for tf  

equal to 0.3 2/ mmN  and Φ  equal to 20° is reported. Obviously, in this case, a 

mono-dimensional analysis would be not useful and a 3D shell model is necessary 

to reproduce the torsion behaviour of the arch. 

In Figure 3.14 –b, the internal power dissipation patch is also represented. As it is 

possible to note, internal dissipation is concentrated not only under the line of 

application of the external load (see detail A in Figure 3.14), but also along two 

diagonal lines (details B and C), thus demonstrating that failure occurs as a 

consequence of the limited torsional strength of the arch. 

3.2.3 Ribbed cross vault 

A ribbed cross vault, experimentally tested by Faccio et al. [8], formed by the 

intersection of two barrels vaults with an external diameter of 2.3 m, is consider as 

third example. 

Mechanical properties assumed for joints and bricks and the failure surfaces 

implemented are reported in sub section 2.3.2. 

Data not available from experimentation have been chosen from typical values 

from the literature, whereas the remaining coefficients adopted are taken in 

agreement with Creazza et al. [7][6]. In Figure 3.16 the geometry and the loading 

condition of the ribbed cross vault are reported. 
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-a 

Figure 3.14 Skew vault. -a: Numerical failure mechanism compared with experimental 

evidences by Vermeltfoort [10]. –b: Normalized power dissipated patch ( maxP  is the 
maximum nodal power dissipation value). 
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-a- 

 

-b- 

Figure 3.15 Skew vault. –a: Sensitivity analysis varying mortar tensile strength and mortar 
friction angle. –b: Failure load-mortar friction angle diagram 
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Three different meshes, with increasing refinement, have been used (the third mesh 

is represented in Figure 3.17 –a), in order to perform a mesh dependence study on 

the numerical collapse load (Figure 3.17 -b). In Figure 3.18, a comparison between 

numerical failure load obtained with the present model and the experimental load-

displacement curves is represented; moreover, numerical results obtained by means 

of the damage model proposed by Creazza et al. [7][6]are also represented.  

The satisfactory agreement among present results, previously Creazza et al. ([7] 

and [6]) elasto-damaging approach and experimental evidences is worth noting. 

As in the previous cases, a sensitivity analysis has been conducted varying both 

mortar tensile strength tf  (0.05, 0.1, 0.15, and 0.2 2/ mmN ) and mortar friction 

angle Φ  (25°, 30° and 35°) in a wide range. 

The failure loads uP  so obtained are depicted in Figure 3.19-a and -b. As it is 

possible to note from Figure 3.19-b, where uP  is reported at a different values of 

tf  (fixed) varying Φ , failure occurs as a combination of bending and out-of-plane 

shear for almost all the values of tf  inspected.  

 

 

 

 

Figure 3.16 Ribbed cross vault. Geometry and loading condition. 
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Such a behaviour is confirmed by the failure mechanism observed and the internal 

power dissipation patch, as shown respectively in Figure 3.20-a and -b, where 

numerical results obtained assuming tf  equal to 0.1 2/ mmN  and Φ  equal to 20° 

are reported. 

Finally, observing the patch of internal power dissipation, it is particularly evident 

that an out-of-plane sliding of the elements under the zone of the application of 

external load occurs, with the formation of five bending hinges in the principal arch 

of the cross vault (see Figure 3.20-c) 

 

3.2.4 Hemispherical dome 

The fourth analysis, which concerns a hemispherical dome with an inner diameter 

of 2.2m and thickness of 0.12m and experimentally tested by Foraboschi [9], is 

hereafter discussed.  

