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Introduction 
 
The analysis of the interaction between deformable bodies represent a problem 
with both a mathematical and an engineering interest. In the engineering field, 
such interaction problems include, for example, the study of structural shallow 
foundations, floating structures, laminated or composite materials, sandwich 
panels, indentation problems. In the civil engineering field, the analysis of the 
interaction between structural foundations and the supporting soil is important to 
both structural and geotechnical engineering. Results of soil-structure interaction 
(SSI) analyses provide information which may be used in structural design of 
the foundation or of the entire structure, or in the analysis of stresses and 
deformation within the soil. Even if many studies are devoted to the elastic 
analysis of the interaction problem, the subject is continually being extended in 
order to include, for example, material and geometric nonlinearity. The aim of 
this thesis is to extend an existing numerical approach for studying the SSI 
problem of beams and frames on elastic half-space, including geometric and 
material nonlinearities and considering two different types of half-space model. 
In the civil engineering field, the SSI problem assumes that the soil can be 
adequately represented by an elastic medium occupying a half-space region. In 
this thesis, models of half-space response which exhibit linear elastic 
characteristics are considered. The linear elastic idealization of the supporting 
medium is often represented by a mathematical model which describes the 
particular characteristics of the behaviour of the half-space. Some idealizations 
have been developed during years. The simplest soil or half-space model was 
defined by Winkler (1867), who assumed that the surface displacement of the 
half-space at every point is proportional to the pressure applied at the same point 
and it is independent of pressures and displacements at other surface points. 
Winkler-type half-space is physically represented by a distributed set of springs 
under the supported structure and it is often adopted to describe, for example, 
the behaviour of floating structures, railroad tracks and road pavements. Since 
the deflections in a Winkler model are limited to the loaded region, this reduce 
the applicability of the model, which turn out to be quite different than the real 
behaviour of a half-space characterized by transmissibility of applied forces 
such as the soil medium, the core of a sandwich panel or the elastic support of a 
thin film. In these cases, an elastic continuum model may be defined. The initial 



 2

studies in this context were done by Boussinesq (1885), who analyzed the 
problem of a semi-infinite homogeneous and isotropic linear elastic solid subject 
to a concentrated force acting normal to the its surface. A similar case is given 
by the plane problem of a concentrated normal line load applied to the surface of 
the half-space, which was studied for the first time by Flamant (Timoshenko and 
Goodier 1970, Johnson 1985). Moreover, it must be noted that  the incapacity of 
the Winkler model in determining the continuous behaviour of real supports and 
the complexity of the continuum models caused the development of many other 
simple half-space response models in the past. Some examples are given by the 
two-parameter elastic models, which are characterized by two independent 
elastic constants (Hetenyi 1946, Pasternak 1954, Vlasov and Leonitiev 1966). 
The interaction between foundations and the supporting soil medium is often 
analyzed by coupling finite element (FE) and boundary element (BE) methods 
(Brebbia and Georgiou 1979, Mendonca and Paiva 2003, Gonzalez et al. 2007). 
FE method is appropriate for structural analysis, whereas BE method is 
appropriate for studying unbounded domains. Moreover, adopting symmetric 
Galerkin BEM-FEM coupling procedures (Leung et al. 1995, Springhetti et al. 
2007), symmetric coefficient matrices may be obtained for the BE formulations. 
BE formulation was adopted to study layered soils (Maier and Novati 1987), 
whereas BEM-FEM coupling may be also adopted for studying fracture 
mechanics problems (Frangi et al. 2002, Frangi and Novati 2003). 
Considering the elastic half-plane or half-space, the BE formulation may be 
simplified by adopting a simple fundamental solution such as Boussinesq or 
Flamant solution, respectively. In these cases, the discretization of the contact 
surface generates a symmetric and positive definite system matrix. The first 
application of the FE-BE approach was carried out by Cheung and Zinkiewicz 
(1965) for the static analysis of plates on elastic foundations. The authors 
discretized the soil reaction with concentrated forces at plate sub-element nodes 
and obtained the flexibility matrix of the soil by using both Boussinesq and 
Winkler solutions. In the latter case, the flexibility matrix was purely diagonal. 
Cheung and Zinkiewicz showed that the stiffness matrix of the soil may be 
obtained by inverting the flexibility matrix and adding it to the stiffness matrix 
of the foundation, the total stiffness of the system may be obtained. The same 
approach was adopted by Cheung and Nag (1968) for the determination of the 
stiffness matrix of an elastic half-plane (Flamant solution) and half-space 
(Boussinesq solution). The flexibility matrix of the soil was also used by 
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Rajapakse and Selvadurai (1986) for studying Mindlin plate elements, whereas 
Guarracino et al. (1992) studied three-dimensional frames with rigid footings on 
half-space. 
A SSI problem may be studied efficiently adopting a mixed variational 
formulation, which assumes as independent functions both structure 
displacements and soil or half-space contact pressures. Kikuci (1980) adopted a 
mixed variational formulation for studying beams resting on Pasternak soil, 
whereas Bjelak and Stephan (1983) adopted this formulation for Pasternak soil 
model and averaging Boussinesq solution. Tullini and Tralli (2010) studied 
Timoshenko beams on elastic half-plane by coupling beam FEs and boundary 
integral equation for the half-plane and adopting a mixed variational 
formulation. The same approach has been adopted by Tullini et al. (2012a) for 
studying axially loaded thin structures bonded to a homogeneous elastic half-
plane. 
In the first chapter of this thesis, the simple and efficient numerical model, 
introduced by Tullini and Tralli (2010), is extended to the buckling analysis of 
Euler-Bernoulli (E-B) beams on half-plane and to incremental analysis of E-B 
beams and frames including geometric nonlinearity. The stability of beams on 
elastic half-plane is important in many engineering fields, such as the design of 
structural sandwich panels (Allen 1969) and the buckling analysis of thin films 
in electronic industry (Shield 1994; Volynskii et al. 2000). The stability and the 
non-linear geometric analysis of frames on elastic half-plane may be very 
important for the design of subways or box-culverts. Moreover, the coupling of 
foundation FEs with a structure described by traditional beam elements, 
including geometric nonlinearity, represents a promising aspect of this work. In 
the second chapter, buckling analysis of beams on half-plane is applied to the 
Timoshenko beam model, which is well suited to study structural foundations 
with low slenderness. The results showed in first and second chapter have 
recently been published (Tullini et al. 2013, Tullini et al. 2012b). 
In the third chapter, the analysis of E-B beams and frames on elastic half-plane 
is carried out including structural material nonlinearity. The non-linear 
behaviour of beams in bending is considered and for simplicity it is lumped at 
beam ends and represented by plastic hinges. For this purpose, an efficient 
model, commonly used to represent semi-rigid connection behaviour 
(Monforton and Wu 1963, Shakourzadeh et al. 1999), is adopted for 
representing the non-linear moment-rotation behaviour of beam cross-sections, 



 4

following the approach of Hasan et al. (2002) for the pushover analysis of 
frames. Analysis of foundation beams including material nonlinearity are 
performed by defining a-priori the position of potential plastic hinges. Then, a 
box-culvert designed to grant the flow of a river under a railway line is studied 
and an incremental analysis is performed. 
Finally, in the fourth chapter, the three-dimensional (3D) half-space model is 
considered and the flexibility matrix of the soil represented by Boussinesq 
solution is determined. The Galerkin boundary element method is firstly applied 
for solving problems related to rigid indenters on elastic half-space and uniform 
pressures over rectangular areas. Then, static and buckling analysis of beams on 
elastic soil is considered and the stiffness matrix of the soil is determined. 
Foundation beams of 3D frames on elastic soil may be discretized by adopting a 
beam model based on Timoshenko bending theory and Reissner (1952) torsion 
theory, following the model described by Minghini et al. (2008). However, for 
simplicity, foundation beams with rectangular cross-section are considered for 
static and buckling analysis, whereas surface pressures are discretized by 
adopting constant shape functions and subdividing the contact surface in both 
directions. Static analysis results for beams loaded by many load configurations 
are discussed and buckling analysis results are compared against those obtained 
with the two-dimensional half-space model. 
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1 Stability of Euler-Bernoulli beams and frames 
resting on elastic half-plane 

 

1.1 Introduction 

 
The stability of Euler-Bernoulli beams and frames resting on substrate or soil is 
important in many engineering fields and, in the past, this has been the subject 
of many works. In the civil engineering field, examples of this problem are the 
lateral buckling of welded railway rails (Kerr 1974, 1978) and the stability of 
road pavements (Kerr 1984). In this context, the pioneering works of Wieghardt 
(1922) and Prager (1927) are based on the assumption that the half-space under 
the beam is modelled as a continuously distributed set of springs (Winkler 
1867). In 1937, Biot studied the problem of an infinite beam resting on elastic 
half-plane loaded by vertical forces. Biot compared beam bending moments 
with the ones obtained with the Winkler soil model and determined a relation 
between the Winkler subgrade modulus and the elastic modulus of the half-
plane. After Biot, Reissner (1937) was the first to study the stability problem of 
an infinite beam resting on an elastic half-plane. Identical results were obtained 
by Murthy (1970, 1973b) who studied the stability of continuously supported 
beams on elastic half-plane and on a Wieghardt-type half-space. After Reissner 
results, the interest in this problem grew, motivated by early structural problems 
of sandwich elements, and Gough et al. (1940) extended Biot and Reissner 
results to include various conditions of contact between the infinite beam and 
the elastic half-plane. The study of sandwich elements continued up to recent 
years (Allen 1969; Ley et al 1999; Davies 2001). Recently, the main interest has 
been motivated by thin film buckling and by the research driven by the 
developments in the electronic industry (Shield 1994; Volynskii et al. 2000). 
The case of buckling without delamination is often called wrinkling. 
In Timoshenko and Gere (1961), the buckling of a simply supported Euler-
Bernoulli beam on Winkler soil is studied. Other boundary conditions, such as 
beam with clamped ends and beam with free ends, were studied and compared 
with the former (Hetenyi 1946). Moreover, the buckling conditions of beam on 
Winkler half-space with various end restraints were recently resumed by Wang 
et al. (2005). In the sandwich plates context, Goodier and Hsu (1954) underlined 
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the presence of nonsinusoidal local buckling modes with large deflections at 
beam ends. 
Assuming the more realistic relationship between foundation pressure and beam 
displacement defined by Wieghardt, Smith (1969), determined the buckling 
loads of a beam with pinned ends. Gallagher (1974) was the first to study the 
buckling of a beam with finite length and pinned ends on elastic half-plane 
adopting Chebyshev polynomials. The same problem was studied by Bosakov 
(1994) who applied the Ritz method to solve the stability problem of a simply 
supported beam. 
In this chapter, the critical loads of Euler-Bernoulli beams with finite length 
resting on an elastic half-plane are evaluated by using the Finite Element-
Boundary Integral Equation (FE-BIE) coupling method proposed by Tullini and 
Tralli (2010), where static analysis is performed. Making use of a parameter that 
takes into account both beam slenderness and half-plane stiffness, comparisons 
with analytical solutions and traditional two-dimensional (2D) FEs are given. 
Then, buckling loads and mode shapes are determined for different beam end 
restraints. The results are also compared with the corresponding ones obtained 
with a Winkler half-space model. Moreover, rectangular frames on elastic half-
plane with compressed columns are considered. Buckling loads and mode 
shapes are determined for two different restraint conditions and varying soil 
stiffness. In addition, the geometric nonlinear behaviour of the frames is 
investigated and the load multipliers at limit point are compared with the 
buckling loads, showing that some pipes stiffer than the soil may exhibit 
snapthrough instability. Results relative to beam and frame buckling have 
recently been presented and discussed by Tullini et al. (2013). 
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1.2 Basic relationships 

 

 
Fig. 1.1 – Beam on elastic half plane subject to external load p(x) and compressive force P. 

 
An elastic beam of length L, cross-section height h and width b, resting on a 
semi-infinite linearly elastic substrate in plane state, is referred to a Cartesian 
coordinate system (0; x, y), where x coincides with both the centroidal axis and 
the boundary of the half-plane and y is directed downwards. In the following, Eb 
and Es indicate the Young moduli of beam and substrate, respectively. 

Analogously, Poisson’s ratios of beam and substrate are denoted by b and s, 

respectively. Generalized plane stress or plane strain regime is considered; in the 
latter case, the width b of both beam and half-plane is assumed unitary. The 
beam is loaded at the ends by a compressive force P as shown in Fig. 1.1. A 
distributed vertical external load p(x) can also be applied along the beam axis x. 
In the interface between beam and soil, frictionless and bilateral conditions are 
assumed. Consequently, a vertical soil reaction r(x) is enforced to both beam and 
substrate and the vertical displacement v(x) of the beam coincides with that of 
the half-plane boundary. 
 

The total potential energy b of the Euler-Bernoulli beam resting on the elastic 

half plane is given by the strain energy of the beam including second order 
effects (Bazant and Cedolin 1991), the work of external loads p(x) and half-
space reactions r(x). Then, it can be written as: 

 
LL bb xxvxrxpbxxvPxvD d)()]()([d})]([)]([{

2

1 22  (1.1) 

where prime denotes differentiation with respect to x and Db = E0 bh 3/12 is the 

bending stiffness, with E0 = Eb or E0 = Eb/(1 2
b ) for a generalized plane stress 

or plane strain state, respectively. 
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The potential energy of the half-space is given by: 


LSS xxvxrbU d)()( . (1.2) 

Considering the Clapeyron’s theorem, the strain potential energy of the half-
space is equal to half the work of the contact stresses at the beam soil interface 
(Tullini and Tralli 2010): 


LS xxvxr

b
U d)()(

2
. (1.3) 

Then, the total potential energy of the half-space turns out to be: 

  
L LLs xxrxxgxxr

b
xxvxr

b
ˆd)ˆ()ˆ,(d)(

2
d)()(

2
 (1.4) 

where the vertical displacement v(x) is replaced by the boundary integral 
equation known as Flamant’s solution (Timoshenko and Gere 1961; Johnson 
1985), which uses the Green function g(x, x̂ ) corresponding to the solution of the 
elastic problem for a homogeneous isotropic half-plane loaded by a point force 
normal to its boundary: 

xx
E

xxg ˆln
2

)ˆ,( 


 . (1.5) 

The generic elastic modulus of the half space E is equal to Es or Es/(1 2
s ) for a 

generalized plane stress or plane strain state, respectively. 
Constraint equations Ri(v, v') = 0 between displacements or rotations, may be 
assigned along the beam axis, especially at beam ends. For example, a beam 

with pinned ends requires the equation v(L/2)  v(L/2) = 0. These constraint 

equations can be included in the total potential energy  of the beam-substrate 

system by means of a penalty approach (Reddy 2006): 

2
)],([

2
)(),(),(  

i isb vvR
k

rrvrv  (1.6) 

where k is the penalty parameter whose value should be large enough to satisfy 
the constraint equations accurately. For beams with free ends, rigid-body 
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displacement related to Flamant’s solution can be removed by choosing an 
arbitrary abscissa x  where a null value of v( x ) is forced. 
 

1.3 Discrete model 

 
Fig. 1.2 – Beam on elastic half plane subdivided into 8 equal FEs 

 
A simple discretization of the beam can be created by subdividing the beam into 
FEs of length li (Fig. 1.2), then beam displacements and rotations are discretized 
in the usual form as follows 

d() = N() qi (1.7) 

where  = x/li, d = [v, ]T collects the unknown displacement function, 

qi = [v1, 1, v2, 2]
T = [v1, v’1, v2, v’2]

T. Beam shape functions collected in the 

matrix N() are the classical Hermitian polynomials and the corresponding 

derivatives: 

.23);1(

;/)1(6;23

;43;)1(

;/)1(6;231

2
24

2
14

23
32

13

2
22

2
12

21
32

11

















NlN

lNN

NlN

lNN

i

i

i

i

 (1.8) 

Half-plane pressures are discretized considering a piecewise constant soil 
reaction inside each element (Tullini and Tralli 2010): 

r()= [()]T ri, (1.9) 

where ri denotes the vector components of nodal soil reaction and  assembles 

constant shape functions. One, two or four subdivisions can be considered inside 
each element.  
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Substituting Eqs. 1.8 and 1.9 into variational principal (Eq. 1.6), the total 

potential energy  written in discrete form takes the expression: 

rGrrHqFqqKqrq TTT
b

T bbb
2

1

2

1
),(   (1.10) 

where, the penalty function in discrete form is included into the beam stiffness 
matrix Kb. 

Then, the stationarity condition of the total potential energy  written in discrete 

form provides the following system: 
















































0

F

r

q

GH

HKK b

E

b
b

b
D

PL

L

D
g

b
b

b

~

~~

T

2

3

 (1.11) 

where the vector q collects nodal displacements, r denotes the vector of constant 

soil reactions, F is the external load vector, Db/L
 3

bK
~  is the elastic stiffness 

matrix of the beam, P/L gK
~  is the geometric (or incremental) matrix. The 

elements of matrices H and G
~

, together with the element matrices biK
~ and giK

~ , 

are reported in the appendix A1. 
System in Eq. 1.11 yields the following solution: 

qHGr T1~  E . (1.12) 

 
b

gb D

bL3

soil

~~~
FqKKK   (1.13) 

where soil

~
K  is the stiffness matrix of the half-plane 

  T13
soil

~~
HGHK  L  (1.14) 

and load multiplier , and parameter L are defined as follows; 

3

32

,
bb D

LbE
L

D

PL
 . (1.15a,b) 
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According to references (Biot 1937; Vesic 1961; Tullini and Tralli 2010), the 

parameter L in Eq. 1.15b describes the beam-substrate system. Low values of 

αL characterise short beams stiffer than the soil, whereas higher values of αL 
describe more flexible beams, this latter case is suitable to represent long beams 
resting on stiff soil. 
The adopted mixed finite element model is particularly simple and effective, as 
shown in Tullini and Tralli (2010) for the static case, where the numerical 
properties of the present FE model are also discussed. As for the determination 
of critical load Pcr, a homogeneous system associated to Eq. 1.13 must be 

considered and the buckling loads are given by the roots cr of the equation 

det[ soil

~~~
KKK  gb ] = 0, which can be suitably reduced to a standard 

eigenvalue problem. Making use of Eq. 1.15a and the definition of Euler critical 
load: 

2

2

Ecr, L

D
P b

 , (1.16) 

dimensionless buckling loads are defined as Pcr/Pcr,E = cr/2. 

In the case of a structure connected to the foundation beam, system (Eq. 1.13) 
can be partitioned as shown in (Tullini and Tralli 2010), where nodal 
displacements without or with nodes shared with the foundation beam are 
selected. Moreover, the element geometric matrix of each beam FE is dealt with 
as usual.  
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1.4 Comparison of the present model with a traditional FE model 

 
Taking into account two different αL values, representing a rather stiff beam (αL 
= 5) and a flexible beam (αL = 25), a convergence test is done in order to 
compare the present model with a classical model that uses 2D elastic elements 
to describe the soil. In both cases, the foundation beam is modelled as Euler-
Bernoulli beam subdivided into equal FEs, with a number of elements nel equal 
to powers of two up to 512 FEs. Each beam element of the present model 
includes one soil element, whereas in the 2D model the soil is modelled by a 
square mesh of quadrilateral elements in plane state. The mesh of the soil has a 
total width equal to 8L, and zero horizontal and vertical displacements are 
imposed at vertical and lower boundaries, respectively. Two nested square 
meshes, which width equal to 4L and 2L, are taken close to the foundation beam, 
and each quadrilateral element side of the smaller mesh has the same size of the 
beam element. This type of mesh does obviously require a mix of triangular and 
quadrilateral elements, in order to avoid hanging nodes and to reduce the total 
number of degrees of freedom with respect to a mesh of quadrilateral elements 
only. 
 

8L

8L

L
2L
4L

 
Fig. 1.3 – Mesh adopted for the 2D model with foundation beam subdivided into 4 equal FEs. 

 
In Fig. 1.1.3, the case of the foundation beam subdivided in 4 beam FEs is 
shown. The frictionless connection between beam and soil nodes is established 
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by vertical master-slave links. The adopted 2D code uses geometric matrix also 
for 2D soil FEs. 
 

1.4.1 Convergence test for a beam with free ends 

Fig. 1.4a shows the number of equations for the two models, with respect to the 
number of FEs adopted for the beam. Fig. 1.4b shows the number of equations 
of the two models with respect to the number of equations of the present model. 
In both figures the line with crosses is used for the present model and the line 
with dots regards the 2D model. Adopting axis in logarithmic scale, each set of 
points lie on a straight line in both figures and the corresponding slope can be 
calculated through least-squares method. Therefore, the ratio between the 
number of equations of the two models can be easily determined. Tab. 1.1 
collects the number of equations of the 2D model and the present model varying 
the number of beam elements. The slope of the line with dots in Fig. 1.4b is 
2.04, whereas the slope of the line with crosses is obviously equal to 1. The 
same number can be obtained by determining the ratio between the slopes A of 
the straight lines in Fig. 1.4a. 

04.295.0/94.1/ PA2D AA  (1.17) 
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Fig. 1.4 – Number of equations of 2D model and present model as a function of beam FEs (a) 
and number of equations of the present model (b). 
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neq 
nel 2D 

model 
Present 

Analysis 

22 424 10 

23 1488 18 

24 5536 34 

25 21312 66 

26 83584 130 

27 331008 258 

28 1317376 514 

 
Tab. 1.1 – Number of equations for the two models considered, with respect to the number of 

beam FEs 

 

Therefore, the number of equations of the 2D model 2D
eqn  is related to the number 

of equations of the present analysis PA
eqn  by means of the following relation: 

2)(2 PA2D
eqeq nn  . (1.18) 

where PA
eqn  = 2 nel + 2 as usual, as it can be seen in Tab. 1.1. 

The present analysis performed with a beam having 2,048 FEs and one soil 
reaction under each beam element is used as reference to determine the first 

three buckling loads REF
crP . Figs. 1.5a and b show the relative error 

Pcr = ( FEM
crP  REF

crP )/ REF
crP as a function of nel for L = 5 and 25. Figs. 1.5c and d 

show the absolute values of the relative error Pcr in logarithmic scale, in order 

to obtain the convergence rates for the critical loads. Lines with dots represent 
errors for the 2D model, whereas lines with crosses represent errors for the 
present analysis. It is clear that the first and the second buckling loads obtained 

with the two models converge with the same rate, which is less than 1
eln . The 

third buckling load converge for both models with a rate larger than the previous 

one, which is less than 2
eln . Both methods converge with a rate less than 1

eln  for 

the first two eigenvalues, but CPU time t2D of the 2D model is bigger than 
5 (tPA)2.5, where tPA is the CPU time of the present analysis. 
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Fig. 1.5. Relative errors Pcr for first three buckling loads as a function of nel for L = 5 (a) 

and L = 25 (b). Absolute relative errors in bi-logarithmic scale for first three buckling loads 

L = 5 (c) and L = 25 (d). 

Lines with crosses or dots correspond to the present analysis or 2D models, respectively. 
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 L = 5 

 PA 2D 

 

nel 

1 2 3 1 2 3 

 22 1.688 1.889 4.956 2.267 2.939 4.917 

 23 1.880 2.131 5.008 2.159 2.630 4.993 

 24 1.949 2.233 5.019 2.087 2.474 5.017 

 25 1.977 2.279 5.022 2.046 2.396 5.022 

 26 1.990 2.300 5.023 2.025 2.356 5.022 

 27 1.996 2.311 5.023 2.014 2.337 5.022 

 28 1.999 2.316 5.023 2.008 2.327 5.022 

(a) 211 2.004 2.318 5.023 - - - 

 

 L = 25 

 PA 2D 

 

nel 

1 2 3 1 2 3 

 22 6.776 9.240 29.469 19.454 25.481 46.132 

 23 23.811 23.849 65.543 60.796 62.307 65.650 

 24 40.582 40.645 77.512 61.605 61.686 75.049 

 25 47.595 47.662 78.084 57.851 57.892 77.357 

 26 50.138 50.201 78.155 55.208 55.257 77.965 

 27 51.186 51.248 78.165 53.714 53.768 78.118 

 28 51.663 51.724 78.167 52.926 52.982 78.156 

(b) 211 52.059 52.114 78.167 -   - -  

 
Tab.2. First three dimensionless critical loads Pcr/Pcr,E corresponding to 

the present analysis (PA) or 2D models as a function of nel for L equal to 5 and 25. 

 

Moreover, relative errors are lower than 1% with at least 128 beam FEs for αL = 
5 and with at least 256 beam FEs for αL = 25. Thus, the present model can be 
considered effective for the determination of buckling loads and mode shapes, 
and a number of 256 equal FEs are adopted for all cases reported in this section.
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1.5 Buckling analysis of beams resting on elastic half-plane 

 
In the following, beams with finite length and with different boundary 
conditions are discussed (sliding-sliding, pinned-pinned and free-free) and for 
each case, critical loads and modal shapes are determined for increasing values 
of αL. Moreover, analytic solutions of similar problems such as the ones studied 
by Reissner (1937), Gallagher (1974) and Bosakov (1994) are present in order to 
have a comparison for the present analysis. 
 

1.5.1 Analythic solution for the buckling of a beam of infinite length resting 
on an elastic half-plane 

Reissner (1937) studied the stability of a beam of infinite length resting on an 
elastic half-plane (Fig. 1.6), starting from the differential equation of an Euler-
Bernoulli beam on elastic half-plane, including second order effects due to axial 
load P (Eqs. 1.19a and b). 
 

 
Fig. 1.6 – Beam of infinite length on elastic half space subject to axial load. 

 

4 2

4 2
( ) ( ) ( )b

d v x d v xD P r x
dx dx

    (1.19a) 

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( , ) ( ) (| |) ( )v x g x x r x dx g x x r x dx
 

 

     (1.19b) 

Substituting Eq. 1.19a with Eq. 1.19b and differentiating with respect to x, the 
following expression is obtained: 

xd
dx

xvd
P

dx

xvd
D

dx

xxgd

dx

xvd
b ˆ

)ˆ()ˆ(|)ˆ(|)(
2

2

4

4












 




. (1.20) 
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Reissner assumed a solution which satisfies the conditions of vertical 
displacement and curvature equal to zero for xn = ± nL, with n = 1, 2, 3.. . A 
sine-type solution satisfies these conditions: 

L

xm
xv


 sin)(    for m = 1, 2, 3, .. (1.21) 

This solution represents a beam which is freely supported at the points xn, then 
the original problem of an infinite beam supported by an elastic half plane 
becomes the problem of an infinite beam resting on elastic half plane supported 
by an infinite set of equidistant supports. It is worth noting that the buckling 
modes corresponding to this solution are sinusoidal with constant amplitude. 
Considering Eq. 1.21, Eq. 1.19 becomes 

xd
L

xm

L

m
P

L

m
D

dx

xxgd

L

xm

L

m
b ˆ

ˆ
sin

|)ˆ(|
cos

24 


















 







 












. (1.22) 

Setting uxx  ˆ , the previous equation can be simplified as follows: 

2
(| |)cos cos sinb

m x m m m x d g u m uD P du
L L L L du L





       

         (1.23a) 

2

1 b
m m mD P g
L L L

             

      (1.23b) 

Introducing the expression of g (Eq. 1.5) 

(| |) 2d g u
du E u




 (1.24a) 

(| |) 2 sin( / ) 2sinm d g u m u m u Lg du du
L du L E u E

 

 

 
 
 

    
   (1.24b) 

Then, substituting Eq. 1.24b into Eq. 1.23b, the critical load P is given by 









 










 


m

LE

L

m
D

L

m

E
L

m
DPP bbmcr 22

1
22

,    for m = 1, 2, 3, (1.25) 
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Finally, introducing in Eq. 1.25 the expression of the Euler load (Eq. 1.16), the 
critical loads of a beam of infinite length resting on a two-dimensional half-
space and on an infinity of equidistant supports turn out to be: 












3

3
2

Ecr,cr, 2

)α(

m

L
mPP m    for m = 1, 2, 3, ...  (1.26) 

It is worth noting that the last simplification shows that critical loads of a beam 
on elastic half-plane depend directly on the beam-subgrade parameter αL. 