Mechanical properties assumed for joints and bricks are summarized in Table III in 

sub section 2.3.3. In Figure 3.21 the geometry and the loading condition are 

reported. Three different meshes, with increasing refinement, have been used (the 

third mesh is represented in Figure 3.22 –a), in order to perform a mesh 

dependence study on the numerical collapse load (Figure 3.22-b). In Figure 3.23, a 

comparison between the failure load obtained with the present numerical model 

and experimental load-displacement curves is represented. 
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-a- 

 
-b- 

Figure 3.17 Ribbed cross vault.-a- Mesh 3: 952 elements (and 2009 nodes) -b- Mesh 
dependence study. 
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Figure 3.18 Ribbed cross vault. Experimental and numerical (dashed line) results 

 

Load-displacement curves obtained using the elasto-damaging model by Creazza et 

al. [6] are also depicted. Also in this case a sensitivity analysis ( tf  equal to 0.05, 

0.1, 0.15, and 0.2 2/ mmN  and Φ  equal to 25°, 30° and 35°) has been conducted. 

Results of such analysis are reported in Figure 3.24-a and -b.  

Similarly to the previous cases, the failure load depends considerably on mortar 

friction angle at assumed tensile strength, meaning that collapse occurs as a 

combination of bending and in-plane actions, as shown in Figure 3.25 –a (failure 

mechanism obtained assuming tf  equal to 0.1 2/ mmN  and Φ =20°).  
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-a 

 

-b 

Figure 3.19 Ribbed cross vault. -a: Sensitivity analysis varying mortar tensile strength and 
mortar friction angle. –b: Failure load-mortar friction angle diagram. 
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-a                                                                 -b 

         

-c                                                                -d 

Figure 3.20 Ribbed cross vault: -a: Failure mechanism (Creazza et al. [6]). –b: Failure 
mechanism, section view, present study. –c: Failure mechanism, front view, present study. 

–d: Normalized power dissipated patch (maxP  is the maximum nodal power dissipation 
value). 

 

 

Figure 3.21 Hemispherical dome. Geometry and loading condition. 
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In Figure 3.25 -b, the internal power dissipation patch is represented. As it possible 

to note, internal dissipation is concentrated along a circular crown, with the 

formation of one annular bending hinge; moreover a minor amount appears along 

the meridians of the hemispherical dome, which vanishes when 0→tf .  

Finally, in Figure 3.26, the meridian and radial specific membrane actions 

distributions from the dual problem, as well as meridian actions eccentricity are 

represented. As it is possible to notice, collapse occurs for the formation of a hinge 

along the parallel located between the fifth and the sixth row of elements.  

 

3.3 Conclusion 

In this chapter, a kinematic limit analysis model for the structural analysis of 

masonry curved shells has been presented. In the simulations, six-nodes curved 

triangular elements are used, with possible plastic dissipation at the interfaces 

between adjoining elements. Curved elements have been used with the aim of 

taking into account correctly, as far as possible, the actual geometry of the vault. 

For the sake of simplicity, a kinematic approach is employed assuming curved six-

nodes triangles rigid-infinitely resistant, with possible velocities discontinuities 

along the edges of adjoining elements. dissipation is allowed only at the interfaces 

(generalized cylindrical hinges) between adjoining elements. In this way, an upper 

bound of the collapse load is obtained. In order to take into account all possible 

failure modes along triangles edges (rotation, stretching, and sliding), it is assumed 

that dissipation occurs for bending moment, torsion, out-of-plane shear and in-

plane actions, as usually accepted for the analysis of thick (Reissner-Mindlin) 

shells. 
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-a 

 

-b 
Figure 3.22 Hemispherical dome. –a: Mesh 3:1344 elements (and 2784 nodes). –b: Mesh 

dependence study. 
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Figure 3.23 Hemispherical dome. Experimental and numerical (dashed line) results. 

 

Plastic dissipation is evaluated assuming for the interfaces between adjoining 

elements an upper bound approximation of the actual homogenized masonry failure 

surface, obtained by means of a standard UB finite element procedure, once that a 

suitable elementary cell is identified for the curved texture under consideration. 

The model is assessed through several numerical simulations on masonry shells 

experimentally tested until collapse. In particular, the dependence of the collapse 

multiplier from the mesh and from the material parameters (sensitivity analysis) is 

thoroughly discussed. 
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-a 

 

-b 

Figure 3.24 Hemispherical dome. -a: Sensitivity analysis varying mortar tensile strength 
and mortar friction angle. –b: Failure load-mortar friction angle diagram. 
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-a 

 

-b 

Figure 3.25 Hemispherical dome. -a: Failure mechanism (present study and damage model 

by Creazza et al. [6]).-b: Normalized power dissipated patch ( maxP  is the maximum nodal 
power dissipation value). 
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Figure 3.26 Hemispherical dome. Meridian, radial specific membrane actions and 

eccentricity of radial actions. 
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Chapter 5.                                   

Application of numerical model proposed 

on an entire masonry building 

The recent devastating earthquake occurred in Abruzzo (Italy 2009) indicated once 

again that the historical Italian buildings, essentially constituted by masonry 

structures, are scarcely resistant to horizontal loads and highly vulnerable to 

seismic actions. Such inadequate behaviour under earthquake excitation is a 

common issue of masonry buildings in many countries worldwide and is 

essentially due to mortar joints low strength when loaded out-of-plane [1].  

The utilization of FRP strips as reinforcement instead of conventional methods 

seems the most suitable solution for the seismic upgrading, thanks to the limited 

invasiveness, durability and good performance at failure [2]-[8] of carbon fibers.  

As discuss in previous chapter, the new and efficient numerical tool proposed is 

able to predict the ultimate load bearing capacity not only for domes but also for 

entire masonry buildings with or with out FRP strips. In order to fully validate the 
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numerical model proposed,  a set of numerical simulations on an entire building 

reinforced with FRP strips and experimentally tested until collapse by Yi et al. 

[10][11] is reported, in this chapter, in presence and absence of reinforcement. 

Results, obtained with the model proposed fit well both experimental data and 

alternative non linear FEM simulations results. From an overall analysis of the 

performance of the numerical tool proposed, it can be deduced that the approach 

presented may be a valuable software for practitioners involved in an inexpensive 

evaluation of ultimate loads of masonry buildings reinforced with FRP strips. 

 

5.1 Masonry test structure: geometry description 

 

A 3D FE limit analysis on a two story unreinforced-reinforced masonry building 

experimentally tested by Yi et al. and Moon et al. in [10]-[12] is considered. 

The structure  reproduces some structural characteristics of typically existing 

masonry buildings in the mid-America area. The dimensions of the structure are 

7.32×7.32 m in plan, with story heights of 3.6 m for the first story and 3.54 m for 

the second story. The structure is constituted by four masonry walls labeled as 

walls A, B, 1, and 2, respectively, see Figure 5.1. 

The walls have different thicknesses and opening ratios to represent typical 

masonry walls.. Walls 1 and 2 are composed of brick masonry with thickness 20 

cm. Wall 1 has relatively small openings, whereas wall 2 contains a large door 

opening and larger window openings. Therefore, the large difference in stiffness 

between walls 1 and 2 allows the torsional behavior of the building to be 

investigated. Walls A and B are identical, and with a nominal thickness equal to 30 

cm. The moderate opening ratios in these two walls are representative of many 

existing masonry buildings. The aspect ratios of piers range from 0.4 to 4.0. The 
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four masonry walls are considered perfectly connected at the corners, a feature not 

always reproduced in the existing structures. This allows to investigate also the 

contribution of the transverse walls to the strength of the overall building. For walls 

A and B, Yi et al. [10][11] employed masonry arch lintels, whereas for walls 1 and 

2, steel lintels were used. A wood diaphragm and a timber roof are present in 

correspondence of the floors. Both solid bricks and hollow cored bricks were 

employed in the structure. The nominal dimensions of both types of bricks are 200 

× 89 mm (length × width). The cored bricks contain a longitudinal hole through the 

center with a diameter of 22 mm. Solid bricks were used for the lower 54 courses 

in the first story of the test structure to approximately the 3.8 m level, whereas 

cored bricks were used for the remaining parts of the structure.  

5.1.1 Reinforced building 

When dealing with the reinforced case, each wall was strengthened with different 

typologies and dispositions of strips. 