For any given m, Eq. 1.26 provides the smallest critical load Pcr,R when L = 
3 4 m that substituted in Eq. 1.26 yields 

2
Ecr,

2
Ecr,23Ecr,

2
Rcr, )α(121.0)α(

16

3
3 LPLPPmP 


 , (1.27) 

The same result was obtained by Murthy (1970, 1973b) who studied the 
buckling of continuously supported beams on a semi-infinite elastic continuum. 
Murthy considered a cosine series solution (Eq. 1.28) by applying the same 
procedure adopted in a previous paper (Murthy 1973a) for the case of a beam on 
Pasternak foundation. 







0

)cos()(
n

nn xawxv  (1.28) 

For L = 0, i.e. for a beam without supporting soil, Eq. 1.26 provides buckling 

loads of a beam with sliding ends as well as of a simply supported beam (Eq. 
1.30), and the first mode shape corresponds to the longest wavelength permitted 
by the end restraints. 
Furthermore, Eq. 1.27 allows the evaluation of the critical stress of the beam 
cross-section in a form frequently used in the design of structural sandwich 
panels (Gough et al 1960; Allen 1969; Ley et al. 1999; Davies 2001): 

3/1
0

3/23
0

2
3/2

Rcr,
Rcr,  52.0

4

3
EEEE

hb

P
 . (1.29) 
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1.5.2 Beam of finite length with sliding ends 

The case of a beam with sliding ends is considered first (Fig. 1.7). This case may 
refer to a rectangular pipe with a top beam simply supported on rigid columns; 
thus, the structure prevents rotations at the ends of the foundation beam but 
allows independent vertical displacements. 
 

 

P P

L
 

Fig. 1.7 – Beam with sliding ends subject to axial load P. 

 

The constraint equations that have to be used in Eq. 1.6 are R1 = v'(L/2)  

v'(L/2) = 0 and R2 = v'(L/2) + v'(L/2) = 0, which turn out to be equal to v'(± 

L/2) = 0. Applying a penalty parameter k = 109 li Db/L
3, an error less than 10-5 is 

obtained for the first ten eigenvalues. 
Fig. 1.8a shows the first six dimensionless buckling loads Pcr/Pcr,E versus the 
parameter αL3. Alternatively, Fig. 1.8b shows the first six dimensionless 
buckling loads Pcr/Pcr,E versus the parameter αL. Continuous lines represent 
dimensionless buckling loads obtained with the present model, whereas dashed 
lines represent Reissner’s solution. For αL = 0, critical loads converge to the 
buckling loads of a beam with sliding ends without supporting medium: 

Pcr,m(0)/Pcr,E = m2   with m = 1, 2, 3… (1.30) 

Normalized critical loads turn out to be proportional to the square of the beam-

subgrade parameter αL. Fig. 1.8c shows the ratio Pcr/[Pcr,E (L)2] versus the 

parameter αL; for increasing αL, the ratios corresponding to the first and second 
smallest eigenvalues converge to a constant value equal to 0.121, this value is 
coincident with the coefficient obtained in Eq. 1.27. Comparing the numerical 
solution with the one determined by Reissner (1937), for αL values up to 5 
(short beams and/or soft soil), the numerical solution is in good agreement with 
Eq. 1.26, whereas for the high values of αL (long beams and/or stiff soil) the 
numerical solution is well approximated by Eq. 1.27. 
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Fig. 1.8 – Dimensionless critical loads Pcr (continuous lines) and Pcr,m (dashed lines) versus 
αL for a beam with sliding ends. 

 
The curves in Figs. 1.8a, b and c, exhibit curve veering and crossing points 

which interchange themselves for increasing values of L. The coordinates of 

crossing points can be determined approximately by refining the L values in 

proximity of each point and searching coincident eigenvalues. Tab. 1.3 shows 
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the coordinates of the first four crossing points for the first two curves, which 
are also depicted with crosses in Fig. 1.9. 
 

Point 1 2 3 4 

αL 6.232 11.735 16.573 21.633

Pcr/Pcr,E 6.200 17.511 35.092 58.546

 
Tab. 1.3 – Coordinates of the first four crossing points between the first and second 

eigenvalues for a beam with sliding ends on elastic half-plane. 
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Fig. 1.9 – First and second critical loads of a beam with sliding ends on elastic half-plane 
(continuous lines) with the first four crossing points (crosses). 

 
The behaviour of a beam with sliding ends on elastic half plane is found to be 
quite analogous to a beam with sliding ends resting on Winkler soil (Hetenyi 
1946; Timoshenko and Gere 1961; Bazant and Cedolin 1991),where coordinates 
of intersection points may be exactly known, but curve veering is not present. 
Moreover, the curve representation shown in Figs. 1.8a, b and c, was introduced 
for the first time by Ratzersdorfer (1936) for the case of the beam on Winkler 
soil. 
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1.5.2.1 Modal shapes 

The modal shapes of a beam with sliding ends on elastic half-plane turn out to 
be sinusoidal. The number of half-waves and their amplitude depends on the αL 
parameter. In the following figures, modal shapes are shown for increasing αL 
values; displacements are normalized putting the maximum absolute beam 
deflection equal to 1; moreover, the corresponding soil reactions are shown. 
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Fig. 1.10 – First (continuous line) and second (dashed line) mode shapes for a beam with 

sliding ends and L equal to 5 (a), 10 (b). Soil reactions corresponding to the first (continuous 

line) and second (dashed line) mode shapes for a beam with sliding ends and L equal to 5 

(c), 10 (d). 

 
For αL = 5, Fig. 1.10a shows the first two mode shapes which are characterized 
by one and two half-waves; whereas, for αL = 10, two and three half-waves are 
observed (Fig. 1.10b). Fig. 1.10c and d show the corresponding soil reactions. 
For αL = 10, the first mode shape (Fig. 1.10b, continuous line) is similar to the 
second one obtained for αL = 5 (Fig. 1.10a, dashed line), however, the second 
mode shape for αL = 10 is different than the first one for αL = 5. Therefore, even 
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if the first and second critical load curves (Figs. 1.8a, b and c) interchange 
themselves, the corresponding buckling modes do not interchange each other. 
For αL = 15 and 20, Figs. 1.11a and b show the first two mode shapes, 
respectively, whereas Figs. 1.11c and d show the corresponding soil reactions. 
The first mode shape for αL = 15 is characterized by three half-waves and for αL 
= 20 it is characterized by four half-waves. Hence, after each intersection point 
(Tab. 1.3), every mode shape changes and the number of half-waves increases. 
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Fig. 1.11 – First (continuous line) and second (dashed line) mode shapes for a beam with 

sliding ends and L equal to 15 (a), 20 (b). Soil reactions corresponding to the first 

(continuous line) and second (dashed line) mode shapes for a beam with sliding ends and L 

equal to 15 (c), 20 (d). 

 
Figs. 1.10, 1.11 and 1.12 clearly show that for increasing αL, the number of half-
waves for the first two mode shapes increases and short wavelengths are 
obtained. Furthermore, mode shapes amplitude is not constant and for increasing 
αL it tends to reach maximum values close to beam midpoint. A different 
behaviour can be detected in beam on Winkler soil (Timoshenko and Gere 1961; 
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Bazant and Cedolin 1991), where mode shapes amplitude is constant, as shown 
in the following paragraph. 
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Fig. 1.12 – First (continuous line) and second (dashed line) mode shapes for a beam with 

sliding ends and L equal to 25 (a), 50 (b). Soil reactions corresponding to the first 

(continuous line) and second (dashed line) mode shapes for a beam with sliding ends and L 

equal to 25 (c), 50 (d). 

 

The critical wavelength cr,R of the sinusoidal waveform assumed by Reissner 

(1937) is equal to (Volynskii et al, 2000): 








97.942

3
2

3

3 0
Rcr, E

E
h , (1.31) 

where direct proportionality between the wavelength cr,R and the thickness h of 

the beam is predicted. Eq. 1.31 was used in advanced metrology methods to 
measure the elastic modulus of polymeric thin film (Stafford et al, 2004). 
Excluding the half-waves close to beam ends, the present analysis predicts a 

constant critical wavelength equal to cr,R for at least the first two mode shapes 
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checked. Thus, the eigenvectors shown in Fig. 1.12b have almost-constant 
wavelength and variable amplitude, unlike the mode shape assumed in Reissner 
1937 (Eq. 1.21), which is sinusoidal with constant amplitude and wavelength. 
 

1.5.2.2 Beam with sliding ends on Winkler-type half-space 

The analysis of a beam resting on a Winkler-type half space (1867) is briefly 
described in the appendix A2. It is well known that the idealized model of half-
space proposed by Winkler assumes that the deflection v at a point of the surface 
is directly proportional to the stress or soil pressure r applied at the same point 
and independent of stresses applied at other locations: 

)()( xvcxr   (1.32) 

where c is a constant known as Winkler constant or modulus of subgrade 
reaction. 
Critical loads of a beam with sliding ends on Winkler-type soil are equal to 
critical loads of a beam with pinned ends and are given by (Hetenyi 1948, 
Bazant and Cedolin 1991, Wang et al. 2005): 


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
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
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42

2
2

Ecr,Wcr, m
mPP    for m = 1, 2, 3, ... (1.33) 

where 

bD

Lc 4

  (1.34) 

describes the beam-subgrade system for the Winkler-type half-space and it 
corresponds to αL parameter for the beam resting on half-plane. 
Considering the beam discrete model described in §1.3 and applying it to the 
case of a beam on Winkler-type soil (as shown in the appendix A2), critical 
loads may be determined and compared with the analytic solution (Eq. 1.33). 
Figs. 1.13a and b show dimensionless critical loads Pcr/Pcr,E, determined with the 
discrete model adopted, for increasing γ2 and γ, respectively. Results turn out to 
be coincident with the analytic solution (Fig. 1.13b). 
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Fig. 1.13 – Dimensionless critical loads Pcr (continuous lines) and Pcr,W (circles) versus γ for a 
beam with sliding ends on Winkler-type half space. 
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Fig. 1.13c shows that dimensionless critical loads are proportional to γ and the 
smallest critical load tends to: 

2Ecr,minW,cr,

2




 PP , (1.35) 

which can also be obtained from Eq. 1.33. 
The behaviour showed in Figs. 1.13a, b and c is quite similar to the one obtained 
for the beam on elastic half-plane. In this case, however, curves present crossing 
points but curve veering is not present. Minimum critical load Pcr,W,min for 
increasing γ (Eq. 1.35) may be compared with the corresponding one of the 
beam on half-plane Pcr,R (Eq. 1.27). Then, a ratio between the modulus of 
subgrade reaction c and half plane modulus E can be determined: 

1/3 1/3
4 4 4 4

2
cr,E cr,E2 14/323

2 3 9( ) 0.354
216 b b

E b E bP P L c
D D

   
   
      

     
 

. (1.36) 

The coefficient in Eq. 1.36 is larger than the one obtained by Biot (1937), who 
determined the relation between the foundation modulus c and the half plane 
modulus E in order to obtain the same maximum bending moment of an infinite 
beam loaded by a concentrated force at midpoint: 

1/3 1/3
4 4 4 4

4/3
0.710 0.282
2 b b

E b E bc
D D

   
   
      

  . (1.37) 

However, if results showed in Figs. 1.13a, b and c are scaled taking into account 
Eq. 1.36, minimum critical loads tend to be coincident with the ones obtained 
for the beam on elastic half-plane for large values of αL (Fig. 1.14). 
Figs. 1.15a and b show the first and second mode shapes for γ equal to 15 and 
400, which correspond to αL close to 5 and 25, respectively (Eq. 1.36). For the 
case of a beam resting on soft support (Fig. 1.15a), the first and second mode 
shapes are characterized by one and two half-waves, respectively, and they are 
almost coincident with results obtained for the beam resting on half-plane (Fig. 
1.10a). For a beam resting on stiff support (Fig. 1.15b), the first and second 
mode shapes are sinusoidal with constant wavelength and amplitude, whereas 
the corresponding case for beam resting on half-plane is characterized by 
sinusoidal mode shapes with different amplitude along beam length (Fig. 1.12a). 
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Fig. 1.14 – Dimensionless critical loads Pcr for a beam with sliding ends on elastic half plane 
(continuous lines) and on Winkler half-space (dots). 
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Fig. 1.15 – First (continuous line) and second (dashed line) mode shapes for a beam with 
sliding ends on Winkler-type half-space for γ = 15 (a) and 400 (b). 
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1.5.3 Beam of finite length with pinned ends 

The case of a foundation beam with pinned ends (Fig. 1.16) may refer to a rigid 
portal frame whose columns are hinged to the foundation beam; thus, the 
structure enforces zero relative displacement between beam ends, but allows 
independent rotations. 

 

P P

L

 
Fig. 1.16 – Beam with pinned ends subject to axial load P. 

 
It is worth noting that the constraint equations must not be the typical equations 

of a beam with simple supported ends R1 = v(L/2) = 0, R2 = v(L/2) = 0, because 

the behaviour of a beam on 2D half-plane is always characterized by a rigid 
body displacement, which cannot be set equal to zero a priori. Then, the 

constraint equation that has to be applied to Eq. 1.6 is R1 = v(L/2)  v(L/2) = 0. 

Adopting a penalty parameter k = 106 Db/L
3, an error less than 10-3 is obtained 

for the first ten eigenvectors. 
In Figs. 1.17a and b, the first seven dimensionless buckling loads Pcr/Pcr,E are 

plotted versus the parameter L3 and L, respectively. For αL = 0, numerical 

results coincide both with critical loads of a beam with pinned ends and with 

analytic solutions given by Reissner’s solution (Eq. 1.26), moreover for low L 

values, numerical results are quite close to Reissner’s solution (dashed lines). 

For increasing L, Figs. 1.17a and b show that the first and second critical loads 

tend to separate from other critical loads and the corresponding values are lower 
than Eq. 1.26, which correspond to the values obtained for the beam with sliding 
ends. 
On the other hand, the third and fourth eigenvalues remain close to Reissner’s 
solution (dashed lines), and the curves after the third one are characterised by 
veering and crossing points, similarly to the previous case of a beam with sliding 
ends. 
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Fig. 1.17 – Dimensionless critical loads Pcr (continuous lines) and Pcr,m (dashed lines) versus 
αL for a beam with pinned ends. 

 
 
 
 
 



 32

Fig. 1.17c shows the ratio Pcr/[Pcr,E (L)2] versus the parameter αL; for 

increasing αL the first and the second eigenvalues converge to: 

2
Ecr,cr,1 )α(083.0 LPP  , (1.38) 

2
Ecr,cr,2 )α(106.0 LPP  , (1.39) 

whereas the third and fourth critical loads turn out to be very close to Reissner’s 
solution and converge to Eq. 1.27. Therefore, the existence of critical loads 
lower than Pcr,R in Eq. 1.27 is clearly shown. In particular, Eqs. 1.38 and 1.39 
yield the following critical stresses: 

3/1
0

3/2cr,1
cr,1  36.0 EE

hb

P
 . (1.40) 

3/1
0

3/2cr,2
cr,2  46.0 EE

hb

P
 . (1.41) 

which may be very important for the design of sandwich panels.
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1.5.3.1 Modal shapes 
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Fig. 1.18 – First (continuous line) and second (dashed line) mode shapes for a beam with 

pinned ends and L equal to 5 (a), 10 (b). Soil reactions corresponding to the first (continuous 

line) and second (dashed line) mode shapes for a beam with pinned ends and L equal to 5 

(c), 10 (d). 

 
For αL = 5, Fig. 1.18a shows that the first and second mode shapes present one 
and two half-waves, respectively, and they are clearly sinusoidal. For αL = 10 
(Fig. 1.18b) the first mode shape is quite different from the one obtained for αL 
= 5 and it can not be described by a sine or cosine function, while the second 
mode shape is, indeed, sinusoidal with two half-waves. The difference between 
the first mode shapes obtained for αL = 5 and 10 can be described considering 
Figs. 1.17a and b. For αL = 5, the first and second critical loads are still in good 
agreement with Reissner’s solution (Eq. 1.26), whereas for αL = 10 the first 
critical load is lower than Eq. 1.26. 
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Fig. 1.19 – First (continuous line) and second (dashed line) mode shapes for a beam with 

pinned ends and L equal to 15 (a), 20 (b). Soil reactions corresponding to the first 

(continuous line) and second (dashed line) mode shapes for a beam with pinned ends and L 

equal to 15 (c), 20 (d). 

 
For increasing αL (Figs. 1.19a and b), half-waves cannot be easily defined like 
in previous cases and buckling modes have large amplitudes near beam ends. 
Indeed, the critical loads in Eqs. 1.38 and 1.39 correspond to these localized 
buckling modes. It is interesting to note that the first mode shapes shown in Figs 
1.18-1.20 are symmetric, whereas the second mode shapes are antisymmetric 
and, in fact, the first and second curves in Figs. 1.17a, b and c do not have any 
intersection point. 
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Fig. 1.20 – First (continuous line) and second (dashed line) mode shapes for a beam with 

pinned ends and L equal to 25 (a), 50 (b). Soil reactions corresponding to the first 

(continuous line) and second (dashed line) mode shapes for a beam with pinned ends and L 

equal to 25 (c), 50 (d). 
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Fig. 1.21 – Third (continuous line) and fourth (dashed line) mode shapes for a beam with 

pinned ends and L equal to 5 (a), 10 (b), 25 (c) and 50 (d). 

 

The first and second eigenvectors are different than the following ones, in fact 
Figs. 1.21a-d show the third and fourth mode shapes for increasing αL values, 
which are sinusoidal with increasing half-waves number and varying amplitude 
along beam length. For αL = 25 and 50 (Figs. 1.21c, d), the third and fourth 
mode shape, excluding deformations at beam ends, are quite similar to the first 
and second mode shapes obtained for the beam with sliding ends (Figs. 1.12a 
and b). Then, the behaviour of a beam with pinned ends on elastic half-space is 
found to be quite different from the previous case of beams with sliding ends, 
which does not present localized eigenmodes for increasing values of αL (long 
beam and/or stiff soil). 
As for Winkler soils, reference is usually made to Hetenyi (1946), where the 
solution of the beam with pinned ends converges to the same critical load of the 
beam with clamped ends (Hetenyi 1946, Simitses 1976). Nonetheless, for beams 
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on Winkler soil with pinned ends, Goodier and Hsu (1954) reported the presence 
of mode shapes localized at beam ends. 
 

1.5.3.2 Bosakov’s solution (1994) 

The stability of a beam with pinned ends resting on elastic half-plane was 
studied by Bosakov (1994) by adopting symmetric cosine functions: 





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




 )0,,(
)12(

)α(2
)12(

3

3
2

Ecr,Bcr, mmF
m

L
mPP    for m = 0, 1, 2, ...  (1.42) 

where F(m, m, 0) is a function reported in the original paper (Bosakov 1994), 
based on Bessel functions of the first kind. Eq. 1.42 is compared with critical 
loads obtained with the present model and results are shown in Figs. 1.22a and 
b. 
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Fig. 1.22 – Dimensionless critical loads Pcr (continuous lines), Pcr,m (dashed lines) and Pcr,B 

(dots) versus αL for beam with pinned ends. 
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The first buckling load is well approximated by Eq. 1.42 for αL < 7 (see dots in 
Figs. 1.22a and b), and by Eq. 1.26 for αL < 3. Moreover, Figs. 1.22a, b and c 
show that Eq. 1.42 is unable to provide eigenvalues corresponding to 
antisymmetric buckling and for large values of αL, as Bosakov’s solution is not 
able to provide the first and second critical loads obtained with the present 
model. 
 

1.5.3.3 Gallagher’s solution (1974) 

Another solution for the buckling of a beam with pinned ends under axial 
compression on elastic half-plane was determined by Gallagher (1974). The 
solution is based on Chebyshev polynomials of the first and second kind: 

 rTr cos ,    





sin

])1sin[(r
U r  (1.43a,b) 

and considering separately the even modes (Eq. 1.44) and the odd modes (Eq. 
1.45) of buckling. 
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where Lx /2  and prime represents differentiation with respect to x. 

The relation between beam displacement and half-space pressure considered by 
Gallagher is given by the following relation (Muskhelishvili 1963): 
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 (1.46) 

Gallagher adopted the same beam-subgrade parameter αL considered in the 
present model and determined numerically the first six eigenvalues by 
substituting Eqs. 1.44, 1.45 and 1.46 in the differential equation of the beam on 
elastic half-plane with second order effects due to the axial load P. The author 
stopped the series in Eqs. 1.44 and 1.45 at n = 36 and found a linear relationship 
between critical loads and αL3, but only for certain ranges of αL, depending on 
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the mode. Moreover, considering even modes and odd modes separately, the 
curves corresponding to dimensionless critical loads (λ, αL3 or λ, αL) never 
intersect. However, for simplicity, the following relation between critical loads 
and αL was adopted to describe the results: 











 mC
L

mPP
2

3
2

Ecr,Gcr, 2

)α(
   for m = 1, 2, 3, ... (1.47) 

where Cm is a constant depending on the mode number; the values of 

mCm 2)2/(   are listed in Tab. 1.4 for the first six buckling modes. 

 

m 1 2 3 4 5 6 

mC
m

2

2






 

 1.05 1.77 2.66 3.39 4.23 4.97 

 

Tab. 1.4 – Values of mCm 2)2/(   for the first six buckling modes (Gallagher 1974). 

 
Figs. 1.23 a, b and c show critical loads given by Eq. 1.47 with triangles, and 
these results are compared with the ones obtained with the present model for the 
same beam case (continuous lines, as already shown in Figs. 1.17a, b and c). It is 
clear that Pcr,G (Eq. 1.47) for m = 1, 2 does not converge to the first and second 
eigenvalues obtained with the present model, but it converges to the third and 
fourth eigenvalues. Moreover, Fig. 1.23c clearly shows that minimum values of 
Pcr,G (Eq. 1.47) converge to Eq. 1.27 for increasing αL. 
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Fig. 1.23 – Dimensionless critical loads Pcr (continuous lines) and Pcr,G (triangles) versus αL 
for a beam with pinned ends. 

 
The critical loads determined by Gallagher are found to be very close to the ones 
obtained for the case of a beam with sliding ends. Figs. 1.24a and b show Pcr,G 
(Eq. 1.47) with triangles which are practically coincident with the dimensionless 
critical loads already shown in Figs. 1.8b and c (continuous lines). The solution 
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proposed by Gallagher is not able to describe the buckling localized at beam 
ends (Figs 1.20a and b), which characterizes the first and second critical loads 
for increasing αL. 
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Fig. 1.24 – Dimensionless critical loads Pcr (continuous lines) for a beam with sliding ends 
and Pcr,G (triangles) versus αL for a beam with pinned ends. 

 
 

1.5.3.4 Beam with pinned ends on Winkler-type half-space 

The most known solution for the buckling of a beam with pinned ends on 
Winkler-type half-space is coincident with the one defined for the beam with 
sliding ends (Eq. 1.33, Hetenyi 1948, Timoshenko and Gere 1961, Wang et al. 
2005). However, this solution is obtained by satisfying the boundary condition 

0)2/()2/(  LvLv , which neglects rigid body displacement a priori. 
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Fig. 1.25 – Dimensionless critical loads Pcr versus γ for a beam with pinned ends on Winkler-
type half space. 

 

If the condition )2/()2/( LvLv   is adopted, critical loads turn out to be 

different than Eq. 1.33. Figs. 1.25 a and b show dimensionless critical loads 
Pcr/Pcr,E, determined with the discrete model adopted, for increasing γ2 and γ, 
respectively, whereas Fig. 1.25 c shows the ratio Pcr/(Pcr,E γ) for increasing γ. It 
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is clear that the first critical load increasing γ is less than the other critical loads, 
which, moreover, turns out to converge to one half of the first critical load of a 
beam with sliding ends: 

2Ecr,1W,cr, 


 PP , (1.48) 

whereas second and third critical loads converge to Eq. 1.35. 
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Fig. 1.26 – First (continuous line) and second (dashed line) mode shapes for a beam with 
pinned ends on Winkler-type half-space for γ = 15 (a) and 400 (b). 

 
Considering a beam resting on soft support, Fig. 1.26a shows the first and 
second mode shapes which are characterized by one and two half-waves, 
respectively, and are almost coincident to the results obtained for the beam 
resting on elastic half-plane. However, for a beam resting on stiff support, Fig. 
1.26b shows that the first mode shape is symmetric and characterized by large 
deflections close to beam ends, whereas the second mode shape is sinusoidal 
with almost constant amplitude and wavelength. The first mode shape for the 
stiffer support case can not be represented by sinusoidal functions, which 
behaviour was depicted by Goodier and Hsu (1954) studying the nonsinusoidal 
buckling modes of sandwich plates. 
Considering the first critical load and the corresponding mode shape for 
increasing γ, the buckling of a beam with pinned ends on Winkler-type half-
space is quite similar to the buckling of the same beam on elastic half-plane. In 
this case, however, an antisymmetric buckling mode with large deflections close 
to beam ends is not present. 
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1.5.4 Beam of finite length with free ends 

 

P P

L

 
Fig. 1.27 – Beam with free ends subject to axial load P. 

 
The stability of a beam with free ends on elastic half-plane (Fig. 1.27) is then 
considered. In Figs. 1.28a and b, dimensionless critical loads Pcr/Pcr,E are plotted 
versus αL3 and αL values, respectively; the dashed line shows the function given 

by Eq. 1.27. Fig. 1.28c shows the ratio Pcr/[Pcr,E (L)2] versus the parameter αL. 

Similarly, in the case of the beam with pinned ends, the first and second 
eigenvalues appear quite far from other results, whereas the third and fourth 
eigenvalues are close to Reissner’s solution and converge to the value given in 
Eq. 1.27. In this case, however, for increasing αL, the first and second critical 
loads are coincident and converge to Pcr,1 (Eq. 1.38), obtained for the beam with 
pinned ends. In fact, it is worth noting that a beam with free ends and 
symmetrical behaviour is practically coincident with a beam with pinned ends. 
It is interesting to observe that the first and second eigenvalues are quite 
different for the very small values of αL and present some intersection points, 
which are presented in Tab. 1.5, whereas for αL ≥ 10, they both converge to the 
value given in Eq. 1.38. The other critical loads present crossing points and 
veering, similarly to the beam with sliding ends case. 
 

point 1 2 3 

αL 4.500 10.514 15.217

Pcr/Pcr,E 1.728 9.157 19.115

 
Tab. 1.5 - Coordinates of the first three crossing points between the first and second 

eigenvalues. 
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Fig. 1.28 – Dimensionless critical loads Pcr (continuous lines) and Pcr,R (dashed line) versus 

αL for beam with free ends. 
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1.5.4.1 Modal shapes 
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Fig. 1.29 – First (continuous line) and second (dashed line) mode shapes for a beam with free 

ends and L equal to 1 (a), 5 (b), 10 (c), 20 (d), 25 (e) and 50 (f). 