For Wall 1, unidirectional glass FRP (GFRP) strips epoxy bonded to the interior 

face were used (Figure 5.2 -a), whereas two bidirectional glass fiber reinforcement 

cement sheets bonded to the internal faces were applied on Wall 2 (Figure 5.2 -b). 

Pre-stressing bars (17.5 mm diameter and 690 MPa yield strength) were located 

vertically at the center of each pier of Wall A (Figure 5.2 -c). 

Finally, unidirectional vertical and diagonal GFRP strips were bonded to the 

interior face of Wall B (Figure 5.2 -d). 

5.1.2     Loading condition and material properties 

Two different loading conditions are investigated numerically, corresponding to 

horizontal loads dependent on the load multiplier applied along X (i.e. parallel to 

Walls 1 and 2) and Y direction (parallel to A and B) respectively, see Figure 5.1.  
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Figure 5.1 Unreinforced masonry test structure 

 

The test setup of [10] was obtained locating two 1000 kN actuators at the roof level 

and two 450 kN actuators at the first floor, thus reproducing a first vibration mode 

static distribution of horizontal loads in both directions. 
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-a- 

 

-b- 

 

-c- 

 

-d- 

Figure 5.2 Reinforced masonry test structure: -a- Wall 1; -b- Wall 2; -c- Wall A; -d- Wall 
B 

 

In the numerical model, vertical loads consist only of walls’ self weight and 

permanent loads of the first floor and of the roof. 

The experimental compressive strength of bricks and mortar reported in [10] is 

41.6 MPa and 0.283 MPa respectively. Mechanical properties assumed in the 

numerical model for masonry are summarized in Table 5.1.  



Chapter 5 

 

158

Table 5.1: Entire building reinforced with FRP strips. Mechanical 
characteristic assumed for joints and bricks. 

Joint (Lourenço Rots failure criterion) 

[ ]2/ mmNf t  Tensile strength 0.15 

[ ]2/ mmNf c  Compressive strength 4 

c  Cohesion 1.2 tf  

Φ  Friction angle 20° 

2Φ  Angle of the linerized compressive cap 40° 

Brick (Mohr-Coulomb failure criterion with compressive cutoff) 

[ ]2/ mmNf c  Compressive strength 4.5 

[ ]2/ mmNc  Cohesion 1 

Φ  Friction angle 45° 

 

 

 

Figure 5.3 REV adopted to model unreinforced masonry and its FE discretization 
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The failure surfaces adopted for analysis on macro-scale level at step II, calculated 

with the procedure explained in Chapter 2 (see Figure 5.3 for REV adopted to 

model unreinforced masonry ) are reported in Figure 5.4. 

5.2 Numerical results 

5.2.1 X direction 

For the numerical limit analyses performed in what follows, a model with 5920 

wedge shaped elements (masonry) and 2176 triangles has been used, see Figure 

5.5.The 3D deformed shapes at collapse, both in presence and absence of 

reinforcement, obtained through the FE limit analysis proposed are represented in 

Figure 5.5 and Figure 5.6. The corresponding numerical and the experimental 

collapse loads are reported in Table 5.2. As can be noted, limit analysis simulations 

are in satisfactory agreement with experimental results, providing collapse loads 

not exceeding 10% of error with respect to the experimental ones in the most 

unfavourable case. Considering the obvious limitations and inaccuracies introduced 

using a homogenized limit analysis approach, such a discrepancy may be regarded 

as acceptable. From a detailed inspection of the deformed shape at collapse, it can 

be observed a symmetric behaviour of the building, being Walls A and B almost 

geometrically identical (except for the application of a different reinforcement 

typology in the strengthened case). Figure 5.7 and Figure 5.8 show a comparison 

between the deformed shape of Walls A and B and the experimental crack pattern. 