 
In absence of soil, the critical load value of a beam with free ends is obviously 
zero, but for very short beams or very soft soil (αL = 1), the first mode shape is 
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antisymmetric and represents a rigid body rotation, whereas the second one is 
symmetric and sinusoidal with one half-wave (Fig. 1.29a). For αL = 5, after the 
first crossing point, the first mode shape becomes symmetric and the second one 
antisymmetric (Fig. 1.29b). For αL = 15, after the second crossing point, the first 
mode shape is again antisymmetric and the second one is symmetric (Fig. 
1.29c). For αL ≥ 15, the first and second critical loads are very close to the one 
given in Eq. 1.38 and both mode shapes tend to have large displacements 
localized near the beam ends, as shown for αL = 20, 25 and 50 in Figs. 1.29d, e 
and f, respectively, where the first mode shape is coincident with the one found 
for the beam with pinned ends (Fig. 1.20a). 
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Fig. 1.30 – First mode shape for a beam with sliding ends (continuous line), and third mode 

shape for beam with pinned (symbol ) and free (symbol °) ends resting on stiff soil (αL = 

25). 

 
Fig. 1.30 shows the first mode shape for a beam with sliding ends and the third 

mode shape for beams with pinned and free ends resting on stiff soil (L = 25). 

Eigenvectors are practically coincident in the neighbourhood of beam midpoint 
and present small differences at beam ends, due to the different restraints. 
The behaviour of the beam with free ends resting on elastic half-space is quite 
similar to the corresponding case of the beam on Winkler soil, where the first 
and second critical loads converge to one half of the smallest critical load of a 
beam with clamped or sliding ends (Hetenyi 1946, Simitses 1976, Bazant and 
Cedolin 1991), as shown in the following paragraph. 
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1.5.4.2 Beam with free ends on Winkler-type half-space 

Critical loads of a beam with free ends on a Winkler-type half space have to 
satisfy the following condition (Hetenyi 1948): 








2)(

2)(

)22/1sinh(

)22/1sin(
, (1.49) 

Where γ is defined by Eq. 1.34 and λ is given by Eq. 1.15a. The above 
expression ensues from the solution of the differential equation of a beam on 
Winkler foundation subject to axial load. 
Figs. 1.31a and b show dimensionless critical loads Pcr/Pcr,E, determined with the 
discrete model adopted, for increasing γ 2 and γ, respectively, whereas Fig. 1.31c 
shows the ratio Pcr/(Pcr,E γ) for increasing γ. Results satisfy Eq. 1.49. In this case, 
the first and second critical loads are less than other results and interchange 
themselves up to γ close to 100; then, they tend to coincide and converge to 
PcrW,1. It is clear that the second critical load is coincident with the first critical 
load for the beam with pinned ends. Other critical loads are characterized by 
curve veering. Third and fourth critical loads converge to Pcr,W for increasing γ. 
The first mode shape for a stiff beam resting on soft support represents a rigid 
rotation, whereas the second mode shape is sinusoidal with one half-wave (Fig. 
1.32a). For γ equal to 15, the first mode shape is sinusoidal and the second one 
is antisymmetric (Fig. 1.32b). For a beam resting on quite stiff soil, the first and 
second mode shapes are not sinusoidal and are characterized by large deflections 
close to beam ends (Fig. 1.32c). Finally, for a beam resting on very stiff soil, the 
first and second mode shapes present large deflections at beam ends and 
negligible deflections close to beam midpoint (Fig. 1.32d). It is clear that the 
first and second mode shapes for increasing γ present a behaviour similar to the 
corresponding ones of the beam with free ends on elastic half-plane. However, 
adopting the relation between c and E determined by Biot (1937) or determined 
for the beam with sliding ends, Pcr,W,1 turns out to be different than Pcr,1 (Eq. 
1.38). 
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Fig. 1.31 – Dimensionless critical loads Pcr versus γ for a beam with free ends on Winkler-
type half space. 
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Fig. 1.32 – First (continuous line) and second (dashed line) mode shapes for a beam with free 
ends on Winkler-type half-space for γ equal to 1 (a), 15 (b), 60 (c) and 400 (d). 
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1.5.5 Beam of infinite length with various end restraints 

Figs. 1.8c, 1.17c and 1.28c, clearly show that dimensionless critical loads 
converge to well definite limits for large values of αL, which correspond to the 
case of a very long beam resting on stiff soil. These figures show that critical 
loads values depend on beam end restraints. Table 6 collects the first four 
dimensionless critical loads Pcr, /[Pcr,E(αL)2] for beam with αL = 50 and different 
boundary conditions. In particular, in the sliding–pinned case, the constraint 
equations that must be used in Eq. 1.6 are R1 = v(L/2) − v(−L/2) = 0 and R2 = 
v(−L/2) − [v(−L/2) − v(L/2)]/L = 0, whereas in the sliding–free case, the 
constraint equation is R1 = v(−L/2) = 0. In this case, the first buckling mode is 
localized at the free end and a new value is obtained: 

2
Ecr,cr,1 )α(094.0 LPP  . (1.50) 

The first and second mode shapes for increasing αL are shown in Fig. 1.33. 
 

Pcr,min/[Pcr,E(αL)2] 
Beam end restraints

1st 2nd 3rd 4th 

Free-free 0.083 0.083 0.121 0.121 

Pinned-pinned 0.083 0.106 0.121 0.121 

Sliding-free 0.083 0.121 0.121 0.125 

Sliding-pinned 0.094 0.121 0.121 0.125 

Sliding-sliding 0.121 0.121 0.125 0.125 

 
Tab. 1.6 – First four dimensionless critical loads for beam on elastic half-plane with various 

end restraints and L = 50. 

 

Moreover, Tab. 1.6 shows that the first dimensionless critical load is conditioned 
by the less restrictive end restraint applied to the beam, for example, if the beam 
is characterized by at least one free end, the first dimensionless critical load 
converges to 0.083 Pcr,E(αL)2. 
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Fig. 1.33 – First (continuous line) and second (dashed line) mode shapes for a beam with 

sliding-pinned ends and L equal to 1 (a), 5 (b), 10 (c), 20 (d), 25 (e) and 50 (f). 
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1.5.6 Buckling of a beam with a weakened section at midpoint 

In some cases, a beam supported or not by an elastic half-plane, may not have 
continuous slope due to weakened joints or partial cracks along its length. In this 
paragraph, the buckling of a beam with free ends and with a hinge at midpoint is 
considered (Fig. 1.34). A similar problem was studied by Wang (2010) who 
considered an infinite beam on Winkler-type half-space, with up to three 
symmetric weakened joints. Wang determined critical loads by analytically 
solving the differential equation of the beam and the corresponding mode shapes 
characterized by large deflections close to weak sections. 
 

P P

L/2 L/2
 

Fig. 1.34 – Beam with free ends and with a weakened joint at midpoint on elastic half-plane 
subject to axial load. 

 
The weak section is introduced in the present discrete model by modifying the 
matrices of the beam elements converging at the midpoint node, following the 
method described in chapter 3 for taking into account the semi-rigid behaviour 
of a connection. 
 
In Figs. 1.35a and b, dimensionless critical loads Pcr/Pcr,E are plotted versus αL3 

and αL values, respectively; whereas Fig. 1.35c shows the ratio Pcr/[Pcr,E (L)2] 

versus the parameter αL. 
In this case, the first, second and third eigenvalues appear quite far from other 
results, in particular, the second and third critical loads appear coincident with 
the first and second critical loads for the beam with free ends and converge to 
Pcr,1 (Eq. 1.38). The first critical load is less than the second and third critical 

loads; it does not intersect other curves, and for increasing L it converges to a 

new value: 

2
Ecr,cr,0 )α(069.0 LPP  , (1.51) 
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The fourth and fifth eigenvalues are close to Reissner’s solution and converge to 
the value given by Eq. 1.27. 
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Fig. 1.35. Dimensionless critical loads Pcr versus αL for beam with free ends and a weakened 
joint at midpoint. 
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Fig. 1.36 – First (continuous line), second (large dashed line) and third (small dashed line) 

mode shapes for a beam with free ends and a weak section at midpoint for L equal to 1 (a), 5 

(b), 10 (c) and 25 (d). 

 
Figs 1.36 a-d show the first three mode shapes for increasing αL. For αL = 1 
(Fig. 1.36a) the first mode shape is symmetric and characterized by the rigid 
body rotation of each part of the beam with respect to beam midpoint, whereas 
the second mode shape is a rigid rotation of the entire beam and it is coincident 
with the first mode shape for the beam with free ends. The third mode shape is 
sinusoidal with one half-wave for each part of the beam. For αL = 5 (Fig. 1.36b), 
the first and the third mode shapes are similar to the corresponding ones 
obtained for αL = 1, whereas the second mode shape is coincident with the first 
mode shape for the beam with free ends. For αL = 10 and 25, the second and 
third mode shapes are coincident with the first and second mode shapes for the 
beam with free ends, whereas the first mode shape is characterized by large 
deflections close to the weak section. It is worth noting that the first mode shape 
corresponding to each half of the beam for αL = 10 and 25 has never been 
obtained with other beam end restraints. 
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The buckling of a beam resting on elastic half-plane with a weak section at 
midpoint turns out to be similar to the corresponding case on a Winkler-type soil 
(Wang 2010). However, in the latter case, the first, second and third critical 
loads tend to be coincident for increasing γ, as shown in Figs. 1.38a, b and c, 
and converge to Pcr,W,1 (Eq. 1.48). Then, Figs. 1.37a and b show the first, second 
and third mode shapes for a beam on Winkler half-space with a weak connection 
at midpoint. For the beam on soft Winkler half-space, mode shapes are similar 
to the beam on half-plane case, whereas for the beam on stiff Winkler half-
space, the first mode shape is characterized by large deflection at beam ends and 
midpoint. In this case, the first mode shape on each half of the beam is 
coincident with the entire mode shape obtained for the beam with free ends on 
quite stiff half-space (Fig. 1.32c). 
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Fig. 1.37 – First (continuous line), second (large dashed line) and third (small dashed line) 
mode shapes for a beam with free ends and a weak section at midpoint for γ equal to 15 (a) 

and 400 (b). 
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Fig. 1.38 – Dimensionless critical loads Pcr versus γ for a beam with free ends and a weak 
section at midpoint on Winkler-type half space. 
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1.6 Analysis of a compressed beam on half-plane loaded at 
midpoint 

 
A beam resting on elastic half-plane is often used for representing the behaviour 
of sandwich panels (Gough et al. 1940; Allen 1969), however, in some cases, 
the simpler Winkler half-space model is adopted to represent the behaviour of 
the sandwich core (Davies 2001). Considering a simply supported panel subject 
to a concentrated or distributed load (Fig. 1. 1.39a), the upper face is 
compressed and it may suffer of buckling (Fig. 1. 1.39b). A similar case is 
represented by a supported panel, where the support reaction becomes a 
concentrated force for the panel. Then, the face sheet of the sandwich panel may 
fail at a support or under a load by buckling and bending failure of the face (Fig. 
1.40). 

(a) 
L

F

q

 
 

(b)  
Fig. 1.39 – Structural behaviour of a simply supported sandwich panel (a), subject to local 

buckling of the upper face (b). 
 

 
Fig. 1.40 – Buckling and bending failure of a sandwich face over a support. 
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The simple case of a beam with free ends resting on elastic half-plane loaded by 
a concentrated force F at midpoint and subject to a compressive force P (Fig. 
1.41), is then considered in order to study the behaviour of a sandwich panel 
with a compressed face sheet. Moreover, the present model allows to study 
structures including second order effects due to axial load. Then, the beam 
characterized by an increasing axial load P is considered. 

P P

L/2 L/2

F

 
Fig. 1.41 – Beam with free ends loaded at midpoint and subject to axial load. 

 
Considering the relation between subgrade parameter c of a Winkler support and 
the elastic modulus of an elastic half-plane E (Eq. 1.37) determined by Biot 
(1937), the analysis of a beam with free ends, including second order effects due 
to axial load, is carried out following Davies (2001) example and comparing 
results obtained with the two half-space models. In the following, beam 
deflections, half-space reactions and bending moments for the beam without 
axial load and with P equal to one half of the first critical load P1 are 
determined. Results are first evaluated for the case of a beam resting on quite 
stiff support (αL = 10 corresponding to γ = 53) and are shown in Figs. 1.42 a-f. 
Without axial load effects (dashed lines), the results obtained with both half-
space models are quite similar. Including axial load effects (continuous lines), 
displacements, reactions and bending moments obtained with the beam on half-
plane, are larger than those obtained by applying the Winkler model. Then, 
results are evaluated for the case of a beam on stiff support (αL = 50 
corresponding to γ = 1330) and are shown in Figs. 1.43 a-f. In this case, 
displacements and reactions for the beam on half-plane are larger than the 
corresponding results for the beam on Winkler-type half-space, with and without 
axial load effects. Moreover, in the latter case, displacements and reactions tend 
to be negligible and far from beam midpoint. Bending moments obtained with 
both models, present however very small differences. Then, Biot’s expression 
(Eq. 1.37) turns out to be efficient for static analyses with second order effects 
and for the determination of beam bending moment. 
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Fig. 1.42 – Beam on elastic support loaded by a concentrated force at midpoint on half plane 
(a, c, e) and Winkler soil (b, d, f). Vertical displacement (a,b), half-space reaction (c,d), 

bending moment (e,f). Dashed lines for P = 0, continuous lines for P = 0.5 P1 
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Fig. 1.43 – Beam on elastic support loaded by a concentrated force at midpoint on half plane 
(a, c, e) and Winkler soil (b, d, f). Vertical displacement (a,b), half-space reaction (c,d), 

bending moment (e,f). Dashed lines for P = 0, continuous lines for P = 0.5 P1 
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1.6.1 Incremental analysis of a compressed beam on half-plane loaded at 
midpoint 

Considering a beam with free ends on elastic half-plane, loaded by a 
concentrated force F at midpoint and subject to axial load P (Fig. 1.41), the 
vertical displacement at beam midpoint d is evaluated for increasing P and for 
different αL values (without increasing F). A similar example was studied by 
Yankelewsky and Eisenberger (1986), where Winkler’s hypothesis were 
adopted to represent the elastic half space. The system is symmetric, then the 
beam with free ends behaves like a beam with pinned ends. 
In absence of soil (αL = 0), the case of a beam with pinned ends is considered. 
The displacement at midpoint d0 = d(0) = FL3/(24 Db) is obtained without 
second order effects, then, by increasing P, the displacement d increases 
following the well-known relation (Timoshenko and Gere 1961): 

Ecr,/1

)0(
)(

PP

d
Pd


  (1.52) 

Fig. 1.44a shows dimensionless axial load P/Pcr,E with respect to dimensionless 
displacement at beam midpoint d/d0. For αL = 0, and that the axial load 
converges to the Euler buckling load for the beam and the results given by the 
incremental analysis are in good agreement with Eq. 1.52 (line with crosses, Fig. 
1.44a), which can also be written as P/Pcr,E = 1− d0/d. 
For αL ≠ 0 and increasing αL, the displacement at beam midpoint without axial 
load is obviously smaller than d0 and diminishes while increasing αL. For each 
value of the parameter αL, the axial load converges to the critical load 
corresponding to the first symmetric eigenvector, which is not always the first 
critical load for the case of the beam with free ends. For example, considering 
Fig. 1.28a or b for αL = 2, the first critical load is equal 0.158 Pcr,E, but it 
corresponds to an asymmetric mode shape. The incremental analysis performed 
for αL = 2, converges, in fact, to the second critical load, equal to 0.991 Pcr,E. 
Fig. 1.44b shows dimensionless axial load P/[Pcr,E(αL)2] with respect to 
dimensionless displacement at beam midpoint d/d0. Axial loads converge to Eq. 
1.38 for increasing αL. 
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Fig. 1.44 – Dimensionless beam displacement at midpoint for increasing axial load for 
different αL values. Line with crosses for P/Pcr,E = 1− d0/d. 

 
Beam displacement at midpoint for increasing axial load and varying the 
parameter αL, turns out to have a behaviour similar to the case of the beam with 
pinned ends and without soil (Eq. 1.52). However, the expression in Eq. 1.52 
can not be adopted to the case of the beam on elastic half plane. Fig. 1.45 shows 
dimensionless axial loads P/Pcr,E,αL with respect to dimensionless displacements 
d/d(0), in order to obtain curves starting from (1,0) and converging to 1. 
Increasing αL values, curves are different than the one obtained with αL = 0.  
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Fig. 1.45 – Dimensionless beam displacement at midpoint for increasing axial load for 
different αL values. Line with crosses for P/Pcr,E = 1− d0/d. 
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1.7 Rectangular pipe resting on elastic half-plane 

 
As suggested in the static case (Tullini and Tralli 2010), the present model gives 
the possibility to easily study the coupling of the foundation beam with 
structures described by traditional FEs. Buckling analysis and geometric 
nonlinear analysis can be carried out, taking into account second order effects 
due to axial load on structural elements and in particular on the foundation 
element. 
The discrete problem is characterized by the separation of the degrees of 
freedom of the foundation beam (1) and the remaining degrees of freedom of the 
structure (2) as shown in the following system (Tullini and Tralli 2010): 
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 (1.53) 

In the following, a rectangular frame of length L and high Lp is considered (Fig. 
1.46). 
This kind of frame in plane strain state may refer to the structure of a long 
subway resting on soil, then the deformations along its length become negligible 
with respect to in-plane deformations. Then, a pipe resting on elastic half-plane 
can represent the structural scheme of an underground canal or a subway. 
 

 
Fig. 1.46 – Rectangular pipe resting on elastic half-plane. 
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In this case, both the foundation and the top beam have the same bending 
stiffness Db, whereas Dp indicates the column bending stiffness. Concentrated 
forces P are applied at upper column ends (Fig. 1.46). In the following, by 
introducing dimensionless parameters 
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L
, (1.54) 

two cases with  = 0.5 ( = 1,  = 2) and  = 2.0 ( = 4,  = 2) are considered. 

A number of 32 equal FEs is adopted for the foundation beam, whereas the other 
frame elements are subdivided into 16 equal FEs. Moreover, a pipe resting on 
half-space modelled with traditional FEs is considered. 
 

1.7.1 Buckling of rectangular pipes with free and pinned foundation beam 
ends 

Buckling analyses are restricted to the determination of the first two critical 
loads and the corresponding mode shapes. Free and pinned foundation beam 
ends are considered. The second case may refer to a pipe supported by piles at 
foundation beam ends, and the penalty function R1 introduced in section 1.3 is 
used. 
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Fig. 1.47 – Rectangular pipe with  = 0.5 (a) and 2.0 (b). First and second dimensionless 

critical loads p,cr for increasing αL. Continuous lines and dots describe pipe with free and 

pinned foundation ends, respectively. 
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Figs. 1.47a and b show the first and second dimensionless critical loads p,cr 

increasing of αL for  = 0.5 and  = 2.0, respectively. Continuous lines 

represent critical loads of the pipe with free foundation ends, whereas dots 
represent the critical loads of pipes with pinned foundation ends. For very soft 
soil and free foundation ends, the first critical load tends to zero and the 
corresponding mode shape is a rigid body rotation (Fig. 1.48a); whereas for a 
pipe with pinned foundation ends, the first critical load is close to the analytical 

solution of the rectangular pipe without supporting soil, i.e. p,cr = 3.90 for 

 = 0.5 and p,cr = 7.28 for  = 2.0, and the corresponding mode shape (Fig. 

1.48b) is antisymmetric.  
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Fig. 1.48 – Rectangular pipe with  = 0.5. Mode shapes for L = 1 . First mode shape for a 

pipe with free (a) and pinned ends (b) foundation ends. Second mode shape (b) for a pipe with 
either free or pinned foundation ends. 
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Considering the second critical load, for very soft substrate, soil reactions extend 
along the whole foundation length (Fig. 1.49a), whereas for large values of αL, 
reactions tend to concentrate at foundation ends and are close to zero along 
beam length (Fig. 1.49b). Therefore, for very soft substrate, the second critical 

load can be overestimated by the corresponding value p,cr,sup of a pipe without 

supporting soil and it can be underestimated by the critical load p,cr,inf of a self-

equilibrate pipe having concentrated forces at top column ends and a distributed 
load equal to 2P/L on foundation beam, which simulates constant soil reactions. 

For  = 0.5 and αL tending to zero, the second critical load tends to p,cr = 12.4 

(Fig. 1.47a), bounded by p,cr,inf = 11.6 and p,cr,sup = 13.5, whereas for  = 2.0 

and αL tending to zero, the second critical load tends to p,cr = 20.6 (Fig. 1.47b), 

bounded by p,cr,inf =  20.3 and p,cr,sup = 21.6. The corresponding mode shape is 

characterized by a horizontal and a vertical axis of symmetry (Fig. 1.48c). 
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Fig. 1.49 – Half plane pressure generated by a pipe with columns compressed by P for αL = 

0.1 (a) and 25 (b). 

 
For quite soft soil (αL = 5), the first mode shape for the pipe with free 
foundation ends is antysymmetric and characterized by a rigid body rotation and 
small deformation of beams and columns (Fig. 1.50a). The first mode shape for 
the pipe with pinned foundation ends (Fig. 1.50b) is analogous to the one 
obtained in the previous case and, moreover, the corresponding critical load is 
not much larger than the one determined for αL = 1 (Figs. 1.47a and b). The 
second mode shape (Fig. 1.50c) is in this case characterized by one (vertical) 
axis of symmetry and it is clear that the effect of the half-plane is to reduce 
foundation beam deflection with respect to top beam. 
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For very stiff soil (αL = 25), the first mode shape obtained with both restraint 
conditions are coincident, foundation deflections are small (Figs. 1.51a and b) 
and the corresponding eigenvalue converges to the critical load of a portal frame 

with built-in bases (p,cr = 6.03 for  = 0.5 and p,cr = 8.43 for  = 2.0). It is 

worth noting that the first critical load for the second pipe ( = 2.0) converges 

faster to the analytic solution with respect to the first pipe. 
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Fig. 1.50 – Rectangular pipe with  = 0.5. Mode shapes for L = 5 . First mode shape for a 

pipe with free (a) and pinned (b) foundation ends. Second mode shape (c) for a pipe with 
either free or pinned foundation ends. 
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Fig. 1.51 – Rectangular pipe with  = 0.5. Mode shapes for L = 25 . First mode shape for a 

pipe with free (a) and pinned (b) foundation ends. Second mode shape (c) for a pipe with 
either free or pinned foundation ends. 

 
Considering the second eigenvalue, both restraint conditions give equal buckling 
loads and identical mode shapes (Fig. 1.51c). For increasing αL, the second 
critical load converges to the corresponding value of a portal frame with built-in 

bases (p,cr = 23.0 for  = 0.5, p,cr = 28.4 for  = 2.0). However, convergence is 

slow for  = 0.5 (Fig. 1.47a) and the mode shape depicted in Fig. 1.51c is 

characterized by small foundation deflections. Hence, the larger the pipe 
foundation length with respect to the height, the larger the soil stiffness 
necessary to converge to a portal frame with built-in bases. 
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1.7.1.1 Buckling of rectangular pipes on half-plane modelled with 
traditional FEs 

The pipe on elastic half-plane is also modelled with traditional FEs. In 
particular, the pipe is modelled by beam FEs and a mesh of 2D FEs is created 
for representing the half-plane as it has been done for the convergence test for 
the beam with free ends (§1.4). It is worth noting that the traditional model takes 
into account the geometric matrix for both beam and 2D FEs. 

Figs. 1.52a and b show the first and second dimensionless critical loads p,cr of a 

pipe resting on elastic half-plane with  = 0.5 ( = 1,  = 2), increasing αL. 

Lines with crosses show the results obtained with the traditional FE model 2D
cr,p , 

whereas continuous lines and dots represent the results obtained with the present 

model PA
cr,p . It is worth noting that the first and second critical loads for the 

traditional model are determined by selecting the eigenvalues corresponding to 
the eigenvectors similar to the ones obtained with the present model. For low 
αL, small eigenvalues are obtained and the corresponding eigenvectors are 
characterized by large half-space displacements close to foundation beam ends 
(see Fig. 1.53b for example). Then, buckling analysis of a pipe on half-plane 
modelled by traditional FEs may not be able to converge to accurate results for 
soft half-space cases. 
Considering the traditional FE model, the first critical load for the pipe with free 
ends is quite close to the one obtained with the present model (Fig. 1.52a, line 
with crosses). However, the first critical load for the pipe with pinned ends is 
close to the present model only for αL > 7. For αL < 7 traditional FE analyses do 
not furnish accurate results and the eigenvectors are characterized by large half-
space displacements close to foundation beam ends. The second critical load 
obtained with the traditional model (Fig. 1.52b, line with crosses) is easily 
determined for αL > 7 and it is close to the present results for αL > 15. 
 
Figs. 1.53a and b show the first and second mode shapes, respectively, for a pipe 

with free foundation ends with  = 0.5 ( = 1,  = 2) and αL = 5; both mode 

shapes are characterized by local deformations on half space near foundation 
beam ends. The first mode shape (Fig. 1.53a) represents a rigid rotation and it is 
similar to the one obtained with the present model (Fig. 1.50a). The 

corresponding eigenvalue 82.12D
cr1,  p  is quite close to 20.2PA

cr1,  p . The second 

mode shape (Fig. 1.53b) is characterized by large local deformations on half 
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space close to foundation beam ends and the corresponding eigenvalue 

02.22D
cr,  p  can not be considered an accurate solution. For αL = 5, the buckling 

analysis with the traditional FE model is not able to determine a value close to 

45.14PA
cr2,  p  also if the first 100 eigenvalues are calculated. Figs. 1.53c and d 

show the first and fourth mode shapes, respectively, for αL = 10. In this case, the 
fourth critical load determined by the buckling analysis is taken as second 

critical load. However, 5.152D
cr2,  p  is lower than 9.16PA

cr2,  p . Finally, 

considering the pipe on stiff soil (αL = 25), the first and the second mode shapes 
shown in Figs. 1.53e and f are coincident with the corresponding ones 
determined with the present model (Fig. 1.51). 
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Fig. 1.52 – First (a) and second (b) dimensionless critical load of a pipe on elastic half plane. 

Continuous and dotted lines for the present model, line with crosses for the traditional FE 
model. 



 72

 

(a)   (b) 

(c)   (d) 

(e)   (f) 
 

Fig. 1.53 – First (a, c, e) and second (b, d, f) mode shapes for a pipe on half-plane modelled 
with traditional FEs for αL = 5 (a, b), 10 (c, d) and 25 (e, f). 
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1.7.2 Nonlinear incremental analyses of rectangular pipes 

Considering the pipe with compressed columns resting on elastic half-plane, it is 
worth noting that the axial forces in columns are statically determinate and equal 
to P, but the axial forces in top and foundation beams are statically 

indeterminate and depend nonlinearly on the load multiplier p; thus, a 

snapthrough instability is to be expected (Bazant and Cedolin 1991). In order to 
obtain a more correct study of pipe stability, nonlinear incremental analyses are 
carried out, taking into account the axial force variation in top and foundation 
beams. To this purpose, axial degrees of freedom are added to beam FEs and 
element stiffness matrix is modified as usual (Reddy 2006); axial to bending 
stiffness ratio E0bh/Db is taken equal to 12/h2 with beam slenderness L/h = 10. 
In the following, three types of analysis are carried out: the first is a simple 
linear static analysis (curve 1 in Fig. 1.54); the second is a static analysis which 
takes into account second order effects due to axial loads, but it considers axial 
loads proportional to the static solution during the entire analysis (curve 2 in Fig. 
1.54); and the third takes into account the second order effects due to axial loads 
and update them during each analysis step (curve 3 in Fig. 1.54). For the third 
analysis type, displacement control has been adopted using the formulation 
proposed by Batoz and Dhatt (1979). 
 