As can be noted, while in the unreinforced case, collapse occurs for rocking and 

shear failure of the piers of the first story with a rigid body motion of the second 

story, the introduction of FRP at the first level has the obvious consequence of 

transferring plastic dissipation also at the second story. 
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-a -b 

  
-c -d 

 
-e 

Figure 5.4: Homogenized masonry failure 
surfaces obtained with the procedure 

proposed and implemented at structural 
level for the analysis at collapse of entire 
reinforced buildings. –a: in-plane failure 

surfaces at different orientations ϑ  of the 
bed joint with respect to the horizontal 

stress hσ  ( vσ  = vertical stress). –b: 

11M - 22M  out-of-plane failure surfaces at 

different values of 13T  out-of-plane shear. 

–c: 11M - 12M  failure surfaces at different 

values of 13T . –d: 11M - 22M  out-of-plane 

failure surfaces at different values of 23T  

out-of-plane shear. –e: 11M - 12M  out-of-

plane failure surfaces at different values of 

23T . 
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Figure 5.5 Collapse mechanisms in absence of reinforcement: +X direction 

 

 

     

Figure 5.6 Collapse mechanisms in presence of reinforcement: +X direction 
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Table 5.2: Collapse load 

 
Numerical model 

(λnum) 

Experimental 

(λex) 

Variation 

[(λnum)- (λex)]/ (λex) 

Without FRP 
330 305 8.2% 

With FRP 
520 475 9.5% 

 

 

 

 

    

Figure 5.7 +X direction: comparison between numerical and crack pattern without FRP 
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This is confirmed comparing the normalized plastic dissipation patch reported in 

Figure 5.9 and Figure 5.10  respectively in absence and presence of FRP 

reinforcement.  

 

 

     

        

Figure 5.8 +X direction: comparison between numerical and crack pattern with FRP 
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Figure 5.9 Seismic load along +X direction, unreinforced case. Normalized plastic 
dissipation patch on masonry elements (color range from 0 to 1). 
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Figure 5.10 Seismic load along +X direction, unreinforced case. Normalized plastic 
dissipation patch on masonry elements (color range from 0 to 1). 
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Figure 5.11 Seismic load along +X direction. Normalized plastic dissipation patch on 

masonry/FRP interfaces (color range from 0 to 1). 

 

In the framework of limit analysis, plastic dissipation simulates the crack zones 

found at the end of the experimentation and therefore should give a global 

prediction of the effectiveness of the reinforcement. 

Finally, in Figure 5.11, plastic dissipation at the interface between FRP and 

masonry is represented; it is particularly evident the role played by the strips which 

delaminate for in-plane actions on Wall A and for out-of-plane rocking of Wall 1.  

In order to have a deep insight into the role played by the reinforcement strips on 

the increase of the ultimate resistance of the building, in Figure 5.12 numerical 

collapse loads obtained varying bf  masonry/FRP interface strength in a wide 

range (from 0 to 1 MPa, being 0 MPa the unreinforced case) are represented. First 

derivative of collapse load with respect to bf  reaches the maximum value 

approximately in the rage 0.3- 0.6 MPa, meaning that this is the optimal value of 

the bond strength. Finally, it is worth remembering that typical values of bond 
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strength bf  which can be found in building practice range from 0.15 MPa to 0.50 

MPa. 

 

5.2.2 Y direction 

Numerical 3D deformed shapes at collapse, with and without reinforcement, 

obtained when the building is loaded along Y direction are shown in Figure 5.13 

and Figure 5.14. The corresponding numerical and the experimental collapse loads 

are reported in Table 5.3. As can be noted, also in this case, limit analysis failure 

loads seem in good agreement with experimental results. 

Figure 5.15 and Figure 5.16 show a comparison between the deformed shape of 

Walls 1 and 2 and the experimental crack pattern. As can be noted, the collapse 

mechanism is similar, in particular the different opening ratio of the Wall 1 and 2 

determines torsional effects in the building, see Figure 5.13and Figure 5.14.  
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Figure 5.12 Seismic load along +X direction: sensitivity analysis on the collapse load 

varying bf  masonry/FRP interface strength. 
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Figure 5.13 Collapse mechanisms in absence of reinforcement: +Y direction 

 

When dealing with the FRP reinforced structure, a moderate increment of the 

collapse load (around 15-20%) is observed, a consequence of the fact that the 

failure mechanism does not change considerably with respect to the unreinforced 

case, except for a more evident plastic dissipation concentrated on Wall 2. 