Considering the pipe with  = 1,  = 2 (  0.5) and αL = 1, Fig. 1.54a shows 

load multiplier p as a function of the rotation  at the foundation beam end. In 

particular, line 1 represents the linear analysis and it is straight as expected, 
curve 2 corresponds to the incremental analysis that takes into account second 
order effects, but assumes axial forces proportional to those obtained with the 

linear analysis; then the load multiplier p converges to p,cr = 12.4, determined 

with the buckling analysis. The analysis described by curve 3, which upgrades 

the axial forces in each load step, furnishes a load multiplier p that reaches the 

limit point p,lim = 5.2 and then decreases. p,lim is 58% lower than p,cr = 12.4 

determined with the buckling analysis. Fig. 1.54b shows load multiplier p as a 

function of dimensionless axial force in foundation beam Nb Lp
2/Dp (positive 

sign for compression), and Nb increases more than linearly with respect to the 

load multiplier p, up to attainment of the buckling load of the foundation beam. 

Considering the pipe with  = 1,  = 2 (  0.5) and αL = 5, Fig. 1.54c shows 
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that the geometric nonlinear analysis that upgrades axial forces attains the limit 

point p,lim = 7.0, 48% lower than p,cr = 14.4. 

Similar results are shown in Figs. 1.55a and b for the pipe having  = 4,  = 2 

(  2.0) and αL = 1. 
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Fig. 1.54 – Rectangular pipe with  = 0.5 and αL = 1 (a, b) and 5 (c, d). Load multiplier p as 

a function of the rotation  at the foundation beam end (a, c) and dimensionless axial force in 

foundation beam Nt Lp
2/Dp (b, d). Linear analysis (straight line 1), incremental analysis with 

second order effects (curve 2), nonlinear incremental analysis that upgrades the axial forces at 
each load step (curve 3). 
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Fig. 1.55 – Rectangular pipe with  = 2 and αL = 1. Load multiplier p as a function of the 

rotation  at the foundation beam end (a) and dimensionless axial force in foundation beam 

Nt Lp
2/Dp (b). Linear analysis (straight line 1), incremental analysis with second order effects 

(curve 2), nonlinear incremental analysis that upgrades the axial forces at each load step 
(curve 3). 

 

For other values of αL, load multipliers p,lim at limit point are determined and 

presented in Figs. 1. 1.56a and b using cross symbols, whereas continuous lines 
and dots represents buckling loads. The differences between buckling analysis 
and nonlinear incremental analysis are larger up to αL = 10 for the pipe having 

  0.5 (Fig. 1. 1.56a); whereas for stiffer soil, load multipliers p,lim are quite 

close to buckling loadsp,cr. For pipe with  = 4,  = 2 ( = 2.0), Fig. 1. 1.56b 

shows that the differences between buckling and nonlinear incremental analysis 
are larger up to αL = 5.  
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Fig. 1.56 – First and second dimensionless critical loads of rectangular pipes vs. αL for  = 

0.5 (a) and 2.0 (b). Continuous lines and dots describe pipe with free and pinned foundation 
ends, respectively. The cross symbols represent load multipliers at limit points. 

 



 76

 = L/Lp L = 1 

p,lim/p,cr 0.5 1 2 4 

0.5 1.00 0.80 0.52 0.27

1 1.00 1.00 0.42 0.27

2 1.00 0.99 0.53 0.29
 = Db/Dp

4 1.00 1.00 0.68 0.32

 
Tab. 1.7 – Ratio p,lim/p,cr for  rectangular pipes on elastic half plane with L= 1. 

 
 = L/Lp L = 5 

p,lim/p,cr 0.5 1 2 4 

0.5 1.00 0.96 0.65 0.25

1 1.00 1.00 0.49 0.25

2 1.00 0.96 0.65 0.26
 = Db/Dp

4 1.00 1.00 0.84 0.31

 
Tab. 1.8 – Ratio p,lim/p,cr for  rectangular pipes on elastic half plane with L= 5. 

 

Finally, for αL = 1 and 5, Tabs. 7 and 8 show the ratio p,lim/p,cr for some values 

of pipe parameters  and . Each diagonal in Tabs. 7 and 8 exhibits the same 

value of , which provides the same p,cr regardless of the chosen parameters  

and . Conversely, small limit load multiplier p,lim occurs with low values of  

and if L > 2 Lp. However, Figs 1.54a and c and Fig. 1.55a show that the limit 

load multiplier p,lim requires significant rotation. Consequently, ordinary 

structures collapse due to reached strength limit rather than elastic instability. 
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2 Stability of Timoshenko beams resting on elastic 
half-plane 

 

2.1 Introduction 

 
The effect of parameters associated with shear deformations on the buckling 
capacity is significant for sandwich panels, for built-up columns and for short 
beams, and that is why the buckling of Timoshenko beams has been widely 
studied in the past (Timoshenko and Gere 1961, Bazant and Cedolin 1991, 
Wang et al. 2005). However, a comprehensive study of the shear deformation 
effects on the buckling of beams resting on elastic media has never been 
thoroughly developed. Nonetheless, numerous studies assume various 
alternative substrate models, from the simplest Winkler model (Hetenyi 1946) to 
the more complex soil model suggested by Wieghardt (1922). For instance, 
Abbas and Thomas (1978), Yokoyama (1988), Cheng and Pantelides (1988), 
Wang et al. (1991) proposed numerical solutions to study the elastic stability of 
Timoshenko beams on Winkler soil. Moreover, Hlaváček (2003) presented a 
thorough mathematical analysis of the buckling problem of a simply supported 
Timoshenko beam on Winkler soil. Recently, Timoshenko beam-column resting 
on a two- or three-parameter elastic foundation has received increasing 
attention, e.g. see Arboleda-Monsalve et al. (2008), Sapountzakis and Kampitsis 
(2010, 2011, 2012) and references cited therein. Finally, Smith (1969), Ruta and 
Elishakoff (2006) studied a simply supported beam on a Wieghardt-type elastic 
foundation and derived an analytical solution for the buckling loads. 
It is worth noting that, to the author’s knowledge, the analytical or numerical 
analyses concerning the buckling of Timoshenko beams in frictionless contact 
with an elastic half-plane are not available. To this aim, the present chapter 
generalizes the finite element model proposed in Tullini and Tralli (2010). 
Results have recently been published and discussed in Tullini et al. (2012b). In 
particular, the soil is represented as an elastic half-space in plane state 
conditions. The present finite element method makes use of a mixed variational 
formulation based on a proper Green function of the half-plane, which describes 
the relation between beam deflections and contact pressure. The corresponding 
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finite element model for the soil-beam system adopts “modified” Hermitian 
shape functions (Naraynaswami and Adelman 1974; Kosmatka 1995; Reddy 
1997; Minghini et al. 2007) and constant soil reactions for each foundation 
element. Therefore, the present finite element model represents a one-
dimensional theory that makes use of a boundary integral equation to reduce the 
two-dimensional half-plane to its one-dimensional boundary. Unlike what is 
claimed in Tullini and Tralli (2010), possible constraints cannot be directly 
applied to global stiffness and geometric matrices. In fact, the adopted Green 
function of the soil holds for a half-plane loaded by a point force normal to its 
boundary and requires a free boundary elsewhere. Therefore, constraint 
equations are added to the mixed variational formulation of the foundation-soil 
system by means of a penalty approach. 
Numerical examples refer to beams, with pinned or free ends, characterized by 
two slenderness values. Buckling loads and the corresponding mode shapes are 
determined for various values of the mechanical and geometrical characteristics 
of the soil-beam system. Moreover, a classical two-dimensional finite element 
model is used as reference solution, which allows to asses the validity range of 
Euler-Bernoulli and Timoshenko beam models. Finally, the results reported in 
the present chapter are intended to give reference solutions to future works 
adopting multi-parameter substrate models. 
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2.2 Basic relationships 

 
Fig. 2.1 – Beam on elastic half plane subject to external load p(x) and compressive force P. 

 
An elastic beam of length L, cross-section height h and width b, resting on a 
semi-infinite linearly elastic substrate, is referred to a Cartesian coordinate 
system (0; x, y), where x coincides with both the centroidal axis and the 
boundary of the half-plane and y is directed downward. The beam is made of 
homogeneous linearly elastic material, with longitudinal and transverse elastic 
moduli Eb, Gb, and Poisson coefficient νb. The isotropic material of the soil is 
characterized by the modulus Es and Poisson’s ratio νs. Generalized plane stress 
or plane strain regime is considered; in the latter case, both beam and half-plane 
have a unitary values of the width b. A concentrated compressive force P acts at 
each beam end as shown in Fig. 2.1. A distributed vertical external load p(x) and 
couple m(x) can also be applied along the beam axis x. Frictionless and bilateral 
conditions characterize the interface between beam and soil. Consequently, a 
vertical soil reaction r(x) is enforced to both beam and substrate and the vertical 
displacement v(x) of the beam coincides with those of the half-plane boundary. 

Assuming positive cross-section rotation  in counterclockwise direction, axial 

and transverse displacements of Timoshenko beam model can be written as: 

u(x, y) = y,     v(x, y) = v(x), (2.1) 

and the corresponding nonzero axial and shear strains become: 

 = 'y,      = v' + , (2.2) 

where prime represents differentiation with respect to x. Plane strain assumption 
yields the following stress-strain relations:  

 = Eb/(1b
2) ,      = Gb . (2.3) 
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Using strain components (Eq. 2.2) and constitutive laws (Eq. 2.3), the potential 
energy Πe of the Timoshenko beam can be written as (Reddy 2006): 

2 21 [ ( ( )) ( ( ) ( )) ] d
2e eb b b

L

D x k G A v x x x L        (2.4a) 

 ( ) ( ) ( ) ( ) ( ) de
L

L b p x r x v x m x x x 
      (2.4b) 

where A = bh is the beam cross-sectional area and Db = E0 bh3/12 is the flexural 

rigidity, with E0 = Eb or E0 = Eb/(1 2
b ) for a generalized plane stress or plane 

strain state, respectively, and kb is the shear factor (Cowper 1966; Tullini and 
Savoia 1999): 

)6(

5

bbb
b EG

k


    or   bbbb
b EG

k
)1(6

5


  (2.5a, b) 

for a generalized plane stress or plane strain state, respectively.  
Renewed interest in the derivation of the second order work terms of the 
Timoshenko beam has recently arisen (Aristizábal-Ochoa 2008, Blaauwendraad 
2008). However, for the purposes of the present work, the classical Engesser 
approach is considered (Timoshenko and Gere 1961); thus, the total potential 

energy b of the beam, including second order effects, can be written as 

 
L

eb dxxv
P 2)]([
2

. (2.6) 

Making use of Clapeyron’s theorem, the total potential energy of the soil is 
equal to half the potential energy of the contact stresses at the beam soil 
interface (Tullini and Tralli 2010): 

  
L LLs xxrxxgxxr

b
xxvxr

b
ˆd)ˆ()ˆ,(d)(

2
d)()(

2
, (2.7) 

where the vertical displacement v(x) is replaced by the boundary integral 
equation commonly referred to as Flamant’s solution (Johnson 1985) already 
defined for the Euler-Bernoulli beam case: 

xx
E

xxg ˆln
2

)ˆ,( 


  (2.8) 
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with E = Es or E = Es/(1 2
s ) for a generalized plane stress or plane strain state, 

respectively. 

Constraint equations Ri(v, ) = 0 among displacements or rotations can be 

included in the total potential energy  of the beam-substrate system by means 

of a penalty approach (Reddy 2006), 

2
)],([

2

1
)(),(),(  

i iisb vRkrrvrv , (2.9) 

where ki is the penalty parameter, whose value should be large enough to 
accurately satisfy the constraint equations. For beams with free ends, rigid-body 
displacement related to Flamant’s solution can be removed by choosing an 
arbitrary abscissa x  where a null value of v( x ) is forced. It is worth noting that 
Flamant’s solution (Eq. 5) holds for a half-plane loaded by a point force normal 
to its boundary, which must be free to deform everywhere. The penalty approach 
allows to reformulate a problem with constraints as one without constraints.  
 

2.3 Discrete model 

 

 
Fig. 2.2 – Beam on elastic half plane subdivided into 8 equal FEs 

 
The discretization of the beam-substrate system is the same one described in the 
first chapter for the Euler-Bernoulli beam case, which can be created by 
subdividing the beam into finite elements of length li (Fig. 2.2) and by 
considering a piecewise constant soil reaction inside each element (Tullini and 

Tralli 2010): r()= [()]T ri, where ri denotes the vector components of nodal 

soil reaction and  assembles constant shape functions. Beam displacements and 

rotations are discretized in the usual form as follows: 

d() = N() qi (2.10) 
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where  = x/li, d = [v, ]T collects the unknown displacement function, 

qi = [v1, 1, v2, 2]
T. As for the beam shape functions, collected in matrix N(), 

the “modified” Hermitian polynomials that follow from the solution of the 
homogeneous Timoshenko beam problem are assumed (Naraynaswami and 
Adelman 1974; Kosmatka 1995; Reddy 1997; Minghini et al. 2007): 
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 (2.11) 

Such shape functions contain the shear parameter:  
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which tends to zero when the influence of shear deformations becomes 
negligible, resulting in a locking-free formulation with shape functions that 
reduce to those of the classical Euler-Bernoulli beam model. For a prismatic 

beam, the stationarity condition of the total potential energy  written in 

discrete form provides the following system: 
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where the vector q collects nodal displacements, r denotes the vector of constant 
soil reactions underlying the beam finite element, F is the external load vector, 

Db/L 
3

bK
~  is the elastic stiffness matrix of the beam, with element matrices biK

~  

reported in Przemieniecki (1968), P/L gK
~  is the geometric (or incremental) 

matrix (Kosmatka 1995) and the element of matrices H and G


 together with the 

element matrices biK
~ and giK

~  are reported in the appendix A1. System in Eq. 

2.13 yields the following solution: 
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qHGr T1~  E , (2.15) 

where   T13
soil

~~
HGHK  L  is the stiffness matrix of the soil and the parameter 

(L)3 = EbL 
3/Db characterises the beam-substrate system (Biot 1937; Vesic 

1961; Tullini and Tralli 2010). 
Finally, the buckling loads are given by the roots Pcr of the equation 

det[ soil
2

cr

~~~
KKK  gbb DLP ] = 0, which can be suitably reduced to a standard 

eigenvalue problem. In the following, dimensionless critical loads are referred to 

the Euler critical load Pcr,E = 2 Db/L 
2. 
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2.4 Comparison of the present model with a classical FE model 

 
The present finite element model is compared with a two-dimensional elastic 
model, where both beam and half-plane are modelled by quadrilateral finite 
elements in plane state. The mesh created for simulating the half-plane is equal 
to the one described for the Euler-Bernoulli beam case. 

h

8L

8L

L
2L
4L

 
Fig. 2.3 – Mesh adopted for the two-dimensional model with foundation beam subdivided 

into 2 and 8 elements in vertical and horizontal direction. 
 

Fig. 2.3 shows the simple case of the foundation beam subdivided into 2 and 8 
elements in vertical and horizontal direction, respectively. Moreover, vertical 
master-slave links connect the nodes of each beam end section in order to avoid 
local deformations. It must be noted that the adopted two-dimensional code uses 
geometric matrix also for half-space finite elements. 
 

2.4.1 Convergence test for a beam with free ends 

Tab. 2.1 collects the number of equations of the 2D model and the presented 
model, varying the number of beam elements. By comparing this table with the 
corresponding one for the Euler-Bernoulli beam case, it is clear that the 2D 
mesh adopted to represent the beam does not significantly affect the total 
number of equations as, in fact, the large number of equations is due to the mesh 
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adopted for the half-plane. Then, the number of equations of the 2D model 2D
eqn  

is related to the number of equations of the present analysis PA
eqn  by means of the 

relation defined for the Euler-Bernoulli beam case: 

2)(2 PA2D
eqeq nn  . (2.16) 

where PA
eqn  = 2 nel + 2 as usual. 

 

neq 
nel 2D 

model 
Presented
Analysis 

23 1527 18 

24 5615 34 

25 21727 66 

26 85439 130 

27 338815 258 

28 1349375 514 

 
Tab. 2.1 – Number of equations for the two models considered, with respect to the number of 

beam FEs 

 
Tables 2.2a and b shows the first dimensionless critical load Pcr/Pcr,E for a beam 
with free ends evaluated with both the present model and the two-dimensional 

model as a function of foundation beam subdivision 2D
eln  for L = 5 and 25, 

respectively, and L/h = 5, 15. 
To solve the eigenvalue problem, the CPU time t2D of the two-dimensional 
model is equal to 165 tPA, where tPA is the CPU time of the present analysis. 
Therefore, while the present model can be considered effective to determine 
buckling loads and critical modes, the 2D model will however be taken into 

account in order to evaluate critical load differences increasing L. 
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 L = 5

 L/h = 5 L/h = 15 

 

PA
eln  2D

eln  

PA 2D PA 2D 

 8 2×8 1.794 2.064 1.870 2.184 

 16 4×16 1.863 1.955 1.939 2.080 

 32 8×32 1.892 1.903 1.967 2.032 

 64 16×64 1.905 1.877 1.980 2.008 

 128 32×128 1.912 1.864 1.987 1.997 

 256 64×256 1.915 1.857 1.990 1.991 

(a) 211 - 1.917 - 1.992 - 

 

 L = 25

 L/h = 5 L/h = 15 

 

PA
eln 2D

eln  

PA 2D PA 2D 

 8 2×8 9.519 14.537 21.608 71.424 

 16 4×16 11.653 12.651 35.278 57.725 

 32 8×32 12.280 11.975 41.550 50.490 

 64 16×64 12.490 11.735 44.132 46.734 

 128 32×128 12.577 11.652 45.286 44.680 

 256 64×256 12.619 11.626 45.837 43.518 

(b) 211 - 12.651 - 46.343 - 

 
Tab. 2.2 – First dimensionless critical loads Pcr/Pcr,E for a beam with free ends corresponding 

to the present analysis (PA) or 2D models as a function of nel for  L/h = 5, 15, L = 5 (a) and 

L = 25 (b) 
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2.5 Buckling analysis of beams with different end restraints 

 
For the cases reported in this section, equal finite elements are used in beam 
length subdivision and nel = 256 is adopted, giving rise to sufficiently accurate 
solutions. Moreover, for the two beam slenderness cases considered, i.e. L/h 

equal to 5 and 15 and assuming a Poisson’s ratio b = 0, the corresponding shear 

parameters  are equal to 0.096 and 0.0107, respectively. In order to obtain 

sufficiently accurate buckling loads 2D
,cr mP , the two-dimensional model of the 

beam utilizes a rectangular mesh having 32 and 128 subdivisions in vertical and 
horizontal directions, respectively. 
 

2.5.1 Beam of finite length with pinned ends 

 

P P

L

 
Fig. 2.4 – Beam with free ends on elastic half-plane subject to axial load. 

 
The case of a simply supported beam is considered first (Fig. 2.16). This case 
may refer to a rigid portal frame whose columns are hinged to the foundation 
beam ends; thus, the structure enforces zero relative displacement between beam 
ends, but allows independent rotations. The constraint equation that must be 

applied to Eq. 6 is R1 = v(L/2)  v(L/2) = 0, assuming k equal to 104 Db/L
3. 

Considering the first slenderness case (L/h = 5), Figs. 2.5a and b show all 

dimensionless critical loads Pcr/Pcr,E versus the parameter L3 and L, 

respectively. Fig. 2.5c represents the ratio Pcr/[Pcr,E (L)2] versus the parameter 

L. The corresponding results obtained for the second slenderness case (L/h = 

15) are shown in Figs. 2.6a, b and c. 

For L = 0, i.e. for a simply supported beam without supporting soil, numerical 

results are in excellent agreement with exact solutions (Timoshenko and Gere 
1961) for both slenderness cases: 
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

 


m
PmP m    for m = 1, 2, 3, ...  (2.17) 

The effect of shear strain is to decrease critical loads with respect to the classical 
Euler solution and the influence of shear deformation increases for increasing 
the mode number m. Relations similar to Eq. 2.17 hold for several end restraints, 
especially for fixed-fixed, fixed-free, fixed-sliding restraint columns (Bazant and 

Cedolin 1991; Wang et al. 2005). The Timoshenko critical load T
crP  and the 

corresponding Euler critical load E
crP  are related by T

crP  = E
crP /[1 + E

crP /(kb Gb A)]. 

For increasing m, the value given by Eq. 2.17 converges to 

AGk
L

D
PP bb

b 





 22Ecr,cr,

1212
 (2.18) 

and the corresponding wavelength of the buckling mode tends to zero. The ratio 

Pcr,/Pcr,E is equal to 12.7 and 114.0 for L/h = 5 ( = 0.096) and L/h = 15 ( = 

0.0107). For low values of L and increasing mode number, Figs. 2.5a and b 

and Figs. 2.6a and b show that the present finite element solutions are very close 

to the corresponding values of Pcr,.  

Increasing L, the curves in Figs. 2.6a, b and c exhibit many curve veering and 

crossing points, and interchange themselves, whereas the curves in Figs. 2.5a, b 
and c are characterized by few crossing points. The behaviour of the longer 
beam (L/h = 15) is quite similar to the one obtained with the Euler-Bernoulli 
beam, whereas in that case critical loads do not present an upper limit. 

Moreover, for increasing L, Figs. 2.5a and b and Figs. 2.6a and b show that 

several critical loads converge to the value given in Eq. 2.18. In particular, for 
L/h = 5, Figs. 2.5a and b show that the first and second buckling loads converge 

to Pcr,∞ = 12.7 with an error less than 1% for L greater than 21 and 13, 

respectively; whereas for the longer beam (L/h = 15), Figs. 2.6a and b shows 

that convergence (Pcr,∞ = 114.0) is achieved for L > 50. Furthermore, Figs. 2.5a 

and b show that the third and fourth critical loads converge to Pcr,∞ for L 

approximately equal to 11, whereas in Figs. 2.6a and b the third and fourth 

critical loads converge to Pcr,∞ for L approximately equal to 34, then in this 

case critical loads after the second one converge to Pcr,∞ rapidly with respect to 
the first and second critical loads. For both slenderness cases, the ratio 

Pcr/[Pcr,E (L)2] tends obviously to zero and the corresponding representation 



 89

adopted in Figs. 2.5c and 6c is not as important as for the Euler-Bernoulli beam 
case. 

L/h = 5 
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Fig. 2.5 – Dimensionless critical loads Pcr/Pcr,E versus L for a Timoshenko beam with pinned 

ends having L/h = 5. 
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L/h = 15 
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Fig. 2.6 – Dimensionless critical loads Pcr/Pcr,E versus L for a Timoshenko beam with pinned 

ends having L/h = 15. 
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The buckling loads obtained for the simply supported Timoshenko beam resting 
on an elastic half-plane appear to be quite similar to those related to beams on 
Winkler or Wieghardt soils (Smith 1969). For instance, Cheng and Pantelides 
(1988), Hlaváček (2003) provide the following analytical solution for a simply 
supported Timoshenko beam resting on Winkler soil with subgrade coefficient 
c: 
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12
1    for m = 1, 2, 3, ... (2.19) 

For sufficiently high values of Winkler soil coefficient c, the critical load Pcr,W 
converges to Pcr,∞ and the buckling mode presents a wavelength that tends to 
zero. However, in § 2.5.1.3, results obtained for a beam with pinned ends on 
Winkler soil are discussed. 
 

2.5.1.1 Modal shapes 

Considering the short beam case for first (L/h = 5), for L = 5 Fig. 2.7a shows 

the first and second mode shapes that are characterized by one and two half-

waves, respectively, whereas for L = 10, the first and second mode shapes can 

not be described by sinusoidal functions. For L = 15 it must be noted that the 

second critical load already achieves limit value Pcr,∞ (Figs. 2.5a and b), then 
Fig. 2.7c shows the first mode shape characterized by great deflections at beam 
ends whereas the second mode shape presents short wavelength depending on 
mesh size nel, i.e. increasing values of nel yields smaller and smaller wavelength. 
For simplicity, in the critical modes depicted in Fig. 2.7c, nel is reduced to 32. 

For L ≥ 20, first eigenvalue reaches Pcr,∞ (Figs. 2.5a and b), then, both first and 

second mode shapes need to be represented considering nel reduced to 32, in 
order to appreciate the small wavelength. 

Considering the long beam case (L/h = 15), for L = 5 Fig. 2.8a shows 

sinusoidal buckling modes, which are quite similar irrespective of the ratio L/h 

to the short beam case. Increasing L, the first and second mode shapes are 

quite similar to the ones obtained for the Euler-Bernoulli beam case, with 
deformations localized near beam ends (Figs. 2.8b, c, d and e). However, for the 

case of long beam on very stiff soil (L = 50), Fig. 2.8f shows that the buckling 

modes are characterized by very short wavelengths and nel is reduced to 32. 
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Buckling modes are characterized by very short wavelength even if the 
corresponding critical loads is far from Pcr,∞ (Figs. 2.6a and b). 
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Fig. 2.7 – First (continuous line) and second (dashed line) buckling modes for a Timoshenko 

beam with pinned ends and L/h = 5, varying L. 
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Fig.8 – First (continuous line) and second (dashed line) buckling modes for a Timoshenko 

beam with pinned ends and L/h = 15, varying L. 
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2.5.1.2 Two-dimensional FE model results 

The beam with pinned ends is then modelled by a 2D traditional FE model. A 
horizontal master-slave link that connects the nodes at half height of the beam 
end sections is introduced in order to simulate the restraint condition. 

The first four critical loads 2D
,cr mP , with m = 1, 2, 3, 4, obtained with the classical 

2D FE model are compared with the values obtained with the presented model, 
by adopting dot symbols in Figs. 2.9a and b, for L/h equal to 5 and 15, 

respectively. For low L values, the first two critical loads 2D
1,crP , 2D

2,crP  are quite 

close to those obtained with the presented model; whereas the third and fourth 

buckling loads 2D
3,crP , 2D

4,crP  are lower than those of the presented model and these 

differences appear more evident in the short beam case (Fig. 2.9a). 
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Fig. 2.9 – Dimensionless critical loads Pcr/Pcr,E versus L for a Timoshenko beam with pinned 

ends having L/h = 5 (a) and 15 (b). Continuous lines for the presented model, dots for the 2D 
model. 
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For increasing values of the parameter L, the first four buckling loads 2D
,cr mP , 

with m = 1, 2, 3, 4, reach a limit characterised by a constant value lower than 
Pcr,∞. These differences are about 7.3% for the short beam (L/h = 5) and 4.2% 
for the long one (L/h = 15). 
 
Figs. 2.10a-f show first and second mode shapes obtained with the 2D model for 

L/h = 5 for increasing L. For L = 5 and 10 (Figs. 2.10a-d), first and second 

mode shapes are sinusoidal and they do not interchange themselves, whereas for 

L = 25 mode shapes are characterized by deformations localized at the upper 

part of the beam (Figs. 2.10e and f), such behaviour can not be described by a 
one-dimensional beam model. This justifies the differences between the 
buckling loads evaluated with the two-dimensional model and the beam model 

for large values of the parameter L. 

L/h = 5 

(a)    (b) 

(c)    (d) 

(e)    (f) 
 

Fig. 2.10– First (a, c, e) and second (b, d, f) mode shapes for a short two-dimensional 

foundation beam (L/h = 5) with pinned ends having L = 5 (a, b) ,L = 10 (c, d) and L = 25 

(e, f). 
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L/h = 15 

(a)    (b) 

(c)    (d) 

(e)    (f) 

(g)    (h) 
 

Fig. 2.11 – First (a, c, e, g) and second (b, d, f, h) mode shapes for a long two-dimensional 

foundation beam (L/h = 5) with pinned ends having L = 5 (a, b) ,L = 10 (c, d), L = 25 (e, 

f) and L = 50 (g, h) 

 
L/h = 15 

(a)    (b) 
 

Fig. 2.12 –Third (a) and fourth (b) mode shapes for a long 2D beam (L/h = 15) with pinned 

ends and having L = 50. 

 
For the long beam case (L/h = 15) modelled by 2D FEs, Figs. 2.11a-f show first 

and second mode shapes for increasing L. For beams on soft soil, mode shapes 

are sinusoidal (Figs. 2.11a-d), whereas for L = 25 and 50 (Figs. 2.11e-h) mode 
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shapes are characterized by deformations localized at beam ends, similarly to the 
results obtained with the present model (Fig.8e). In this case, the behaviour 

found for the short beam and L = 25 (Figs. 2.10e and f) can be detected if the 

third and fourth mode shapes are evaluated (Figs. 2.12a and b). 
 

2.5.1.3 Buckling of a beam with pinned ends on Winkler half-space 

Applying Winkler’s hypothesis (1867) to the basic relationships of a 
Timoshenko beam on elastic half-space including second order effects, the 
corresponding buckling problem may be solved numerically by means of a 
discrete model. As shown in § 1.5.2.2, the beam-subgrade parameter for the 
Winkler-type half space is given by: 

bD

Lc 4

  (2.20) 

where c represents the modulus of subgrade reaction or the Winkler constant. 
In the following, the usual restraint condition for a beam with pinned ends (R1 = 
v(±L/2) = 0) is considered for determining critical loads with the discrete model, 
moreover the same restraint condition adopted for the beam on half-plane with 

pinned ends (R1 = v(L/2)  v(L/2) = 0) is adopted for determining the first 

critical load. Figs. 2.13a and b show dimensionless critical loads Pcr/Pcr,E as a 
function of γ for L/h equal to 5 and 15, respectively. Similarly to the case of the 
Timoshenko beam on half-plane, increasing mode number, the critical loads for 
low values of γ converge to Pcr,∞ (Eq. 2.18) for both slenderness cases. For γ = 0, 
critical loads are coincident with the ones of a Timoshenko beam with pinned 
ends and without supporting soil (Eq. 2.17). 
Substituting Eq. 1.34 into Eq. 2.19, Hlaváček (2003) analytic solution turns out 
to be 
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and it is added to Figs. 2.13a and b up to m = 8 with circles. The first critical 
load obtained with the discrete model and taking into account rigid body 
displacement is smaller than Pcr,W,1 and converges to Pcr,∞ for γ larger than 500 
and 1000 for L/h equal to 5 and 15, respectively This difference is caused by the 
restraint condition adopted for determining the first critical load, which allows 
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rigid body vertical displacements that are usually neglected in traditional 
solutions (Yokoyama 1988). Other critical loads determined with the discrete 
model turn out to be coincident with Hlaváček solution and converge to Pcr,∞ for 
γ close to 120 and 1000 for L/h equal to 5 and 15, respectively. Differently than 
the case of the beam on half-plane, the second critical load is close to other 
results both considering and neglecting rigid body displacement for the beam. 
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Fig. 2.13 – Dimensionless critical loads Pcr/Pcr,E (continuous lines) and Pcr,W/Pcr,E (circles) as 
function of γ for a beam with pinned ends on Winkler half space. 

 
Figs. 2.26 a-d show first and second mode shapes for beams on soft and stiff 
half-space for both slenderness cases. For γ equal to 15, corresponding to αL 
quite close to 5, adopting Biot relation between c and elastic half-plane 
parameters (Eq. 1.37), first and second mode shapes are sinusoidal and are 
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similar to the ones obtained for the case of the beam on half-plane for both 
slenderness cases (Figs. 2.7a and 2.8a). 
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Fig. 2.14 – First (continuous line) and second (dashed line) buckling modes for a Timoshenko 
beam with pinned ends on Winkler half-space. 

 
For γ equal to 400, corresponding to αL quite close to 25, the first and second 
mode shapes for the short beam case are characterized by very short 
wavelengths and 32 FEs are adopted to represent displacements. In this case, the 
first mode shape (Fig. 2.26 b, continuous line) is similar to the corresponding 
one obtained for the beam on half-plane (Fig. 2.7c, continuous line) and it is 
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characterized by large deformations close to beam ends. The second mode shape 
is characterized by deformations along the entire beam length (Fig. 2.26 b, 
dashed line) and is similar to the corresponding one obtained for the beam on 
half-plane (Fig. 2.7c, dashed line). 
Considering the long beam case (Fig. 2.26 d), the first mode shape is 
characterized by large deflections at beam ends, whereas the second mode shape 
is sinusoidal and different than the corresponding one obtained for the case of 
the beam on half-plane (Fig. 2.8d, dashed line). 
 

2.5.2 Beam of finite length with free ends 

P P

L

 
Fig. 2.15 – Beam with free ends on elastic half-plane subject to axial load. 

 
The buckling of a Timoshenko beam with free ends on elastic half plane (Fig. 
2.27) is considered. Figs. 2.16a and b show all dimensionless critical loads 

Pcr/Pcr,E as a function of the parameter L3 and L, respectively for slenderness 

L/h equal to 5; whereas Figs. 2.17a, b and c show the same data for slenderness 

L/h equal to 15. For L = 0 and for both slenderness ratios, the buckling loads 

are in excellent agreement with exact solutions (Timoshenko and Gere 1961) for 
both slenderness cases (Eq. 2.17). For increasing mode number, buckling loads 
converge to Pcr,∞ given in Eq. 2.18. Moreover, Figs. 2.17a and b show that the 
first two buckling loads appear quite below the other critical loads and converge 

to the value Pcr,∞ for increasing values of L. In particular, for L/h = 5, first and 

second critical loads both converge to Pcr,∞ = 12.7 for L greater than 21, 

whereas for the longer beam (L/h = 15), Figs. 2.17a and b show that 

convergence (Pcr,∞ = 114.0) is achieved for L > 50. For both slenderness cases, 

third and fourth critical loads have the same behaviour depicted for the beam 

with pinned ends and converge to Pcr,∞ for L approximately equal to 11 and 34, 

for L/h = 5 and 15, respectively. 
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L/h = 5 
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Fig. 2.16. – Dimensionless critical loads Pcr/Pcr,E versus L for a Timoshenko beam with free 

ends having L/h = 5. 
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L/h = 15 
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Fig. 2.17 - Dimensionless critical loads Pcr/Pcr,E versus L for a Timoshenko beam with free 

ends having L/h = 15. 
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2.5.2.1 Modal shapes 
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Fig. 2.18 – First (continuous line) and second (dashed line) buckling modes for a Timoshenko 

beam with free ends for increasing L. 
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Considering the short beam case, for beams stiffer than the soil (L = 5), Fig. 

2.18a shows buckling modes that are practically coincident with those of the 

Euler-Bernoulli beam case, i.e. with  = 0. Increasing L (Figs. 2.18b and c), the 

first and second mode shapes are not characterized by a sinusoidal behaviour 
and great deformations tend to concentrate near beam ends. For beams on stiff 

soil (L ≥ 20), Figs. 2.18d-f clearly show that buckling modes are characterized 

by very short wavelengths and the number of beam FEs is reduced as previously 
done for the case of the beam with pinned ends. However, differently than that 
case, the second mode shape starts to have short wavelengths together with the 
first mode shape and, in fact, the first and second critical loads converge to Pcr,∞ 

for the same value of L (Figs. 2.16a and b). 

For the long beam case and increasing L, the first and second mode shapes 

(Figs. 2.19a-e) are quite similar to the corresponding ones obtained for the 

Euler-Bernoulli beam. Very short wavelengths appear with very stiff soil (L = 

50, Fig. 2.19f), where nel is reduced to 32. 
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Fig. 2.19 – First (continuous line) and second (dashed line) buckling modes for a Timoshenko 

beam with free ends for increasing L. 
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2.5.2.2 Two-dimensional FE model results 

The first four critical loads 2D
,cr mP , with m = 1, 2, 3, 4, obtained with the two-

dimensional finite element model are denoted by dot symbols and compared 
with presented results in Figs. 2.17a and b for L/h = 5 and 15, respectively. Fig. 

2.20b shows that the first two critical loads 2D
1,crP , 2D

2,crP  are close to those obtained 

with the present model up to L = 50; whereas for the short beam (Fig. 2.20a), 

the two finite element models have close results up to L = 10. As for the third 

and fourth buckling loads, the values 2D
3,crP , 2D

4,crP  are lower than those of the 

model for the short beam case (Fig. 2.20a). For increasing values of L, the 

critical loads 2D
,cr mP , with m = 1, 2, 3, 4, depicted in Figs. 2.20a and b, converge to 

the same limit values reported in Figs. 2.9a and b, respectively. 
 

L/h = 5 

(a)  
0 5 10 15 20 25

L

0

5

10

15

P
cr
 /P

cr
,E

12.7

 
L/h = 15 

(b) 
0 10 20 30 40 50

L

0

50

100

150

P
cr
 /P

cr
,E

114.0

 
Fig. 2.20 – Dimensionless critical loads Pcr/Pcr,E versus L for a Timoshenko beam with free 

ends having L/h = 5 (a) and 15 (b). Continuous lines for the presented model, dots for the 2D 
model. 
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Figs. 2.21a-f and 22a-f show the first two buckling modes of the two-

dimensional finite element model for different values of the parameter L, for 

L/h = 5 and 15, respectively. For beams stiffer than the soil (L = 5), the first 

critical mode depicted in Figs. 2.21a and 22a are sinusoidal and the second ones 
(Figs. 2.21b and 2.22b) represent rigid rotations. Then, these buckling modes 
agree with those reported in Figs. 2.18a and b and Figs. 2.19a and b. For long 

beam on stiff soil (L = 25, L/h = 15), Figs. 2.22e and f show the first two 

buckling modes that present displacements localized at the free ends, 
symmetrical and antisymmetrical, respectively. These buckling modes agree 

with those reported in Fig. 2.19e. For short beam on stiff soil (L = 25, L/h = 5), 

Figs. 2.21e and f clearly show that buckling is localized in the upper part of the 
beam. It is evident that a beam model fails to represent this kind of surface 
buckling; hence, the corresponding buckling modes reported in Fig. 2.18e 
present an irregular behaviour depending on the mesh size. The same behaviour 

is obtained for long beams and L > 50. This justifies the differences between 

the buckling loads evaluated with the two-dimensional model and the beam 

model for large values of the parameter L. 
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L/h = 5 

(a)   (b) 

(c)    (d) 

(e)    (f) 
Fig. 2.21 – First (a, c, e) and second (b, d, f) buckling modes for a short two-dimensional 

foundation beam (L/h = 5) with free ends having L = 5 (a, b) ,L = 10 (c, d) and L = 25 (e, 

f). 
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(e)   (f) 
Fig. 2.22 – First (a, c, e) and second (b, d, f) buckling modes for a short two-dimensional 

foundation beam (L/h = 5) with free ends having L = 5 (a, b) ,L = 10 (c, d) and L = 25 (e, 

f). 

 



 109

2.5.2.3 Buckling of a beam with free ends on Winkler half-space 

In this section, critical loads of a beam with free ends on Winkler half-space are 
determined. Figs. 2.23a and b show dimensionless critical loads Pcr/Pcr,E as a 
function of γ for L/h equal to 5 and 15, respectively. Similarly to the case of the 
beam on half-plane, first and second critical loads are smaller than other results 
and converge to Pcr,∞ for γ greater than 500 and 1000 for L/h equal to 5 and 15, 
respectively. 
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Fig. 2.23 – Dimensionless critical loads Pcr/Pcr,E (continuous lines) and Pcr,W/Pcr,E (circles) as 
function of γ for a beam with pinned ends on Winkler half space. 

 
Figs. 2.32a-d show the first and second mode shapes for beams on soft and stiff 
half-space for both slenderness cases. For both slenderness cases and γ equal to 
15, the first mode shape is sinusoidal (continuous lines, Figs. 2.32a and c), 
whereas the second mode shape is asymmetric (dashed lines in Figs. 2.32a and 
c). Then, mode shapes for beams on soft Winkler half-space turn out to be quite 
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similar to the ones obtained for the case of the beam on half-plane (Figs. 2.18a 
and 19a). For γ equal to 400, the first and second mode shapes for the short 
beam case are characterized by very short wavelengths and 32 FEs are adopted 
to represent displacements (Fig. 2.32b). In this case, the first and second mode 
shapes are quite similar to the corresponding ones obtained for the beam on half-
plane (Fig. 2.18d) and are characterized by large deformations close to beam 
ends, however few half waves are present with respect to the beam on half-
plane. Considering the long beam case (Fig. 2.32d), the first and second mode 
shapes are characterized by large deflections at beam ends, similarly to the case 
of the beam on elastic half-plane (Fig. 2.19e). 
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Fig. 2.24 – First (continuous line) and second (dashed line) buckling modes for a Timoshenko 
beam with free ends. 
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2.5.2.4 First critical load determined with different beam models 

Finally, Fig. 2.25 shows the first critical load for a beam with free ends 

corresponding to the Euler-Bernoulli beam model ( = 0), the Timoshenko beam 

model ( = 0.0107 and 0.096) and the two-dimensional finite element models. 

The values determined by Timoshenko model and two-dimensional finite 
elements appear to be quite close, whereas the Euler-Bernoulli model gives 

suitable solutions for low values of L, e.g. relative errors lower than 1% occur 

if L < 0.5 L/h, whereas errors lower than 2% occur if L < 0.7 L/h. To explain 

this behaviour, it is worth noting that the critical wavelength cr,R of the 

sinusoidal waveform assumed in Reissner (1937) for the Euler-Bernoulli beam 
of infinite length is equal to (Volynskii et al. 2000):  


 97.942

3
2

3
3 0

Rcr, 
E

E
h , (2.23) 

where direct proportionality between the wavelength cr,R and the thickness h of 

the beam is predicted. Usually, Euler-Bernoulli beam model holds for 

sufficiently high values of the critical half-wavelength, e.g. cr,R/2 > 10 h; thus, 

Eq. 2.23 yields h < 1/2, or equivalently L < 0.5 L/h. For beam with 

L > 0.5 L/h, the transverse shear deformation of the beam may become 

important and needs to be considered. 
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Fig. 2.25 – First dimensionless critical load versus L for a beam with free ends and Euler-

Bernoulli beam model (continuous line), Timoshenko beam models (dashed lines), two-
dimensional finite element models (triangle and dot symbols for L/h = 5 and 15, respectively). 
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2.6 Coupling of 2D plane elements and boundary integral 
equations 

 
In the previous paragraphs, the present model is compared to a traditional 2D FE 
model, where both beam and half-space are modelled by plane elements. The 
comparison of buckling analysis results obtained with the present model with 
the 2D model showed that the present model is not able to describe correctly the 
behaviour of a thick beam on a stiff half-space. For large values of αL, modal 
shapes obtained with the 2D model are characterized by displacements localised 
at beam surface and the corresponding critical loads are lower than the ones 
obtained with the present model, differences are evident for thick beams on stiff 
soil (i.e. for L/h = 5, Figs. 2.10e, f and Figs. 2.21e, f). 
Therefore, the coupling of traditional plane elements with the boundary integral 
equation of the half-space in plane state can reduce the differences obtained by 
the one dimensional beam model with respect to the traditional 2D model. In the 
following, the basic relationships of a rectangular domain in plane state 
representing a thick layer are briefly described; then, traditional quadrilateral 
isoparametric elements in plane state are adopted and coupled with the boundary 
integral equation of the half-plane (Eq. 5). 
 

2.6.1 Basic relationships 

 
Fig. 2.26 – Layer in plane stress or plane strain state on elastic half plane subject to 

compressive pressure. 

 
A layer in plane strain or plane stress state (Fig. 2.26), with length L, height h 
and width b, resting on a semi-infinite linearly elastic half plane is considered. A 
principal Cartesian coordinate system (0; x, y) is defined, where x coincides with 
the boundary of the half plane and y is chosen in the downward transverse 
direction. A secondary Cartesian coordinate system (0’; x’, y) is chosen setting 
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axis x’ parallel to x and coincident with the centroidal axis of the layer, with 
domain defined as: 









2/2/

2/2/
:),(

hyh

LxL
yx  (2.24) 

Elastic parameters of layer and half space have been defined in previous 
paragraphs; Eb and Es indicate the Young moduli of layer and substrate, 

respectively; analogously, Poisson ratios of layer and substrate are denoted by b 

and s, respectively. Volume forces m(x,y) such as the self-weight of the layer 

may be applied on the layer domain Ω, whereas surface loads t (x,y) may be 
applied on layer boundary Γ. Moreover, the layer is loaded at the ends by 
horizontal compressive pressures p as shown in Fig. 2.26: 
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 (2.25) 

The interface between layer and soil is frictionless so that only a vertical soil 

reaction is acting along the contact surface: )()0,( xrxr   

 
Considering the plane stress problem, layer displacements are represented by 

( , ) [ ( , ) ( , )]Tq x y u x y v x y  in Ω(x,y) (Timoshenko and Goodier 1951). Strains are 

obtained by derivation of displacements: 
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and the stress field associated with the strains is given by: 
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where Gb = Eb / [2 (1 + νb)], Eps = Eb (1 − νb) / [(1 + νb) (1 − 2νb)] for a plane 
strain state and Eps = Eb / [2 (1 − νb)] for a plane stress state. 
The strain energy of the layer can be written as: 
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The potential energy of the layer is given by: 

 
 

 dtuhdmubU TT
bb    (2.29) 

The potential energy of the soil is given by Eq. 2.7, then the total potential 
energy of the 2D layer-substrate system is: 
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2.6.2 Discrete model 

A simple discretization of the layer can be created by subdividing the domain 
horizontally and vertically in nel,x and nel,y subdivisions, respectively, obtaining a 

mesh of yelxelel nnn ,,   quadrilateral elements having length li and height hi. 

For simplicity, a mesh of equal quadrilateral elements is considered (Fig. 2.27), 
in order to adopt isoparametric quadrilateral elements to represent layer 
behaviour. 
 

 
Fig. 2.27 – Layer subdivided into 4 × 8 = 32 equal quadrilateral elements. 

 

Each quadrilateral element is defined by four nodes in natural coordinates, 