            

Figure 5.14 Collapse mechanisms in presence of reinforcement: +Y direction 
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Table 5.3: Collapse load +Y Direction 

 
Numerical model 

(λnum) 

Experimental 

(λex) 

Variation 

[(λnum)- (λex)]/ (λex) 

Without FRP 
315 301 4.6% 

With FRP 
395 361 9.4% 

 

 

As can been observed from the Table 5.3, a very good agreement is found between 

experimental and numerical collapse loads, both in presence and absence of FRP 

strips. 

       

        

Figure 5.15 +Y direction: comparison between numerical and crack pattern without FRP 
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Figure 5.16 +Y direction: comparison between numerical and crack pattern with FRP 

 

As already discussed, within limit analysis, plastic dissipation simulates the crack 

zones found at the end of the experimentation. Considering that a homogenized 

approach has been used (i.e. a precise crack pattern zigzagging between bricks can 

not be reproduced), plastic dissipation patch results quite satisfactory, see Figure 

5.17 and Figure 5.18. 

Finally, in, plastic dissipation at the interface between FRP and masonry is 

represented; it is particularly evident the role played both by the continuous tendon 

which delaminates for in-plane actions and by the reinforcement loaded out-of-

plane on Wall B.  
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Figure 5.17 Seismic load along +Y direction, unreinforced case. Normalized plastic 
dissipation patch on masonry elements (color range from 0 to 1). 
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Figure 5.18 Seismic load along +Y direction, reinforced case. Normalized plastic 
dissipation patch on masonry elements (color range from 0 to 1). 
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Figure 5.19 Seismic load along +Y direction. Normalized plastic dissipation patch on 
masonry/FRP interfaces (color range from 0 to 1). 

 

In order to fully assess the numerical results obtained with the present model, in 

Figure 5.20 numerical collapse loads obtained varying  masonry/FRP interface 

strength bf  in a wide range (from 0 to 1 MPa, being 0 MPa the unreinforced case) 

are represented. It is worth noting that a satisfactory increase of the collapse load is 

obtained in the rage 0.3- 0.6 MPa. This result is both in agreement with 

experimental evidences on the bond strength and codes of practice specifics, and 

indicates once again that high resistance masonry/FRP interfaces do not allow to 

increase proportionally the collapse load of the entire building. Failure for 

delamination is, indeed, a consequence of the limited masonry strength, see [9], 

since bf  peak strength is evaluated from masonry tensile and compressive 

strength.  
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5.3 Conclusions 

In order to validate the numerical model proposed, an entire two story masonry 

building reinforced in various ways with FRP strips and experimentally tested at 

Georgia Tech under earthquake excitation has been extensively analyzed. 
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Figure 5.20 Seismic load along +Y direction: sensitivity analysis on the collapse load 

varying bf  masonry/FRP interface strength. 

Good agreement between present results and available data has been found both in 

presence and absence of reinforcement, meaning that the procedure proposed may 

be used by practitioners for a reliable evaluation of collapse loads and failure 

mechanisms of complex 3D strengthened masonry structures. 
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Chapter 6. 

Conclusion 

 
The aim of this thesis is to propose a new efficient numerical tool, based on the 

kinematic theorem of limit analysis, for the study of masonry shell and 3D 

structures with or without FRP reinforcement. 

The approach consists of two steps. In step I unreinforced masonry strength 

domains are obtained by means of FE limit analysis procedure applied to a 

representative element of volume constituted by a central brick interacting with its 

six neighbours trough  rigid plastic interfaces (mortar joint). In step II, the 

unreinforced strength domains are implemented in a novel upper bound FE limit 

analysis code for the analysis at collapse of entire masonry curved and 3D 

structures. 