which are interpolated as 
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where Ni are the Lagrange shape functions, which are also adopted for 
interpolating the displacement field in each element by the nodal displacements: 
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Then, the mesh is characterized by )1()1( ,,  yelxel nnn  nodes and 

considering horizontal and vertical displacements for each node, the finite 
element displacement vector q is defined by 2n degrees of freedom: 

1 1 2 2[ ... ]T
n nu v u v u vq  (2.33) 

In order to take into account the interaction with the half-plane, displacement 
vector can be partitioned as q = [q1; q2]

T, where q1 collects the displacements of 
the nodes lying on the contact surface between the layer and the half-space, 
whereas q2 collects the remaining nodal displacements. 
The displacement vector qe for each element is defined by 8 degrees of freedom: 

1 1 2 2 3 3 4 4[ ]e Tu v u v u v u vq  (2.34) 

The soil surface underlying the layer is be subdivided in portions having length 
equal to the width of quadrilateral beam elements and one constant soil reaction 
is assumed. Accordingly, soil reaction for the ith element can be approximated 

as r()= [()]T ri, where ri denotes the vector components of nodal half-plane 

reaction and  assembles constant shape functions.. 

Substituting Eq. 2.33 and the approximation of reactions in variational principal 
(Eq. 2.30) and assembling over all the elements, the total potential energy 
assumes the following expression: 

T 2D T 2D T T
1

1( , )
2 2b

bb b    q r q K q q F q Hr r Gr , (2.35) 

where 2D
bK  is the stiffness matrix of the layer, F2D is the vector of nodal forces 

(see appendix A3). Matrices H and G do not vary with respect to Euler 
Bernoulli or Timoshenko beam cases. 
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The stationarity conditions of the total potential energy written in discrete form 
are provided by the following system: 
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which can be easily solved following the procedures adopted for beams and 
frames on elastic half plane. 
 

2.6.3 Static analysis of a layer resting on an elastic half-plane 

The simple case of a beam with free ends on elastic half-plane loaded by a 
uniform pressure over the side of the two element close to midpoint (Fig. 2.28) 
is considered. With reference to the discrete model, the resultant force P is 
subdivided along the nodes close to midpoint. The displacements of the 2D 
mesh adopted for the layer are determined increasing the number of subdivisions 
along x axis nel,x and adopting nel,y = nel,x /4. In order to avoid local deformations 
along height at beam ends, vertical master slave-links are introduced by 

applying constraint equations 011,   iiii vvR  by means of a penalty 

function at the nodes of each layer section end. 

 
Fig. 2.28 – Beam on elastic half-space loaded by a concentrated force P at midpoint. 

 
Figs. 2.29a,b show the deformed meshes of the layer for nel,x = 64, L/h = 5 , and 

for L = 5 and 25 respectively. For the soft soil case (Fig. 2.29a), the 2D mesh is 

characterized by almost uniform vertical displacements along the height, 
whereas for the stiff soil case (Fig. 2.29b), displacements are very small close to 
the contact surface and are large at the upper edge of the mesh. For L/h = 15 
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(Figs. 2.30a,b), the displacements of the 2D mesh are characterized by almost 
uniform vertical displacements along the height. 
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L/h = 5, αL = 25 
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Fig. 2.29 – Displacements of the 2D mesh and half-plane pressures for a beam loaded by a 
concentrated force at midpoint. 
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L/h = 15, αL = 5 
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L/h = 15, αL = 25 
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Fig. 2.30 – Displacements of the 2D mesh and half-plane pressures for a beam loaded by a 
concentrated force at midpoint. 

 
Assuming as reference case the Timoshenko beam model, Figs. 2.31a,b show 
relative errors for vertical displacement v(0,0) evaluated at the centre of the 2D 
mesh for increasing nel,x and L/h equal to 5 and 15, respectively, for different 
values of αL. For the short beam case, the 2D model is close to Timoshenko 

beam model only for the soft soil case, see plot for L = 5; in particular, the 

error v(0) is close to 1% for nel,x = 128. For the long beam case, the 2D model 

is quite close to Timoshenko beam model for soft soil case and quite stiff soil 
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case, see plot for L = 5, 10 and 15, characterized by errors v(0) less than 1% 

for nel,x = 128, whereas for L = 25 error v(0) is close to 7%. 
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Fig. 2.31 – Relative errors for the vertical displacement at the centre of the 2D mesh with 
respect to the displacement at beam midpoint for the Timoshenko beam. 

 

2.6.4 Buckling analysis of 2D beams with free ends on half-plane 

In this section, a compressed layer with free ends modelled by a 2D mesh on 
elastic half plane is considered. Critical loads and mode shapes are determined 
increasing αL for L/h equal to 5 and 15. Results are compared with the 
corresponding ones obtained with the Timoshenko beam model and the classical 
2D FE model described in section 2.4, where second order effect in the half-
plane are taken into account. 
 
For the short layer case (L/h = 5), first and second critical loads of the present 
2D model (with 1664  elements) are smaller than the corresponding values of 
the 2D FE model but they converge to a constant value Pcr = 11.8 Pcr,E which is 
quite close to Pcr,∞. Convergence is achieved for larger values of αL (close to 50) 
with respect to the Timoshenko beam case and the 2D FE model. For the long 
beam case (L/h = 15), first and second critical loads of the present 2D model are 
smaller than the corresponding values for the 2D FE model but they converge to 
a constant value Pcr = 112.7 Pcr,E which is quite close to Pcr,∞. Convergence is 
achieved for larger values of αL (close to 100) with respect to the Timoshenko 
beam case and the 2D FE model. 
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It must be reminded that the traditional 2D model takes into account the 
geometric matrix of the 2D FEs of both layer and half-plane mesh, whereas the 
present 2D model considers the geometric matrix  
only for the mesh of the layer. Then, for both layer cases on soft half-plane (αL 
< 10), the stresses on the 2D half plane are small and the effect of the geometric 
matrix of the half-plane mesh in the traditional model is almost negligible, then, 
critical loads obtained with the present 2D model are very close to the 
corresponding values obtained with the traditional FEs. Increasing half-plane 
stiffness, the effect of the geometric matrix of the half plane mesh becomes 
important and the corresponding critical loads are smaller than the ones obtained 
with the present 2D model. 
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Fig. 2.32 – First four critical loads for a 2D layer on elastic half-plane (continuous lines) and 
for a 2D layer on traditional 2D half-plane (dots), with L/h = 5 (a) and 15 (b). 
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Considering the short layer case, for αL = 5 (Figs. 2.33a,b), first mode shape is 
sinusoidal and second mode shape represents a rigid body rotation, whereas for 
αL = 25 (Figs. 2.33c,d), first and second mode shapes are characterized by large 
deflections close to layer ends. Deformations located at the upper part of the 
layer are obtained with αL equal to 50 (Figs. 2.33e,f). 
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Fig. 2.33 – First (a-c-e) and second (b-d-f) mode shapes for a layer modelled by a 2D mesh on 

elastic half-plane with L/h = 5 and increasing αL. 
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Then, for the long layer case and αL = 5 (Figs. 2.34a,b), first mode shape is 
sinusoidal and second mode shape represents a rigid body rotation, whereas for 
αL = 25 (Figs. 2.34c,d), first and second mode shapes are characterized by large 
deflections close to layer ends. Deformations located at the upper part of the 
layer are obtained with αL equal to 50 and considering third and fourth mode 
shapes (Figs. 2.35a,b). 
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Fig. 2.34 – First (a-c) and second (b-d) mode shapes for a layer modelled by a 2D mesh on 
elastic half-plane with L/h = 15 and increasing αL. 
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L/h = 15, αL = 50 
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Fig. 2.35 – Third (a) and fourth (b) mode shapes for a layer modelled by a 2D mesh on elastic 
half-plane with L/h = 15, αL = 50. 

 
Then, the present model of a layer modelled by 2D FEs on elastic half plane turn 
out to be quite effective. However, the layer appears to be stiffer than the one 
modelled with the classical FE model due to the geometric stiffness matrix of 
the half plane. 
Then, buckling modes with short wavelengths and deflections located in the 
upper part of the beam are obtained with large values of αL. 
The present 2D model may be more useful for representing a 2D layer over an 
elastic half-plane, loaded by a plane frame modelled by one dimensional FEs, 
with the possibility to apply nonlinear properties to the material of the layer and 
to study the nonlinear behaviour of upper part of the support. 
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3 Analysis of slender beams and frames resting on 
elastic half-plane including material nonlinearity 

 

3.1 Introduction 

 
In computer-based nonlinear analysis of building frameworks, the inelastic 
behaviour of frames under vertical and seismic loads is often concentred at the 
ends of beams and columns. An early approach to model the inelastic behaviour 
of beam-column elements consists in the use of zero length plastic located at the 
member ends. Plastic hinges were taken into account into a beam-column 
element for the first time by Clough and Johnston (1967). The authors defined a 
‘parallel’ component element characterized by elastic-perfectly plastic and 
elastic sub-elements. The stiffness matrix of the member was defined by the sum 
of the stiffnesses of the components. Giberson (1967) defined the first ‘series 
model’, which consisted of a linear elastic element with one equivalent 
nonlinear rotational spring attached to each end. Then, the inelastic deformations 
of the member were lumped into the end springs and it was possible to select the 
appropriate moment-rotation relation for the end springs. Several lumped 
plasticity constitutive models have been proposed in the following years 
(Takeda et al. 1970; Otani 1974; Lai et al. 1984). The series model increase the 
number of elements and degrees of freedom needed for the discretization of a 
frame structure. Moreover, in usual push-over analyses, plastic hinges need to be 
added to the initial model whenever a section experiences inelastic 
deformations. 
Hasan et al. (2002) proposed a simple and efficient model for the push-over 
analysis of frames. The model was adapted from a procedure originally 
conceived for the elastic analysis of frame structures having linear elastic semi-
rigid moment connections (Monforton and Wu 1963). Moreover, second order 
effects due to axial loads were taken into account by Xu (1992). A potential 
plastic hinge section of a frame member was treated as a semi-rigid connection 
with predefined load-deformation characteristics; then, the stiffness matrix of 
the member was modified without adding further finite elements and degrees of 
freedom to the discrete model of the structure. Shakourzadeh et al. (1999) 
defined a procedure for taking into account the semi-rigid behaviour of 
connections of thin-walled space frames, which may be adapted to represent 
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potential plastic sections, taking into account membrane, shear, bending, torsion 
and warping effects. Then, a plastic hinge section can be introduced into the 
initial discrete model of a frame structure by simply modifying the matrices of 
the corresponding element. 
Plastic analysis of beams and plates on elastic support were performed in the 
past for determining collapse loads of floating beams and concrete pavements 
adopting the Winkler model to represent the half-space behaviour (Meyerhoff 
1962, Augusti 1970, Bhat 1986, Rao and Singh 1986). Collapse mechanisms 
were characterized by three plastic hinges for the case of a beam loaded by a 
concentrated force at midpoint. Recently, the same problem has been studied by 
Belenkiy (2007). 
In the following, plastic analysis of beams on elastic half-plane are performed. 
For this purpose, two similar and efficient models able to study beams with 
semi-rigid connections are presented and extended to the present model of an 
Euler-Bernoulli beam on elastic half-plane. This procedure is also extended to 
the analysis of pipes on elastic half-plane, in order to perform incremental 
analyses and evaluate the stiffness degradation of the structure. Several 
examples of beams loaded by concentrated forces and pipes subject to 
distributed loads are dealt with. For simplicity, a rigid-perfectly plastic curve is 
adopted to describe the moment-rotation relation for the plastic hinges. 
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3.2 Semi-rigid analysis for a beam-column element 

 
Analysis and design of frames in practice is generally based on simplified 
assumptions related to beam-column connection behaviour. The ‘fully rigid’ 
model and the ‘ideally pinned’ model represent two idealized models adopted 
frequently for describing the behaviour of beam-column connections. This 
aspect is typically considered in the design of steel frames, where beam-to-
column connections need particular attention. However, semi-rigid properties of 
reinforced concrete beam-column joints may also be considered (Filippou et al. 
1983; Amanat and Enam 1999, Basaga et al. 2012). 
The fully rigid model is characterized by rotation continuity between the column 
and the beam, together with the full transfer of bending moments. On the other 
hand, the ideally pinned model is not characterized by rotation continuity 
between beam and column and, consequently, no bending moment is transmitted 
to the column by the beam. These idealized models allow designers to work with 
simplified structural analyses; however, they may not represent the actual 
behaviour of the connections. Many experimental investigations demonstrated 
that rigid connections may be characterized by a small rotational flexibility, 
whereas pinned connections may have a small rotational stiffness. Then, beam-
column connections commonly used in steel buildings exhibit a semi-rigid 
behaviour characterized by a moment-rotation relationship depending on 
connection type. For example a single-web angle connection has behaviour quite 
close to an idealized pinned connection, whereas a connection with a welded 
flange plate with web-angle has behaviour quite close to a fully rigid connection 
(Chen and Lui 2005). 
 

3.2.1 Monforton-Wu-Xu model for a beam with semi-rigid ends 

In many studies concerning semi-rigid frame analysis (Monforton and Wu 
1963), the moment-rotation relation at each end of a planar beam-column 
element may be modelled as a linear spring, introducing the non-dimensional 
‘rigidity factor’ ri or ‘fixity factor’ (Chen and Lui 2005): 

)/3(1

1

LRD
r

ibi

i
i 





 , (3.1) 
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where Ri is the rotational stiffness of the generic ith connection, Db and L are 
beam stiffness and length, respectively. 

L

@


 
 

Fig. 3.1 – Semi-rigid moment-connection. 

 
The rigidity factor defines the rotational stiffness of a generic connection 
relative to the stiffness of the attached member. Considering Fig. 3.1, the ri 
represents the ratio between the beam end-rotation φi and the total rotation θi of 
the beam and the connection. The rigidity factor is defined in the range between 
1 and 0 as the connection stiffness varies between R = ∞ and R = 0, respectively. 
The case R = ∞ corresponds to a perfectly rigid connection, whereas R = 0 
represents a perfectly ‘pinned’ connection. 
Considering an Euler-Bernoulli beam with semi-rigid moment connections at 

each end, the corresponding elastic stiffness matrix e
bK  is given by the product 

of the standard stiffness matrix e
bK  and a correction matrix Cb which depends on 

the rigidity factors ri of the two end connections (Monforton and Wu 1963): 

b
e
b

e
b CKK   (3.2) 

External loads such as distributed loads are modified similarly to the stiffness 

matrix ( bee CFF  ). Moreover, Xu (1992) applied the rigidity-factor concept to 

second-order analysis of semi-rigid frames. In this case, the standard geometric 

stiffness matrix e
gK  is modified by a correction matrix Cg depending on the 

rigidity factors ri of the two end connections: 

g
e
g

e
g CKK  . (3.3) 

Correction matrices Cb and Cg are reported in appendix A4. 
Considering a generic frame structure modelled by traditional Euler-Bernoulli 
beam elements, semi-rigid connections are located at the intersections between 
beams and columns and along beam elements. Each connection is characterized 



 129

by a nonlinear moment-rotation relation, which describes the variation of the 
rotational stiffness Ri under increasing moment. Then, stiffness matrices 
corresponding to beam elements having one or two semi-rigid ends are modified 
by Eqs. 3.2 and 3.3. The behaviour of the frame under increasing loads or 
displacements can be finally determined by upgrading the rotational stiffness of 
each connection and the stiffness matrices at each increment of the analysis. 
 

3.2.2 Shakourzadeh model for a beam with semi-rigid ends 

Shakourzadeh, Guo and Batoz (1999) proposed an efficient model able to 
introduce the effect of semi-rigid connections in linear and nonlinear analysis of 
three-dimensional frames. The model was applied to beam FEs having seven 
degrees of freedom per node and it was characterized by a rigidity parameter for 
each degree of freedom, in order to represent the rigidity of the end connection 
for membrane, shear, bending, torsion and warping effects. 
In the following, the model proposed by Shakourzedeh is applied to a beam FE 
having three degrees of freedom at each node and only flexural rigidity 
parameters of the end connections are considered. Then, only beam end 
rotations need to be modified in order to take into account of the semi-rigid ends 
(Fig. 3.2b). 
 

(a)    (b) 
 

Fig. 3.2 – Beam finite element having three degrees of freedom per end (a). Equivalent beam 
finite element including semi-rigid moment connections (b). 

 
The equilibrium of a generic beam element (Fig. 3.2a) can be represented by: 

ee
e
be FqKn  , (3.4) 

where qe = {u1, v1, φ1, u2, v2, φ2} is the vector of nodal displacements of generic 
element, ne = {N1, V1, M1, N2, V2, M2} is the vector of nodal forces applied on 

the element, e
bK  is the elastic stiffness matrix and Fe is the equivalent load 

vector. The equilibrium of the equivalent element which includes semi-rigid 
moment connections (Fig. 3.2b) is given by: 
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ee
e
be FqKn  , (3.5) 

where e
bK  is the modified stiffness matrix of the element, eq = {u1, v1, 1 , u2, v2, 

2 } is the vector of equivalent nodal displacements and eF  is the modified 

equivalent load vector. The equivalent nodal displacements can be subdivided as 
follows: 

jee qqq  , (3.6) 

where qj = {0, 0, 1 , 0, 0, 2 } is the vector of end-connection rotations. 

Considering a linear behaviour for the connection, rotations and nodal forces are 
defined by 

},0,0,,0,0{diag 21 RRj K , (3.7) 

where R1 and R2 represent the rotational stiffness of the end connections. 
However, Kj matrix elements outside the main diagonal may be introduced in 
order to take into account shear, torsion and warping coupled effects. 
Substituting Eq. 3.6 in Eq. 3.4 and considering Eq. 3.7, the modified stiffness 
matrix and the equivalent load vector are defined by: 

e
b

e
b KCK  ,    ee FCF   (3.8a, b) 

with 

11 )()(   j
e
b

e
bjj KKIKKKC  (3.9) 

It must be noted that C turn out to be obviously different than the correction 
matrix Ce matrix defined by Monforton and Wu (1963), but the corresponding 

modified stiffness matrices e
bK  turn out to be coincident. The model proposed 

by Shakourzadeh may be also applied to nonlinear geometric analyses, adopting 
the correction matrix of the static case: 

e
g

e
g KCK   (3.10) 

In this case, the resulting modified geometric matrix turns out to be quite 
different with respect the one obtained by Monforton and Wu (Eq. 3.3). 

However, solving a typical stability problem det[ gb KK  ] = 0, the resulting 

critical loads show negligible differences adopting the models described. For 
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example, a portal frame with compressed columns and with semi-rigid beam-
column connections is considered (Fig. 3.3). Column height is equal to one half 
of top beam length, whereas beam and column elastic stiffness are equal. Beam-
column connections are characterized by a rigidity factor r = 0.5. 

P

Lp

Lb

P

@ @

 
Fig. 3.3 – Portal frame with compressed columns and semi-rigid beam-column connections. 

 
The frame is discretized by subdividing beam and columns with the same 
number nel of equal FEs. In order to evaluate the influence of the modified 
geometric matrix, semi-rigid connections are placed at the end of each column. 
The first four critical loads are determined for increasing nel. The results 
determined adopting Monforton-Wu-Xu semi-rigid model with nel = 256 are 

taken as reference REF
crP . Figs. 3.4a, b shows relative errors 

Pcr = ( FEM
crP  REF

crP )/ REF
crP as a function of nel. 

Critical loads determined adopting the semi-rigid connection model defined by 
Shakourzadeh (Fig. 3.4a) converge to reference results. First and second critical 

loads converge with a ratio close to 2
eln  and errors are close to 52 10  for nel = 

64. Adopting the semi-rigid connection model defined by Monforton, Wu and 
Xu, however, the first critical load do not converge to reference result but errors 

are less than 52 10 . Second, third and fourth critical loads converge to 

reference results with a ratio close to 4
eln . 

Hence, critical loads show negligible differences adopting the models described, 
then both models may be adopted for studying frame structures having semi-
rigid connections; however the model proposed by Shakourzadeh is able to take 
into account further end connection effects (shear, torsion and warping effects) 
by simply adding the corresponding stiffness into Kj. The model proposed by 
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Shakourzadeh is not characterized by a ‘rigidity factor’, but it directly makes use 
of the connection stiffness Ri ; however, Eq. 3.1 clearly shows the relation 
between Shakourzadeh and Monforton-Wu-Xu models, then, both models may 
be extended to nonlinear elastic analyses. 
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Fig. 3.4 – Relative errors Pcr for the first four buckling loads as a function of nel for a portal 

having semi-rigid beam-column connections. Shakourzadeh model (a), Monforton-Wu-Xu 
model (b) 
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3.3 Plasticity model for a beam-column element 

 
The plastic hinge theory is a straightforward way to establish the incremental 
stiffness of beam elements, adopting the following assumptions: 
- the plastic deformation is concentrated on one or both ends of the beam 
element; 
- plastic hinge forms at a section once the moment applied at the section equals 
the plastic moment of the element. 
The first assumption is often defined as the ‘concentrated plasticity assumption’, 
which is commonly accepted in the elasto-plastic analysis of frame structures, 

whereas the second assumption is based on an ideal elasto-plastic M  

relationship (Fig 5). 





M u

 
Fig. 3.5 – Ideal moment-rotation curve of the beam element. 

 
A nonlinear elastic analysis such as a pushover analysis is able to evaluate the 
stiffness degradation of a frame structure if the elastic limit is reached and 
exceeded. The degradation of the flexural stiffness of a frame member cross-
section starts when the material fibres farthest from the neutral axis of the cross-
section experience initial yielding. The yielding moment My characterizes the 
beginning of the stiffness degradation. Then, increasing bending moment, 
plasticity spreads through section depth and along the member length to form a 
fully-developed plastic hinge, at which point the flexural stiffness of the beam 
cross-section is exhausted. The ultimate moment Mu and the ultimate rotation φu 
characterize the plastic hinge completely developed. The stiffness degradation is 
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described by a moment-rotation ( M ) curve which depends on cross-section 

shape and material. 
 





Mu

My

upy

 
Fig. 3.6 – Post-elastic moment-rotation relation adopted by Hasan et al. (2002). 

 
Following the work of Hasan, Xu and Grierson (2002), Fig. 3.6 shows a post-
elastic moment-rotation relationship, which represents the behaviour of most 
section shapes used in steel building frameworks. It is clear that the model of 
post-elastic behaviour of a plastic hinge section is similar to the model of a 
semi-rigid connection. Then, the rotational stiffness Ri of a semi-rigid 
connection can be replaced by the flexural stiffness of the section: 

Rp,i = dM / dφ (3.11) 

For moment levels less than My, the variation of post-elastic rotation dφ = 0 and 
the corresponding flexural stiffness Rp,i = ∞. When the moment reaches Mu, the 
variation of post-elastic moment dM = 0 and the corresponding flexural stiffness 

Rp,i = 0. For uy MMM  , the flexural stiffness of the member section is 

determined by differentiating the equation adopted to describe the curve M  

with respect to φ. 
Introducing Rp,i in Eq. 3.1, the degradation of the flexural stiffness of a member 
section experiencing a post-elastic behaviour can be characterized by the 
‘plasticity factor’: 

)/3(1

1

, LRD
p

ipb
i 
  (3.12) 

Which varies between 1 and 0 as the flexural stiffness varies between an ideal 
elastic value (Rp,i = ∞) and a fully plastic value (Rp,i = 0). 
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In the following examples, for simplicity, a rigid-perfectly plastic curve (Fig. 
3.7) is adopted to describe the moment-rotation relation for the potential plastic 
hinges. Then, flexural stiffness of the member section assumes the value Rp,i = ∞ 
when the section is in the elastic range and it changes to Rp,i = 0 when the 
corresponding bending moment reaches Mu. 
 





Mu

 
Fig. 3.7 – Post-elastic rigid-perfectly plastic moment-rotation relationship. 

 
The application of Monforton-Wu-Xu or Shakourzadeh model to pushover 
analysis of frames requires to define a-priori the position of potential plastic 
hinges into the discrete model of the structure. For example, plastic hinges may 
be placed at beam-column connections and along beam length. In this case, the 
total number of FEs and degrees of freedom do not vary with respect to a simple 
elastic analysis, in particular it is not necessary to modify the discrete model 
during pushover analysis. It is clear that the results of the analysis turn out to 
depend strictly on the initial positions of the plastic hinges. However, at the end 
of the pushover analysis, it is obviously possible to verify if bending moments at 

each finite element end respect the plasticity condition iui MM , , then, further 

potential plastic hinges may be added to the initial discrete model in order to 
perform a more accurate pushover analysis. 
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3.4 Analysis of beams on elastic half-plane including material 
nonlinearity 

 
A beam on elastic half-plane may represent the behaviour of a thin film on an 
elastic substrate, a sandwich panel, or it may represent the foundation of a more 
complex plane structure such as a pipe. In the following, starting from the 
discrete model of an Euler-Bernoulli beam on elastic half-plane (§ 1.3), material 
nonlinearity of beam cross-section is taken into account applying the simple and 
effective model proposed by Shakourzadeh et al. (1999) for the pushover 
analysis of frames. In this case, plastic hinges are located at several points along 
beam length (Fig. 3.8). A plastic hinge may be placed at foundation beam ends, 
in order to take into account the degradation of cross-section stiffness due to the 
increasing bending moment at the column-foundation intersection. Furthermore, 
one or more plastic hinges may be placed along the beam length, under 
concentrated or distributed loads, in order to take into account the degradation of 
stiffness due to increasing bending moments along beam length. 
 

3.4.1 Beam with plastic hinges on elastic half-plane 

 
Fig. 3.8 – Beam on elastic half-plane subdivided into equal FEs, with plastic hinges at its ends 

and along its length. 

 
Considering an Euler-Bernoulli beam on elastic half-plane, subdivided into 
equal FEs, a generic element e is characterized by the equilibrium equation: 

eeee
e
be rHFqKn  , (3.13) 

where erH represents the equivalent load vector generated by the half space 

reaction under the beam element. Considering an element with a plastic hinge at 
one or both ends (Fig. 3.8) and applying the procedure adopted by Shakourzadeh 
et al. (1999), Eq. 3.13 becomes 
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eeee
e
be rHFqKn  , (3.14) 

where ne = {N1, V1, M1, N2, V2, M2} is the vector of nodal forces applied on the 

element. Hence, the matrix ee HCH   is modified similarly to the stiffness 

matrix and the equivalent load vector (Eqs. 3.8a, b). 
 

3.4.2 Incremental analysis of beams on half-plane including material 
nonlinearity 

In the following, a beam with free ends on elastic half plane loaded by a 
concentrated force F at midpoint is considered. The beam has a length L = 10 m, 
cross-section height h = 0.5 m and it is characterized by a ultimate moment Mu = 
100 kNm, determined following Eurocode 2 material design rules for a 
reinforced concrete rectangular section (concrete C25/30 and steel B450C), 
having width equal to 1 m, reinforced with 10 bars with diameter 10 mm. 
The first potential plastic hinge is placed a-priori obviously at beam midpoint, 
where the largest bending moment along beam length is expected. Then, further 
plastic hinges are placed close to midpoint, where bending moment assumes 
large values after the first plastic hinge formation. Plastic hinge positions are 
defined by the following coordinate (Fig. 3.9): 

}4/,8/,0{ LLxpl  . (3.15) 

 
Fig. 3.9 – Beam with free ends on elastic half plane loaded at midpoint, having 5 potential 

plastic hinges along its length. 

 
The discrete model adopted for the beam is characterized by 32 FEs, then plastic 
hinge positions correspond to the 9th, 13th, 17th, 21st and 25th node. Analyses 
are performed evaluating the vertical displacement at midpoint d due to the 
increasing applied force F and displacement control method is adopted. 
Analyses are stopped when the second (and third, symmetric) plastic hinge is 
formed. It is worth noting that increasing beam displacements and consequently 
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increasing half-plane displacements, the hypothesis of linear half-plane may not 
be respected, then analyses may be performed up to the development of the 
second and fourth plastic hinges. 
In the following figures, load displacement curves dF   are presented for 
increasing αL values, which correspond to increasing half-plane stiffness. Small 
dashed lines represent linear static analyses, whereas continuous lines represent 
nonlinear incremental analyses. Moreover, beam displacement, soil reactions 
and bending moments are presented. For each case, the beam characterized by 
an elastic behaviour is represented by a dot on dF   curve and by large dashed 
lines in displacement, reaction and bending moment diagrams, whereas the first 
plastic hinge is represented by a triangle on dF   curve and by continuous lines 
in other diagrams. Finally a cross on dF   curve and short dashed lines in other 
diagrams represent the behaviour of the beam when the second plastic hinge is 
developed, except for the beam on very soft soil cases (i.e. for αL = 1 and 2), 
which are not characterized by the development of a second plastic hinge. 
Further values in dF   curves, except for beams on very soft soil, are 
characterized by the violation of the plasticity condition (M > Mu) in the nodes 
adjacent to the second and third plastic hinge. For αL = 1 and 2 (Figs. 3.10a-h), 
the 1st plastic hinge is obviously obtained at beam midpoint, however, 
increasing displacement at midpoint d, a very small slope of dF   curve is 
observed. Beam displacements in plastic range are obviously characterized by 
the loss of slope continuity at beam midpoint. Moreover, soil reactions and 
bending moments for the beam in plastic range remain quite coincident to the 
values reached when the first plastic hinge is formed. For αL = 3 (Figs. 3.11a-d), 
the 1st plastic hinge is obviously obtained at beam midpoint, in this case the 
slope of dF   curve after the first plastic hinge is larger than the previous 
cases; however, a large displacement at midpoint is necessary to obtain the 
second plastic hinge. The behaviour of the beam in plastic range is characterized 
by large soil reactions close to beam midpoint and negative bending moment far 
from beam midpoint. For αL = 5 (Figs. 3.11e-h), the 1st plastic hinge is obtained 
at beam midpoint and the second and third plastic hinges are obtained at 

4/Lx  . After the formation of the second and third plastic hinges, the slope 
of dF   curve does not change significantly. The behaviour of the beam in 
plastic range is characterized by large soil reactions close to beam midpoint and 
negative bending moment along beam length, except close to beam midpoint. 
For αL = 10 and 20 (Figs. 3.12e-h), the 1st plastic hinge is obtained at beam 
midpoint and the second and third plastic hinges are obtained at 8/Lx  . 
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Fig. 3.10 – Beam on elastic half plane loaded at midpoint including material nonlinearity. 
Load-deflection curve (a,e), vertical displacement (b, f), soil reactions (c, g) and bending 

moment (d, h). Beam in elastic state (dot, large dashed lines), first hinge (triangle, continuous 
lines), and beam in plastic state (short dashed lines). 
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Fig. 3.11 – Beam on elastic half plane loaded at midpoint including material nonlinearity. 
Load-deflection curve (a,e), vertical displacement (b, f), soil reactions (c, g) and bending 
moment (d, h). Beam in elastic state (dot, large dashed lines), first plastic hinge (triangle, 

continuous lines), and second plastic hinge (cross, short dashed lines). 
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Fig. 3.12 – Beam on elastic half plane loaded at midpoint including material nonlinearity. 
Load-deflection curve (a,e), vertical displacement (b, f), soil reactions (c, g) and bending 
moment (d, h). Beam in elastic state (dot, large dashed lines), first plastic hinge (triangle, 

continuous lines), and second plastic hinge (cross, short dashed lines).
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Observing the load-deflection curves of the six examples, it is clear that the 
slope after the first hinge increases for increasing αL, moreover, the 
concentrated force F necessary to obtain the first hinge increases for increasing 
αL. Beam displacement at midpoint corresponding to the first hinge is close to 
0.01m for αL up to 5, whereas it is smaller for the beam on quite stiff and stiff 
soil (close to 0.005 m for αL = 10 and 0.002 m for αL =20). 
 
Since further plastic hinges are obtained close to second and third plastic hinge 
positions, analyses turn out to depend strictly on beam discretization. In the 
following, the case of a beam subdivided into 32 equal FEs, with potential 
plastic hinges at each beam end is considered and an incremental analysis is 
performed up to the development of further plastic hinges. Considering the case 
with αL = 10, already showed in Fig. 3.12a, Fig. 3.13 shows load-displacement 
curve of linear static analysis with large dashed lines, whereas the nonlinear 
incremental analysis with three potential plastic hinges is represented by a 
continuous line. The nonlinear incremental analysis which takes into account 
potential plastic hinges along the entire beam length is represented by a small 
dashed line. In this case, the second and third plastic hinges are obtained at 

Lx 16/3 , similarly to the position set a-priori in the previous examples, then 
the corresponding point in the load-displacement curve (cross in Fig. 3.13) do 
not vary significantly. Then, further plastic hinges are obtained at beam FE ends 
close to beam midpoint and the vertical displacement turn out to be larger than 
the one obtained with three plastic hinges. 
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Fig. 3.13 – Beam on elastic half plane loaded at midpoint including material nonlinearity. 
Load-deflection curve for linear elastic analysis (large dashed line), nonlinear incremental 

analysis with 3 potential plastic hinges (continuous line), nonlinear incremental analysis with 
potential plastic hinges located at each beam end (small dashed line). 
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Analysis performed with a finite number of potential plastic hinge represents an 
upper limit for the analysis that allows potential plastic hinges over the entire 
beam length. 
Considering potential plastic hinges along the entire beam length, it is found that 
further plastic hinges after the second and the third one are obtained close to 
beam midpoint, as it is shown in Fig 14, where continuous line represents the 
bending moment corresponding to the development of the second and third 
plastic hinge ( Lx 16/3 ). The dashed line and the line with dots represent the 
bending moments corresponding to further hinges close to beam midpoint 
( 8/Lx   and 16/Lx  , respectively). Then, the plastic hinge closest to 
beam midpoint moves from Lx 16/3  to 16/Lx  . This behaviour is quite 
similar to the one of beams and plates on Winkler-type half-space, which were 
analyzed for studying the plastic behaviour of floating ice sheets or concrete 
pavements subject to concentrated loads (Meyerof 1962, Kerr 1986, Rao and 
Singh 1986). In this case, the position of the maximum negative bending 
moment tends to move towards the load (Augusti 1970). 
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Fig. 3.14 – Bending moments for a beam with potential plastic hinges along its entire length. 
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3.4.3 Incremental analysis of beams on half-plane including material and 
geometric nonlinearity 

A beam with free ends on elastic half plane is considered. The beam has the 
same geometric and material characteristics of the one described in the previous 
paragraph. However in this case, the beam is characterized by a potential plastic 
hinge at midpoint (Fig. 3.15), having a ultimate bending moment Mu = 100 kN 
and it is subject to an increasing axial load P. In this case, for simplicity, the 
ultimate bending moment does not depend on axial stress level P. 
 

 
Fig. 3.15 – Compressed beam with free ends with a potential plastic hinge at midpoint. 

 
In the following, incremental analyses of the beam including second order 
effects due to axial load are carried out for increasing αL values. Vertical 
displacement at midpoint is taken as reference parameter to evaluate the 

behaviour of the beam and determine the curve )0(vP  . Each analysis is 

stopped when further plastic hinges may be obtained if the plasticity condition 

uiM M  is not respected at beam FE ends. Figs. 3.16a-d show dimensionless 

axial load P/Pcr,E for increasing v(0) for αL equal to 5, 10, 15 and 20. Each figure 
is characterized by a continuous line representing the behaviour of the beam 
without the potential plastic hinge. It is clear that in this case, axial load P 
converge to the first critical load corresponding to a symmetric mode shape of a 
beam with free ends (§ 1.5.5). In Figs. 3.16a-d, continuous lines with dots 
represent the behaviour of the beam with the potential plastic hinge at midpoint. 

Before reaching uMM  at midpoint, )0(vP   curve is coincident with the 

curve for the beam without potential plastic hinge. When uMM  , each curve 

moves to the one of a beam with a weak section at midpoint and axial load P 
converge to the first critical load of a beam on elastic half-plane with a 

weakened section at midpoint (§ 1.5.6) if the plasticity condition uMM   is 

respected along beam length Considering the cases of a beam on soft soil (Figs. 
3.16a and b), analyses are stopped before converging to the first critical load of a 
beam with a weak section at midpoint. Considering the cases of a beam on stiff 
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half-plane (Figs. 3.16 c and d), further plastic hinges are not obtained along 
beam length and it can be found easily that axial loads converge to values quite 
close to 0.069(αL)2. 
 

(a) 

L

0 0.25v(0) [m]
0.0

0.5

1.0

1.5

2.0

2.5

P
/P

cr
,E

1.98

0.98

     
0

2

4

6

8

10

P
/P

cr
,E

L

0 0.08v(0) [m]

8.00

6.92

 (b) 
 

(c) 

L

0 0.04v(0) [m]
0.0

4.0

8.0

12.0

16.0

20.0

P
/P

cr
,E

17.9

14.9

     
0

10

20

30

40

P
/P

cr
,E

L

0x100 10-3v(0) [m]

31.1

27.1

 (d) 
 

Fig. 3.16 – Axial load for increasing vertical displacement at mid point for a beam with free 
ends (continuous lines) and a beam with free ends and a potential plastic hinge at midpoint 

(lines with dots), for αL = 5 (a), 10 (b), 15 (c), 20 (d). 
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3.5 Incremental analysis of frames on half-plane including 
material nonlinearity 

 
In paragraph § 1.7, buckling and incremental analyses of pipes including second 
order effects were performed and the present model turned out to be simple and 
effective, especially with respect to analyses done adopting a traditional FE 
model. 
In this paragraph, a pipe on elastic half-plane is studied taking into account 
material nonlinearity by placing potential plastic hinges where large bending 
moment values are expected. A reinforced-concrete structure is considered and 
each potential plastic hinge section has an ultimate moment Mu depending on 
axial load N. 
 

3.5.1 Description and design of the structure 

The analysed structure consists of a pipe or concrete box-culvert 22.10 m long, 
built to grant the free flow of a stream under a railway line (FIB 1999). Pipe 
width is equal to 7.7 m and its height is equal to 5.8 m as shown in Fig. 3.17, 
where the cross-section height of each pipe element is highlighted. The top 
beam is covered by a bed of soil having height equal to 2.5 m and ballast with a 
height equal to 0.8 m. Lateral slabs are obviously subject to the lateral earth 
pressure. Then, a service load due to a train acts on the upper beam. 
 

  
Fig. 3.17 – Cross-section of the pipe studied. 
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The following material properties are considered for the structure (Eurocode 2): 
 
- Concrete grade 30      fck = 30.0  MPa 
 compressive design strength    fcd = 20.0  MPa 
 compressive resistance for cracked zones  fcd1 = 15.0  MPa 
 compressive resistance for uncracked zones  fcd2 = 10.6  MPa 
 mean value of tensile strength    fctm = 2.9  MPa 
 modulus of elasticity     Ecm = 29.0 GPa 
 
- Reinforcing steel, grade 500     fyk = 500 MPa 
 design strength      fyd = 435 MPa 
 modulus of elasticity     Est = 200 GPa 
 
Authors (FIB 1999) defined soil parameters in order to adopt a Winkler-type 
model, assuming a vertical modulus of subgrade reaction c = 20 N/cm3. 
Adopting Biot (1937) relation between the modulus c and the elastic properties 
of the corresponding half-plane: 

1/3 1/34 4 4 4

4/3

0.710
0.282

2
S S

b b

E b E b
c

D D

   
    

   
. (3.16) 

The soil under the structure turns out to have the parameters of a soft clay 
(Bowles 1997): 

modulus of elasticity     ES = 16  MPa 
 unit weight       γS = 19 kN/m3 
 
The real loads acting on the pipe are defined as follows, assuming a transverse 
strip having width equal to 1 m: 
 
- self-weight, considered adopting a unit weight value γcls = 25 kN/m3; 
- gravity load on the upper beam due to soil and ballast: 

 kN/m5.470.15.219 soilq  

 kN/m4.140.18.018 ballastq  

 
- train load: 

74.5 kN/mtrainq   
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- lateral soil pressure at rest (adopting a k0 coefficient equal to 0.5), the top and 
bottom values of the trapezoidal distributed load are: 

 
kN/m65.9395.30)0.16.619(5.0

kN/m95.30)4.145.47(5.0





bottom

top

q

q
 

 
- lateral earth pressure due to  a uniform surcharge of 40 kN/m2 on the left side 
of the earth adjacent to the pipe: 

 0.5 40 1 20 kN/mearthp     . 

 
The following figure resumes the loads applied to the structure. 

 
Fig. 3.18 – Applied loads on structure (self-weight is not represented for simplicity). 

 
Structural elements have been designed in FIP (1999) adopting Eurocode 2 
design rules. The following combination of actions has been used: 

{ }G Qd k kS S G Q    , (3.17) 

where GK represents permanent loads (self-weight, soil and ballast weight, 
lateral earth pressure at rest), QK represents variable loads (trail load, lateral 
earth pressure grom trail load) and γG = 1.35, γQ = 1.5. 
Tab. 3.1 resumes axial forces and bending moments at several cross-section of 
the pipe (beam-column nodes and beam midpoints). Moreover, minimum steel 
reinforcement is determined for each section, adopting the following simplified 
expressions and without consideration for the compression reinforcement: 

As = MSd / (0.9 d fyd)   for beams (neglecting axial forces); (3.18a) 

As = [MSd + NSd (d−h/2)] / (0.9 d fyd) −NSd / fyd   for columns (3.18b) 
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Tab. 3.2 shows the actual reinforcements adopted by the designer. As,eff and A's,eff 
represent designed steel reinforcements. Each section is characterized by a 
nominal concrete cover value equal to 35 mm. 
 

Element Section MSd 

[kNm]
NSd 

[kN] 
As 

[cm2] 

Foundation left corner 930 -368 26.4 

 midspan -1199 -368 34.6 

 right corner 557 -368 15.4 

Upper beam left corner -719 -283 27.1 

 midspan 805 -283 30.5 

 right corner -911 -283 34.6 

Column (left) Top -719 -890 17.5 

 bottom -930 -1032 24.7 

 
Tab. 3.1 – Bending moments, axial forces and minimum steel reinforcements for beam and 

column cross-sections of the pipe. 

 

Element Section As 
[cm2]

As,eff 
[cm2] 

A's,eff 
[cm2] 

Foundation left corner 26.4 53.1 10∅26 38.0 10∅22 

 midspan 34.6 38.0 10∅14 15.4 10∅14 

 right corner 15.4 53.1 10∅26 38.0 10∅22 

Upper beam left corner 27.1 53.1 10∅26 38.0 10∅22 

 midspan 30.5 38.0 10∅22 15.4 10∅14 

 right corner 34.6 53.1 10∅22 38.0 10∅22 

Columns  24.7 38.0 10∅22 15.4 10∅14 

 
Tab. 3.2 – Steel reinforcements for beam and column cross-sections of the pipe. 
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3.5.2 Description of the discrete model 

Calculations are referred to a transverse strip having width equal to 1.0 m, then a 
plane frame is adopted for modelling the structure. The pipe is discretized by 
adopting traditional beam FEs and discretizing the soil pressure with a piecewise 
constant function. Beam FEs parameters are resumed in the following table. 
 

Member Area Inertia

 [m2] [m4] 

upper beam 0.7 0.0286

columns 0.7 0.0286

foundation 0.9 0.0608
Tab. 3.3 – Area and inertia of beam elements 

 
The soil-structure interaction parameter of the foundation of the pipe turn out to 
be: 

3

3
2

1.55
(1 )

S

S b

E b L
L

D
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 
 m. (3.19) 

Beam-column connections are modelled as infinitely rigid links having length 
equal to one half of the corresponding cross-section height; then, the remaining 
parts of columns and top beam are discretized by 4 equal beam FEs and 
foundation is discretized by 8 equal beam FEs. Fig. 3.19 shows the FE 
discretization of the pipe together with FEs number, moreover, dots represent 
potential plastic hinge positions. 

  
Fig. 3.19 – FE model for the pipe with beam FEs number. Dots represent potential plastic 

hinge positions. 
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Potential plastic hinges are placed at FE ends near beam-column connections, at 
foundation midpoint, at top beam and column midpoint, where maximum 
bending moment values are expected. Assuming a local Cartesian coordinate 
system for each element having x axis directed from left to right for foundation 
and top beam FEs and directed upward for column FEs, Tab 4 lists beam FE 
ends having a plastic hinge. Each plastic hinge is characterized by a diagram 

uMN  , which furnishes the ultimate bending moment of the section as a 

function of axial load. Diagrams are obviously determined taking into account 
the steel reinforcements adopted by the designer (Tab. 3.2). 
 

element node 1 node 2

#2 •  

#5  • 

#6 •  

#9  • 

#12 •  

#13  • 

#14 •  

#15  • 

#18 •  

#19  • 

#20 •  

#21  • 

#24 •  

#25  • 

#26 •  

#27  • 

 
Tab. 3.4 – Plastic hinge positions. 
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3.5.3 Numerical examples: pipe loaded by increasing service loads 

In the following, a incremental analyses of the pipe subject to various loads are 
carried out taking into account material nonlinearity. The behaviour of plastic 
hinge sections is monitored by N-M curves, which have to follow the 
corresponding N-Mu diagrams depending on section geometry and steel 
reinforcements adopted. Each incremental analysis is stopped when a local or 
global collapse mechanism is achieved; then, ultimate load is compared with an 
upper bound represented by the limit load which may be obtained by applying 
the collapse mechanism of the pipe to a portal with fixed column bases. 
 

3.5.3.1 Example 1: pipe loaded by a distributed force along the upper beam 

 
Fig. 3.20 – Pipe loaded by a distributed force at top beam. 

 
The first example is characterized by an increasing distributed load q on the top 
beam of the pipe. The vertical displacement at beam midpoint is taken as a 

reference parameter to determine the curve dq  . The formation of the first 

plastic hinge is localized at top beam midpoint (end 2 of element #13, end 1 of 
element #14). The formation of second and third plastic hinges is localized at 
column tops (end 2 of elements #21 and #27). Then, a local collapse mechanism 
for the top beam is obtained (Fig. 3.21). The ultimate load of the structure turns 
out to be equal to: 

kN/m5131, uq , (3.20) 
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which is quite close (96%) to the limit load that may be determined for a portal 
frame with clamped column bases with the same collapse mechanism: 

kN/m5361lim, q . (3.21) 

q

 
Fig. 3.21 – Collapse mechanism. 

 
The first plastic hinge formation is characterized by q = 386 kN/m and d = 
0.0094 m, whereas the second and third ones are formed with q = 513 kN/m and 
d = 0.0175 m (Fig. 3.22). Figs. 3.23a and b show the bending moment variation 
as function of axial force for the two potential plastic hinge sections activated 
during the incremental analysis. The N-M curve for the first plastic hinge section 
is characterized by a very small axial force before intersecting N-Mu diagram 
(Fig. 3.23a). The diagram of bending moment with respect to the axial force for 
the second and third plastic hinge sections is characterized by increasing 
compressive force and increasing bending moment. When the first plastic hinge 
is formed, the slope of N-M curve changes due to the stiffness reduction of the 
structure. 
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Fig. 3.22 – Load-deflection curve representing the incremental analysis of a pipe loaded by a 
distributed force at top beam. 
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Fig. 3.23 – N-M values assumed during the incremental analysis by potential plastic hinge 
sections with respect to N-Mu diagram. 

 

3.5.3.2 Example 2: pipe loaded by self-weight and service load along the 
upper beam 

 
Fig. 3.24 – Pipe loaded by self-weight along  and a distributed service load at top beam. 

 
The second example takes into account the self-weight of the pipe elements and 
considers an increasing distributed load q on the top beam. In this case, the 
effect of self-weight is to increase the axial force of column elements, then, 
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ultimate bending moments may be quite different with respect to the previous 
example. However, similarly to the previous example, a local collapse 
mechanism for the top beam is obtained (Fig. 3.21). The ultimate load of the 
structure turns out to be equal to: 

kN/m3592, uq , (3.22) 

which is smaller (68%) with respect to the limit load that may be determined for 
a portal frame with clamped column bases with the same collapse mechanism: 

kN/m5282lim, q . (3.23) 

In this case, for q = 0, displacement at top beam midpoint is nonzero due to the 
effect of the self-weight (Fig. 3.28), then the first plastic hinge formation is 
characterized by q = 234 kN/m and d = 0.012 m. The second and third plastic 
hinge are formed with q = 359 kN/m and d = 0.027 m. 
Figs. 3.30a and b show the bending moment variation as function of axial force 
for the two potential plastic hinge sections activated by the incremental analysis. 
N-M diagrams are quite similar to the ones obtained for the previous example; 
then, self-weight does not influence significantly the behaviour of the plastic 
hinges, but it reduces the ultimate load of the structure with respect to the 
previous example. 
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Fig. 3.25 – Load-deflection curve representing the incremental analysis of a pipe loaded by 
self-weight and by an increasing distributed force at top beam. 
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Fig. 3.26 – N-M values assumed during the incremental analysis by potential plastic hinge 
sections with respect to N-Mu diagram. 

 

3.5.3.3 Example 3: pipe loaded by dead loads and increasing service loads 

 
Fig. 3.27 – Pipe loaded by design loads along  and a distributed service load at top beam. 

 
This example takes into account the self-weight of pipe elements, the vertical 
distributed loads on the upper beam due to soil and ballast and the 
corresponding lateral earth pressures acting on both columns. Then, the example 
considers an increasing distributed load λ qtrain on the top beam and the 
corresponding increasing lateral load λ pearth along the left column. With 
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reference to the FE discretization of the pipe (Fig. 3.19), the trapezoidal lateral 
load due to earth pressure is discretized by a piecewise constant load. 
For λ = 0, displacement at top beam midpoint is nonzero (d = 0.013 m) due to 
the effect of the dead weights Gk and the corresponding soil pressures, then the 
first plastic hinge is obtained at the top of the right column (element #27, end 2) 
with λ = 3.18 and d = 0.077 m (triangle in Fig. 3.28). However, after the 
formation of the first plastic hinge, the slope of load-displacement curve does 
not change significantly. The second plastic hinge is localised at the top beam 
midpoint (element #13, end 2 and element #14, end 1) with λ = 3.45 and d = 
0.082 m (dot in Fig. 3.28). After the formation of the second plastic hinge, the 
slope of load-deflection curve is quite lower than before. The third and fourth 
plastic hinges are triggered almost at the same step of the analysis, at foundation 
midpoint and at the top of the left column. Then, a collapse mechanism for the 
top beam is obtained and the ultimate load multiplier is λu = 3.99, with d = 0.102 
m (cross in Fig. 3.28). 
The collapse mechanism is characterized by three aligned plastic hinges along 
top beam (Fig. 3.21), even if plastic hinges are obtained at the top of the 
columns. This mechanism allows to determine an upper bound for the ultimate 
load, considering a portal frame with fixed column bases. The upper bound turn 
out to be λlim = 5.70, which is larger than λu due to the soft soil support. 
Fig. 3.29 shows the deformed mesh of the discrete model of the pipe during 
incremental analysis. 
Figs. 3.30a-d show the bending moment variation as function of axial force for 
the potential plastic hinge sections activated by the incremental analysis. 
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Fig. 3.28 – Load-deflection curve representing the incremental analysis of a pipe loaded by 
self-weight and by an increasing distributed force at top beam. 
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Fig. 3.29 – Pipe deformation during incremental analysis. 
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Fig. 3.30 – N-M values assumed during the incremental analysis by potential plastic hinge 
sections with respect to N-Mu diagram. 
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Axial forces turn out to be very small for the plastic hinge sections at top beam 
and foundation midpoint (Figs. 3.30a,b), whereas plastic hinge sections at the 
top of the columns (Figs. 3.30c,d) are characterized by increasing compressive 
forces. Moreover, a slope variation in N-M curve due to the first and second 
plastic hinges development is clearly shown in Fig. 3.30c for the last plastic 
hinge section. 
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4 Static and buckling analysis of beams resting on 
3D elastic half-space 

 

4.1 Introduction 

 
In this chapter, static and buckling analyses of beams on a three dimensional 
(3D) half-space are considered. Analysis of beams on three dimensional half 
space is particularly important in the civil engineering field. Shallow 
foundations in the form of beams are usually adopted in ordinary structures. 
The early studies of Boussinesq (1885) and Cerruti (1882) defined the potential 
of an elastic and isotropic 3D half-space. Starting from such potential, the 
expressions of stresses and displacements generated by a concentrated force on 
half-space surface can be determined (Johnson 1985). Analyses related to the 
determination of displacements generated by various force distributions on the 
surface of the half space have been carried out by many researchers. Love 
(1929) determined surface displacements due to a uniform pressure over a 
rectangular area. The indentation of a rigid punch on the half-space represents 
another problem which involves Boussinesq’s solution. This problem is strictly 
related to the determination of the dynamic stiffness of a rectangular foundation 
and it is also a classical problem in physics, since its solution represents the 
charge density of a thin electrified plate. Many researchers determined the 
solution of this problem by adopting different approaches such as power series 
or the boundary element method (Rvachev 1959; Gorbunov-Posadov and 
Serebrjanyi 1961; Borodachev 1976; Brothers 1977; Mullan et al. 1980; 
Dempsey and Li 1989; Bosakov 2003). 
The static analysis of beams on 3D half space was considered for the first time 
by Biot (1937), who studied a Euler-Bernoulli (E-B) beam of infinite length 
resting on an elastic half-space adopting Fourier integrals. Gorbuonov-Possadov 
(1961), together with the indentation problem, studied E-B beams of infinite and 
finite length on elastic half space adopting the power series method. Barden 
(1965) studied E-B beams of finite length on elastic half-space adopting power 
series and compared results with experimental data. Then, Vesic (1961) solved 
the same problem introduced by Biot and considered the case of an infinite 
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beam loaded by a concentrated load and a couple, determining a relation 
between half-space elastic parameters and Winkler subgrade constant. 
In this chapter, the Galerkin boundary element method is adopted for the 
determination of surface displacements and/or pressures generated by different 
loads/imposed displacement. Moreover, a mixed formulation which assumes as 
independent fields both surface pressures and displacements is considered and a 
piecewise constant function is adopted for discretizing surface pressures and 
displacements. Then, the case of a foundation beam on elastic half-space is 
considered by assuming as independent fields both foundation displacement and 
surface pressure. A Finite Element (FE) model is derived for the static and 
buckling analysis of a foundation beam resting on elastic half-space. Numerical 
results are obtained by using “modified” Hermitian shape functions (Minghini et 
al. 2007) for the beam and constant pressures for the soil. The parameter αL 
introduced for the beam on half-plane, which takes into account both beam 
slenderness and half-space stiffness, is modified to describe the problem at hand 
taking into account the ratio between beam length and cross-section width. 
Static analysis results are compared with analytic solutions and buckling 
analysis results turn out to be quite similar to the ones obtained for the beam on 
half-plane and Winkler half-space. 
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4.2 Half space model 

 
 

Fig. 4.1 – Half space subject to a concentrated vertical force. 

 
A three-dimensional half space characterized by elastic modulus Es and 
Poisson’s ratio νs is considered. The half-space (Fig. 4.1) is referred to a 
Cartesian coordinate system (O; x, y, z), where z is directed downward; then z = 
0 represents the surface of the half-space. A generic area S is considered on the 
surface z = 0, which can be loaded by various kinds of pressure distributions; in 
the following, only a (vertical) normal pressure r(x, y) is considered. 
The classic approach for finding stresses and displacements in an elastic half-
space due to surface forces was studied by Boussinesq (1885) and Cerruti (1882) 
by adopting the theory of potential. In the following expression is presented the 
vertical displacement v(x, y) of the surface, under the action of a normal pressure 
r(ξ, η). 

 
S

dAryxgv ),( ),,,(  (4.1) 

S is the loaded area and g(x, y; ξ, η) is the solution for the vertical displacements 
due to a unitary normal force applied in a generic point C(ξ, η) (Johnson 1985): 

),,,(

11
),;,(

2





yxdE

yxg
s

s , (4.2) 
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where d = [(x − ξ)2 + (y − η)2]1/2 represents the distance of point C from the 
origin. 
The deformed surface generated by a unitary normal force is a hyperboloid, 
which is infinite at the origin and it is asymptotic to the undeformed surface z = 
0 at a large distance from the origin. 
The solutions of simple problems such as the determination of the displacements 
due to constant pressures applied to regular areas (rectangular), or vice-versa the 
determination of the surface pressures generated by known displacements, may 
be determined analytically starting from the expression of the displacement 
generated by a unitary normal force (Eq. 4.1). In the following examples, a 
rectangular area S is considered, L1 and L2 are the area length and width in x 
and y direction, respectively: 

S = {(x, y, z): −L1/2 ≤ x ≤ L1/2, −L2/2 ≤ y ≤ L2/2, z = 0} (4.3) 

 

4.3 Galerkin boundary element method 

 
Many problems starting from Eq. 4.1 can not be solved analytically and, thus, 
numerical procedures may be adopted. To obtain a numerical solution of (Eq. 
4.1), a Galerkin approach should be considered by introducing the bilinear form 

  
S S

dAdAyxrryxgrrBrrB ),(),( ),,,(),(),(  (4.4) 

and the inner product 

dAyxryxvrv
S
 ),(),(),( . (4.5) 

The weak form of Eq. 4.1 can be written as 

),(),( rrBrv   (4.6) 

The simplest Galerkin discretization is adopted, the soil area S may be divided 
into elements of generic shape (triangles, rectangles); in the following, the 
rectangles with length hxi and height hyi are assumed together with the piecewise 
constant base function: 
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S

i
yxi on  elsewhere

elementth  on the
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



  (4.7) 

Hence, the soil reaction and the vertical displacement for each ith element can 
be approximated as 

r(x, y) = [ρ(x, y) ]Tri (4.8) 

v(x, y) = [ρ(x, y) ]Tqi , (4.9) 

where ri and qi denote the vector components of soil reaction and vertical 
displacements. Each component qi is lumped at the centre of the corresponding 
ith surface element. 
Substituting Eqs. 4.8 and 4.9 into Eq. 4.6, the weak problem written in discrete 
form takes the following expression: 

rGqH  , (4.10) 

which describes a mixed problem, where displacements q can be prescribed and 
pressures r have to be determined, or vice-versa. The components of matrices H 
and G are: 
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Where (xi, xi+1; yi, yi+1) are the (global) coordinates of the ith surface element and 
(ξi, ξi+1; ηi, ηi+1) are the coordinates of the jth surface element. It is obvious that 
H matrix turns out to be equal to a diagonal matrix, whose elements represent 
the area of each surface sub-element, whereas the elements of matrix G are 
reported in appendix A5. 
 

4.3.1 Surface discretization 

The surface S is subdivided into quadrilateral elements and the simplest 
subdivision is obviously the regular mesh. Setting the number of elements nx and 
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ny in plane directions, each element length is hxi = L1/nx and the corresponding 
width is hyi = L2/ny. However, it is well known that the solution of Eqs. 4.1, 4.4 
and 4.5 in general exibit singular behaviour near the edges and corners of the 
rectangular surface S (Dauge 1988), then, a regular mesh may not be able to 
describe correctly surface displacements and/or reactions at surface edges and 
corners. In order to obtain accurate results, it is common to use power graded 
meshes (Erwin and Stephan 1992; Ainsworth et al. 2000; Graham and McLean 
2006), which are characterized by a grading exponent β ≥ 1. A generic 
dimensionless coordinate t, on the interval (0,1) is described by the following 
expression: 
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 (4.13) 