Two structural models are proposed: 
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1) A Six-nodes triangular curved rigid element with possible 

velocities discontinuities along the edges of adjoining elements 

is developed; 

 

2) Rigid infinitely resistant wedge-shaped 3D elements with 

possible velocities discontinuities along the edges of adjoining 

elements is developed. 

 

After a brief introduction reported in Chapter 1, in Chapter 2 a kinematic simplified 

identification model for the determination of averaged masonry macroscopic 

properties at failure has been discussed. The model assumes as representative 

element of volume (REV) a central brick interconnected with its six neighbours by 

means of mortar joints reduced to interfaces with frictional behaviour and limited 

tensile and compressive strength. Suitable macroscopic internal actions have been 

imposed on the REV in order to comply, at least in an approximate manner, the 

homogenization theory requirements. In order to numerically evaluate a piecewise 

linear approximation of masonry failure surface to use at a structural level, the 

REV has been discretized by means of flat six-nodded wedge rigid elements and a 

flat three-nodded triangular rigid element for the study of ribbed cross vault. Since 

no dissipation is allowed inside the element, failure may occur only at the 

interfaces between contiguous elements. A possible failure of bricks has been also 

taken into account assuming a limited strength for brick-brick interfaces. A simple 

linear programming problem is obtained at the micro-scale, which allowes, solving 

several optimization problems at fixed internal actions combinations, to 

numerically evaluate a piecewise linear approximation of masonry failure surface. 

In Chapter 3 a kinematic limit analysis model for the structural analysis of masonry 

curved shells is presented. In the simulations, six-nodes curved triangular elements 

are used, with possible plastic dissipation at the interfaces between adjoining 
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elements. For the sake of simplicity, a kinematic approach is employed assuming 

curved six-nodes triangles rigid-infinitely resistant, with possible velocities 

discontinuities along the edges of adjoining elements. dissipation is allowed only at 

the interfaces (generalized cylindrical hinges) between adjoining elements. In this 

way, an upper bound of the collapse load is obtained. In order to take into account 

all possible failure modes along triangles edges (rotation, stretching, and sliding), it 

is assumed that dissipation occurs for bending moment, torsion, out-of-plane shear 

and in-plane actions, as usually accepted for the analysis of thick moderately 

(Reissner-Mindlin) shells. 

Plastic dissipation is evaluated assuming for the interfaces between adjoining 

elements an upper bound approximation of the actual homogenized masonry failure 

surface, obtained by means of a standard UB finite element procedure, once that a 

suitable elementary cell is identified for the curved texture under consideration.  

In chapter 4 a homogenized FE limit analysis approach for the numerical 

evaluation of collapse loads and failure mechanisms of FRP-reinforced masonry 

curved structures is presented. 

Unreinforced masonry homogenized failure surfaces obtained in chapter 2 have 

been used to evaluate plastic dissipation at the interfaces between adjoining wedge-

shaped elements. A possible dissipation at the triangular interfaces between FRP 

and masonry elements is also considered in order to model, in an approximate but 

effective way, the possible delamination of the strips from the supports. Italian 

code CNR DT 200/2006 formulas have is to evaluate peak interface tangential 

strength. 

 

Several numerical examples are analyzed, consisting of two different typologies of 

masonry arches (a barrel vault and an arch in a so-called “skew” disposition), a 

ribbed cross vault, a hemispherical dome and a cloister vault.  
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For all the cases, both the unreinforced and FRP reinforced case are discussed, 

analyzed with six-nodes triangular curved rigid element (Chapter 3) and rigid 

infinitely resistant wedge-shaped 3D elements. Additional non-linear FE analyses 

are conducted (employing DIANA F.E. program) for all the examples presented, 

modelling masonry through both a heterogeneous and an equivalent macroscopic 

material with orthotropic behaviour, in order to assess limit analysis results.  

Finally, an entire two story masonry building reinforced in various ways with FRP 

strips and experimentally tested at Georgia Tech is discussed. 
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