where n is the number of points on the interval. For β = 1 the mesh turns out to 
be uniform, but as β increases, the points are more concentrated at the end of the 
interval. In the following table, some examples of power-graded meshes are 
shown. For simplicity, a square area having L1 = L2 = 1 is considered and the 
same number of subdivisions is adopted along x and y axes (nx = ny = n). 
Considering the figures in Tab. 4.1, it is worth noting that for increasing β, the 
elements near surface edges and corners tend to be smaller and smaller, 
however, elements close to the origin tend to be bigger. Then, the exponent β in 
Eq. 4.13 has to be chosen in order to obtain accurate results both near surface 
edges and close to the origin. 
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Tab. 4.1 – Examples of power-graded meshes applied to a square unitary area, varying n and 

β. 
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4.3.2 Rigid rectangular punch on elastic half-space 

A typical problem which starts from Eq. 4.1 is related to the determination of the 
surface pressure generated by a well-defined displacement; in this case, a 
uniform vertical displacement is considered (Fig. 4.2). This problem is 
frequently studied in soil-structure interaction analysis and it can be also defined 
as the uniform indentation of an elastic half-space by a smooth rigid rectangular 
footing.  
 

 
 

Fig. 4.2 – Rigid rectangular indenter on elastic half-space subject to a vertical uniform 
displacement. 

 
Many researchers had already studied this problem by adopting different 
solution methods (Rvachev 1959; Noble 1960; Gorbunov-Posadov and 
Serebrjanyi 1961; Borodachev 1976; Brothers 1977; Mullan et al. 1980; 
Dempsey and Li 1989; Bosakov 2003). The determination of the solution of the 
integral equation considered (Eq. 4.1) is also a classical problem in physics and 
it represents the charge density of a thin, electrified plate S loaded by a given 
potential (Ervin et al. 1990; Ervin and Stephan 1992). This problem is also 
related to the determination of the dynamic stiffness of rigid foundations on 
elastic half-space (Pais and Kausel 1988; Dempsey and Li 1989; Guzina et al. 
2006). 
In the following, the problem of the indentation of a rigid punch is solved 
starting from Eq. 4.10 and considering different soil surface discretizations 
(varying β and increasing subdivision number along each side of the square). 
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Results in terms of surface pressures are presented and the resulting translational 
stiffness is evaluated. 
Setting a uniform displacement value v0, the corresponding vector qv is defined 
by putting each vector element equal to v0, then, from Eq. 4.10, the soil reaction 
vector is obtained: 

vqHGr 1  (4.14) 

Considering for simplicity the case of a square surface (L1 = L2 = L), Figs. 4.3a 
and b show dimensionless soil pressures r/(E L) along x axis, obtained with n = 

16 elements for each surface side and varying β ( 2/ (1 )s sE E  ). In Figs. 4.4a, 

b and c, dimensionless soil surface pressures r/(E L) are shown by adopting a 
three-dimensional representation. It is clear that surface pressures assume a 
constant value quite close to the origin, whereas they increase rapidly in 
proximity of surface edges and corners. Results obtained with the uniform mesh 
are not able to represent correctly the behaviour at surface edges and corners, 
whereas increasing β, the values near surface corners increase rapidly. 
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Fig. 4.3 – Dimensionless soil surface pressures along x axis. 
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Fig. 4.4 – Dimensionless soil surface pressures due to a unitary vertical displacement of a 
square surface subdivided with a power graded mesh having 16 elements for each side and β 

= 1 (a), 2 (b) and 3 (c). 
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The forces Fi corresponding to soil pressures on each element are obtained by 
multiplying pressures and areas collected in the diagonal of H. The total force F 
generated by the uniform displacement v0 is obtained by adding together the 
forces Fi and the soil stiffness kv is obtained dividing the total force with respect 
to the uniform displacement. 

Hr F  (4.15a) 

1

TOTn

i
i

F F


   (4.15b) 

0
v

Fk
v

  (4.15c) 

Where 2nnnn yxTOT   is the total number of soil surface elements. 

The soil stiffness obtained for the square surface with β = 4 and nx = ny = 27 is 
considered as reference solution: 

L
E

k
s

sREF
v 21

1523.1


 , (4.16) 

Then, errors REF
vv

REF
vv kkkk /)(   are evaluated varying β and increasing the 

number of subdivisions along each side of the surface. Relative errors are shown 
in Figs. 4.5a and b varying nx = ny and nTOT, respectively. 
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Fig. 4.5 – Relative errors for kv, varying the number of subdivisions along each surface side 
(a) and varying the total number of sub-elements of the surface mesh (b). 
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Fig. 4.5b clearly shows that vertical stiffness converge with different converge 
rates varying β, in particular the results obtained with the uniform mesh 

converge to the reference solution with rates close to n−1 and 5.0
TOTn , whereas rates 

are close to n−2 and 0.1
TOTn  for β equal to 2. Convergence rates obtained with β 

equal to 3 (n−2.7 and 35.1
TOTn ) turn out to be quite close to those obtained with β 

equal to 4 (n−2.7 and 45.1
TOTn ). Moreover, for β = 3 and nx = nx = 26, relative error is 

less than 10-4 (10-2 %). Considering convergence tests shown in Figs. 4.5a and b, 
the soil surface discretization obtained with β = 3 can be considered the most 
effective with respect to other cases; in particular the case β = 4 does not 
increase significantly the results accuracy, but generates big sub-elements close 
to the origin of the surface. 
 

Author Method kv /(E L) 

Present 
analysis 

BEM 1.152 

Guzina et al. 
2006 

BEM 1.152 

Bosakov 
2003 

Orthogonal polynomials 1.146 

Erwin, Stephan, Abou El-Seoud
1990 

BEM 1.152 

Dempsey and Li 
1989 

Numerical integration 1.152 

Pais and Kausel 
1988 

- 1.175 

Whitman and Richart 
1967 

- 1.080 

Gorbunov and Posadov 
1961 

Power series 1.095 

 

Tab. 4.2 – Stiffness values for square foundation 2/ (1 )s sE E  . 

 

Soil stiffness due to a uniform vertical displacement of a rigid square punch (Eq. 
4.16) is compared with similar results that can be found in literature. Tab. 4.2 
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shows values of kv obtained by different researchers and by adopting various 
methods of solution. The soil stiffness obtained with the present model is close 
to the results proposed by Dempsey and Li (1989), Ervin et al. (1990) and 
Guzina et altri (2006). Dempsey and Li (1988) used numerical integration with 
Gauss quadrature adopting an adaptive discretization of the surface, whereas 
Ervin et al (1990) and Guzina et al. (2006) adopted the boundary element 
method (BEM). 
Applying Rayleigh (1926) considerations, it is worth noting that the vertical 
stiffness value may be delimited by an upper and lower bound: 

4142.11523.11284.12
12 2





 LE

k
s

s
v . (4.17) 

Where the lower bound represents the stiffness of a circle having the same area 
of the square and the upper bound is the stiffness of the circle circumscribed to 
the square area. 
Then, the present model can be considered effective and can be applied to other 
examples and, in particular, it can be coupled with traditional finite elements 
representing a foundation beam and/or plate.  
 
Another problem, similar to the one described in the previous paragraph, 
consists in the evaluation of the rotational stiffness with respect to the x axis of a 
rigid square punch on elastic half-space. 
 

 
 

Fig. 4.6 – Rigid rectangular indenter on elastic half-space subject to a rotation along x axis. 



 174

In this case, a rotation value x  is defined and the corresponding displacement 

vector xq  is created. The components of xq  are obviously defined by 

ixxi yq  . Eq. 4.15a gives surface pressures again; in this case the total 

moment with respect to x axis needs to be evaluated and the rotational stiffness 
can be easily obtained: 





TOTn

i
iix yFM

1

 (4.18a) 

x

x
x

M
k

   (4.18b) 

Similarly to the previous example, considering for simplicity L1 = L2 = L, the 
rotational stiffness obtained adopting β = 4 and nx = ny = 27 is considered as the 
reference solution: 

2
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2601.0 L
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REF
x 

 , (4.19) 

then, errors REF
xx

REF
xx kkkk   /)(  are evaluated varying β and increasing the 

number of subdivisions along each side of the surface. Relative errors are shown 
in Fig. 4.6a and b varying nx = ny and nTOT, respectively. 
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Fig. 4.7 – Relative errors for k x, varying the number of subdivisions along each surface side 

(a) and varying the total number of sub-elements of the surface mesh (b). 
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Fig. 4.6b clearly shows that vertical stiffness converge with different rates 
varying β and in particular that the results obtained with the uniform mesh 

converge to the reference solution with rates close to n−1 and 5.0
TOTn  for β equal to 

1, whereas rates are close to n−1 and 0.1
TOTn , for β equal to 2. Convergence ratios 

obtained with β equal to 3 (n−2.8 and 4.1
TOTn ,) turn out to be coincident with the one 

obtained with β equal to 4. Moreover, for β = 3 and nx = nx = 26, relative error is 

less than 5105  . Then in this case, similarly to the previous example, the power 
graded mesh with β = 3 represents the best choice for the surface discretization. 
 
Finally, varying L1/L2 ratio, the rectangular contact surfaces are considered and 
by applying Eqs. 4.14 and 4.15, the vertical soil stiffness and rotational soil 
stiffness can be evaluated. The results obtained with a power graded mesh 
characterized by β = 3 and nx = ny = 26 are shown in Fig. 4.8 with crosses, 
adopting the parameters defined in Eq. 4.20a, b, in order to compare results with 
the data determined by Lee (1963) and Whitman and Richart (1967). Similar 
results adopting power series were obtained also by Gorbunov and Posadov 
(1961). The present model turns out to be effective also for rectangular surfaces 
and the power graded mesh with β = 3 is sufficient to obtain accurate values.  
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Fig. 4.8 – Vertical translational stiffness βv and rotational stiffness β of a rigid rectangular 

indenter on an elastic half space, varying L1/L2 ratio. Crosses for the present analysis, 
continuous lines for Whitman and Richart (1967) data. 
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4.3.3 Uniform pressure 
Another problem which starts from Eq. 4.1 consists in the determination of the 
displacement generated by a uniform pressure p applied to a generic rectangular 
area (Fig. 4.9) having length 2a and width 2b. 
 

 
 

Fig. 4.9 – Elastic half-space loaded by a constant pressure p over a generic rectangular area. 

 
The analytic solution was determined by Love (1929) and is given by the 
following expression, whereas Fig. 4.10 shows the dimensionless surface 
displacement for the case of a square loaded area (a = b = 1): 




























































2/122

2/122

2/122

2/122

2/122

2/122

2/122

2/122

2

])()[()(

])()[()(
ln)(

])()[()(

])()[()(
ln)(

])()[()(

])()[()(
ln)(

])()[()(

])()[()(
ln)(

1

),(
),(*

axbyax

axbyax
by

axbyby

axbyby
ax

axbyax

axbyax
by

axbyby

axbyby
ax

E

p

yxv
yxv

s

s

 (4.21) 
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Fig. 4.10 – Surface deflection generated by a uniform unitary pressure on a square area with 
side equal to 2. 

 
The solution can be determined numerically using Eq. 4.14. A surface pressure 
vector p is defined by setting each element equal to p, and from Eq. 4.14 the 
displacement vector can be easily determined: 

pGHq 1)(  T  (4.22) 

The matrix H of the present model is a diagonal matrix without null values 
along the diagonal, then HT = H and the H-1 is simple to calculate. 
For simplicity, the case of a square loaded area is considered (a = b). Figs. 4.11a 
and b show the dimensionless displacement v*=v/(2a) along x axis and along the 

diagonal of the surface  5.022 )( yx   for increasing β and assuming nx = ny = 

16. Figs. 4.11a and b show that in this example the exponent β does not 
influence results significantly. 
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Fig. 4.11 – Dimensionless surface displacement along x axis (a) and along surface diagonal 

(b) due to a uniform pressure over a square area. 
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Fig. 4.12 – Dimensionless displacements generated by a uniform pressure over a square 
surface subdivided with a power graded mesh having 16 elements for each side and β = 1 (a), 

2 (b) and 3 (c). 
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Figs. 4.12a, b and c show the dimensionless displacement adopting a three-
dimensional representation and varying the grading exponent β. Then, 
dimensionless displacements are evaluated by adopting the present model at four 
points on the surface of the half-space. Results are compared with exact solution 
(Eq. 4.21) varying exponent β and increasing the number of subdivisions along 
each surface side. The first point O coincides with the origin of the coordinate 
system; the second one, M, is at the midpoint of the surface edge parallel to x 
axis; the third one, N, is at the midpoint of the surface edge parallel to y axis; 
and the last one, C, is at the upper-right corner of the surface. The four points 
are shown in Fig. 4.13. Considering a square surface, the displacements at points 
M and N are obviously coincident. 
 

 
 

Fig. 4.13 – Points considered for the evaluation of surface displacements 

 
Reference values (Eq. 4.21) are shown in the following expressions. It is worth 
noting that the adopted surface discretizations do not allow to evaluate 
displacements at the exact points described above since each displacement value 
is applied in the centre of the corresponding surface sub-element. 

O
*(0,0) 1.122 (2 )Lv v a   (4.23a) 

*(0, ) 0.7659 (2 )L
Mv a v a   (4.23b) 

*( ,0) 0.7659 (2 )L
Nv a v a   (4.23c) 

*( , ) 0.5611(2 )L
Cv a a v a   (4.23d) 



 180

Relative errors LPAL vvvv /)(   for the four displacements in Eqs. 4.23 are 

calculated and shown in the following figures. 

(a) 

10-4

10-3

10-2

10-1

vO

100 101 102

nx = ny

10-4

10-3

10-2

10-1

v = 1

= 2

= 3

= 4

 

(b) 

10-5

10-4

10-3

10-2

10-1

100
vC

100 101 102

nx = ny

10-5

10-4

10-3

10-2

10-1

100

v

= 1

= 2

= 3

= 4

 

(c) 

vM = vN

100 101 102

nx = ny

-0.3

-0.2

-0.1

0

0.1

v

   

10-4

10-3

10-2

10-1

100

v

vM = vN

100 101 102

nx = ny

= 1

= 2

= 3

= 4

 (d) 
Fig. 4.14 – Relative errors for dimensionless displacements evaluated at points O (a), C (b) 

and M, N (c, d). 
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Fig. 4.14a show the relative errors for the displacement at surface origin. For all 
surface discretization cases considered, convergence ratios are coincident and 
close to n−2, however relative errors are small for the uniform discretization 
case: for n = 32 and β = 1, relative error is close to 0.5%, whereas for n = 16 and 
β = 3, relative error is close to 4%. Considering the displacement at surface 
corner (Fig. 4.14b), relative errors follow a behaviour similar to the one found in 
the examples of the previous paragraph. Convergence ratios are small for β = 1 
and 2 (n−0.75 and n−1.7, respectively), whereas for β = 3 and 4 convergence ratios 
are close to n−2.7 and n−3.7, respectively. For n = 32 and β = 1, relative error is 
close to 10%, whereas for n = 16 and β = 3, relative error is close to 0.8%. Figs. 
4.14c and d show relative errors related to the displacement at surface edge 
midpoint M or N. In this case, errors for β = 3 and 4 do not have a monotonic 
behaviour, however, neglecting values for n = 4, errors can be represented in bi-
logarithmic scale. Convergence ratio for β = 1 is close to n−0.75, whereas for β 
equal to 2, 3 and 4 ratios are almost coincident and close to n−1. For β = 3 errors 
are lower with respect to other discretization cases, then, the power graded mesh 
with β = 3 turns out to be quite effective also for this example. 
 

 
 

Fig. 4.15 – Rectangular surface. 

 
Finally, adopting a surface discretization characterized by a power graded mesh 
with β = 3 and assuming nx = ny = 64, the rectangular surfaces loaded by a 
uniform pressure are considered and the results in terms of displacements at 
points O, M, N and C (Fig. 4.15) are shown in Fig. 4.16, varying a/b ratio. 
Moreover, results are compared following the representation defined by Giroud 
(1968) and show good agreement with respect to Love’s solution (1929). 
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Fig. 4.16 – Vertical surface displacements beneath a rectangular area due to a uniform 
pressure, continuous lines for present analysis, crosses for Love’s solution. 
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4.4 Beam model 

 
In the previous paragraph a boundary element method for studying problems 
related to vertical loads and forces applied to the surface of an elastic half-space 
has been presented. As it has been shown by Tullini and Tralli (2010) for a beam 
on elastic half-plane (2D), the most promising aspect of the present model 
relative to the half-space (3D) is the coupling of traditional FEs with the 
boundary integral equation representing the vertical displacement generated by a 
concentrated force acting on the surface of an elastic half-space. 
The present model may be suitable to study 3D frames on elastic half-space, 
then, foundation beams may be subject to more complex deformations with 
respect to the case of the beam on elastic half-plane, where only Euler-Bernoulli 
and Timoshenko beams have been considered (Tullini and Tralli 2010). In order 
to take into account shear deformations due to both non-uniform bending and 
torsion, the kinematical model based on Timoshenko (1921) bending theory and 
Reissner (1952) torsion theory are adopted, following the model described by 
Minghini et al. (2008). The warping function is represented by the well known 

sectorial coordinate  deriving from De Saint Venànt solution. Assuming linear 

elastic behaviour, the relationships between strain fields and stress resultants are 
obtained for beams with any given cross-section, showing that coupling terms 
between shear forces acting along the principal directions or between shear and 
non-uniform torsion may arise due to shear deformations. Then, local governing 
equations and relevant boundary conditions are deduced variationally from the 
elastic strain energy expression. 
 
 

4.4.1 Analytical formulation 

An ideal prismatic beam is shown in Fig. 4.1. An orthogonal, counter-clockwise, 
reference system C(x, y, z) is assumed, with the origin coinciding with the cross-
section centroid. Axes x and y correspond to the principal axes of inertia where 
S stands for the cross-section (bending deformation) shear centre; hereinafter 
(b.d.) shear centre. 
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Fig. 4.17 – Global reference system for the beam. 

4.4.1.1 Kinematical model 

Assuming that cross-section in-plane deformations are negligible and reducing 
the beam to its middle surface, the geometrically-exact displacement field (Simo 
and Vu-Quoc 1991; Ibrahimbegovic 1993) may be determined by introducing 
the well-known matrix of finite rotations (Argyris 1982; Cristfield 1991). By 
developing a series expansion of the rotation matrix and retaining up to second-
order terms, the displacement field can be approximated in the form: 

(1) (2)

(1) (2)

(1) (2)

u u u

v v v

w w w

 
 
 

 (4.24) 

where u, v, w are the displacement components at point P of the generic cross-
section in x, y, and z directions, respectively. Moreover, apexes “(1)” and “(2)” 
indicate the first- and second-order components of the displacement field, 
respectively. As for the linear part of the kinematical model, Timoshenko-
Reissner’s beam theory was adopted, having resorted to a single warping 
function. Shear deformations due to both non-uniform torsion and bending were 
considered. Moreover, following the proposal of Kim et al (1996) in order to 
analyze beams with asymmetric cross-sections, the coordinates of the (b.d.) 
shear centre with respect to the centroid were introduced into the displacement 
field by means of a proper coordinate transformation. Making the displacement 
field explicit, the first-order components may be written in the form: 
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whereas the second-order components are expressed by (Chang et al. 1996; 
Cortinez and Piovan 2006; Piovan and Cortinez 2007; Laudiero and Zaccaria 
1988): 
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 (4.26) 

where xS and yS are the (b.d.) shear centre co-ordinates; uS and vS are the (b.d.) 
shear centre displacements in x and y directions; wC is the axial cross-section 

translation; x and y are the flexural rotations about x and y axes and, finally, z 

represents the torsional rotation. Function (z) in Eq. 4.25 defines the cross-

section warping amplitude, whereas (s) represents the sectorial area defined by 

the relation (Vlasov 1961): 

0d r
ds
   (4.27) 

where r is the distance between the shear centre S (Fig. 4.1) and the tangent t to 
the middle line at point P. 
By adopting the usual Lagrangian formulation, the strain components may be 
expressed in terms of Green’s strain tensor, i.e.: 

(1) (2)
ij ij ij     (4.28) 

where (i, j = x, y, z) 

           1 1 1 1 2 2(1) (2)
, , , ,, ,

1 1,        
2 2ij i j j i ij i j j ik i k ju u u u u u   
   
   

        (4.29a,b) 
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and the comma indicates partial differentiation with respect to Lagrangian co-
ordinates (x, y, z). 
Due to the assumption of cross-section in-plane undeformability, the non-

vanishing strain components reduce to the axial strain z and the shear strains zx 

and zy. By using Eq. 4.29 and neglecting third- and higher-order terms, the 

linear and non-linear parts of the strain field can respectively be written as: 

(1)
z y xCw x y           (4.30) 

   (1)
zx y zS Su y y

x
      


 (4.31) 

   (1)
zy x zS Sv x x

y
     

    (4.32) 
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 (4.33) 
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(2) 1
2

1
2

zx z z x z y y z zS S
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 
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        
 (4.34) 

 

   

(2) 1
2

1
2

zy z z y zS S

x y x y x x z z z z S

u y y

x y y

 
          

               
 (4.35) 

where prime denotes derivative with respect to z. Due to the assumption of small 

strains involving derivative of axial displacement w, terms w w
x z

 
 

, w w
y z

 
 

 and 

2
w
z

 
 
 




provided by Eq. 4.29-b were ignored in evaluating the non-linear 

components (Eqs. 4.33, 4.34 and 4.35) of the strain field. 

The first-order nonzero components of the stress tensor are the normal stress z 

and the tangential stresses zx and zy giving the internal stress resultants: 
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zA
N dA  ,    x xzA

V dA  ,    y yzA
V dA   (4.36) 

x zA
M ydA  ,    y zA

M xdA   ,    zA
M dA     (4.37) 

 z yz xz x yS SA
M x y dA V y V x     ,    z xz yzA

M dA
x y

  
  
 

    
   (4.38) 

where A represents the cross-section area; N is the axial force; Vx and Vy are the 
shear forces acting at the (b.d.) shear centre; Mx and My are the bending 

moments with respect to the principal axes x and y and, finally, M, Mz and Mz
 

are the bimoment, the total twisting moment and the twisting moment due to 
non-uniform torsion, respectively. 
 

4.4.1.2 Constitutive laws 

Indicating with Eb and G the longitudinal and transverse elastic moduli of the 
beam, the first-order components of the stress tensor can be expressed as: 

(1)
bz zE    (4.39) 

(1)
zx zxG  ,     (1)

zy zyG   (4.40) 

Inserting Eqs. 4.39 and 4.40 into Eqs.4.36, 4.37 and 4.38b and making use of 
Eqs 4.30-4.32 of linear strains, yield: 

0 0 0 '
0 0 '

0 '

'

b

C

x x x

y y y

N A w
M J

E
M J

M Sym J

    
    

    
    
    
         



 


 , (4.41a) 

 
 
 

'

'

'

ySx xy xx

y y y xS

z z

uD D DV
V G D D v

M Sym D

 
    
    

    
    
     

 



 
















, (4.42b) 

where Jx, Jy and J are the second area and sectorial moments, respectively. In 

evaluating the shear rigidities Dij in Eq. 4.42b, the effective shear stress 
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distribution over the cross-section is to be considered. The shear rigidity matrix 
takes the form: 

1
*2 * * * *

2

*2 * *
2

*2
2

1 1 1

1 1

1

y x y ya a ax y yy
x xy x

y y x xa axx

a

ds ds dsS S S S S
t J J t J J tJ

D D D
ds dsD D S S S
t J J tJ

Sym D
dsSym S
tJ
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 
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 (4.43) 

where: 

 *

0

s

xS s ytds       *

0

s

yS s xtds       *

0

s
S s tds    (4.44) 

The off-diagonal terms Dij refer to coupling between shear forces acting in the 
two principal planes (Dxy) and between shear resultants and non-uniform torsion 

(Dx, Dy), and they vanish only in the case of doubly-symmetric cross-sections. 

 

4.4.1.3 Formulation of the linearized stability problem 

The stability conditions are defined by making use of the classical energy 
criterion which, for practical purposes, reduces to imposing the positive 
definiteness of the second variation of the total potential energy: 

(1) (1) (2)2 0 2 21 1 1 1
2 2 2 2ij ij ij i iijhk hkV V S

E dV S dV p u dS             (4.45) 

where (1)
ijijhkE   is the first variation of the Cauchy stress tensor (i.e. the linear 

part of the Kirchhoff tensor), 0
ijS  is the Kirchhoff stress tensor referred to the 

pre-buckling state and pi represents the components of the conservative surface 
loads. Consequently, any critical load makes the functional expressed by the Eq. 
4.45 stationary. The first term on the right-hand side of Eq. 4.45 represents the 

elastic strain energy E, whereas the second and third terms represent the 

potential energy G due to the second-order effects of pre-critical stresses and 

external forces. With the assumption of infinitesimal displacements, the 

Kirchhoff tensor reduces to the Cauchy stress tensor 0
ij  and, by dropping the 
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symbol , the variations (1)
ij  and (2)2

ij   can be expressed by Eqs. 4.30-4.35. 

Bearing in mind the expressions of the internal stress resultants (Eqs. 4.13-15), 
the first-order strains (Eqs. 4.30-4.32) and the constitutive relations (Eq. 4.18), 
the strain energy for a beam of length L may be written as follows (Kim and 
Kim 2005; Minghini et al. 2007): 
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 (4.46) 

 
where, as it is usual (Laudiero and Zaccaria 1988), the functional was 

supplemented with the term 21 '
2 t z

L

GJ dz  , taking the contribution of De Saint 

Venànt torsion into account. Remembering the expressions in Eqs. 4.33-4.35 of 
second-order strains and rewriting the pre-critical normal stress in the form: 

00 00
0 yx
z

x y

MM MN y x
A J J J

    


   (4.47) 

yield: 
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where s  is the middle line length and coefficients Ci (i = N, x, y, ), given in 

(Cortinez and Piovan 2002; Kim et al. 1996; Laudiero and Zaccaria 1988): 
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represent the so called “Wagner effect”. 
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4.4.2 Beam discrete model 

 
Fig. 4.18 – Free-body force distribution and nodal displacements of the 

element. 

 
Fig. 4.18 shows a typical two-node beam element, nodal displacements and 
forces, and external (distributed) loads possibly connected by a rigid lever arm.  
Collecting the seven displacement functions introduced in the previous 
paragraph by vector: 

             , , , , , ,T
y x zC S Sw z u z z v z z z z 

  d     (4.50) 

and the nodal displacements by: 

1 2 1 1 2 2 1 1 2 2 1 1 2 2, , , , , , , , , , , , ,T
C C S y S y S x S x z zw w u u v v 

   q        (4.51) 

the displacement field can be written as d = N q, where matrix N collects a 
proper set of shape functions in the form: 

 , , ,yz xdiagN N N N N . (4.52) 

Substituting d = N q into the second variation of the total potential energy (Eq. 
4.45) yields the element stiffness matrix. It should be recognized that, before 
assembling the global matrix of a structure, the nodal displacements qT should 
be referred to a single reference point, as for instance the cross-section centroid. 
Then, the usual assemblage technique yields: 
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21 1
2 2

T

structure

  q Kq  (4.53)  

where K represents the global stiffness matrix. In linearized stability problems, 
the effects of pre-buckling deformations are ignored and the internal forces are 
assumed to be linear functions of the external loads. Hence, K  can be written in 
the form: 

E G K K K  (4.54) 

where KE and KG are the elastic and geometric stiffness matrix, respectively. 

Then, the critical loads are given by the roots of the equation  det 0K  which 

can be suitably reduced to a standard eigenvalue problem. 
 

4.4.2.1 Interpolating shape functions 

With the exception of wC, described by linear shape functions, the unknown 
displacements (Eq. 4.50) were interpolated using Hermitian polynomials 
“modified” by parameters which take the influence of shear deformations into 
account. These shape functions follow from the solutions of the (homogeneous) 
governing equations for doubly-symmetric cross-section beams (Minghini et al. 
2007; Kosmatka 1995). In fact, for Kosmatka (1995) the natural frequencies of 
symmetrical Timoshenko beams subjected to axial load were calculated by using 
these polynomials. Moreover, it was noted (Reddy 1997; Mukherjee et al. 2001) 
that in the case of a Timoshenko beam bent into a symmetry plane, these 
functions yield a super-convergent, locking-free finite element. For Chang et al. 
(1996) the same functions were adopted for flexural-torsional buckling analyses 
of shear-deformable thin-walled beams with a generic cross-section, even 

though the non-uniform torsion-shear coupling terms (Dij, i, j = x, y, , i  j) 

appearing in Eqs. 4.42b and 4.46 were ignored. This finite element (Minghini et 
al. 2007), including the mentioned coupling terms, gave accurate results in the 
static analysis of orthotropic FRP beams with non-symmetric cross-section. 
With reference to bending in y-z plane and torsion, the adopted polynomials take 
the form: 
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 (4.55) 

whereas, for flexure in x-z plane, 12 14 21,  , x x xN N N  and 23
xN  take opposite signs. In 

Eqs. 4.55, l stands for the finite element length, z l , and coefficients i (i = 

x, y, ω) take the expressions: 

2
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x

x
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GD l
 ,    2

12 x
y

y

EJ
GD l

 ,    2
12EJ
GD l
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


  (4.56) 

It can be observed that, when shear deformations tend to vanish, i = 0 (i = x, y, 

) and the polynomials N1j
i and N2j

i (j = 1,…,4) appearing in Eqs. 4.55, reduce 

to the classical Hermitian polynomials and to their first derivatives. 
Consequently, the stiffness matrix KE reduces to the elastic matrix for 
symmetric cross-sections reported by Barsoum and Gallagher (1970). Moreover, 
if displacement components in Eq. 4.26a,b are neglected and constant 
distributed loads are considered, the stiffness matrix KG reduces to the 
geometric matrix reported by Barsoum and Gallagher (1970) as well. 
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4.5 Beam on 3D half space 

 

 
 

Fig. 4.19 – Beam with rectangular cross-section on elastic half-space. 

 
The beam model described in the previous paragraph, is for simplicity reduced 
to the model of a Timoshenko beam on elastic half-space having a rectangular 
cross-section (Fig. 4.19) or a symmetric cross-section with respect to z axis. A 
different Cartesian coordinate system (0; x, y, z), where the plane x-y coincides 
with the boundary of the half-space and z is directed downward, x coincides with 
the centroidal axis of the beam and y is the secondary axis of inertia of beam 
cross-section. Beam transverse displacement in y direction is neglected, then 
axial and vertical displacements are given by: 

u(x, z) = z,     v(x, z) = v(x), (4.57) 

and the corresponding nonzero axial and shear strains become: 

 = 'z,      = v' + , (4.58) 

A distributed vertical external load p(x) can be applied along the beam axis x as 
shown in Fig. 4.19. In the interface between beam and soil, frictionless and 
bilateral conditions are assumed. Consequently, a vertical soil reaction r(x,y) is 
enforced to both beam and substrate. For simplicity, the vertical displacement 
v(x) of the beam is assumed coincident with that of the half-plane boundary, 
then, following Selvadurai (1979) it is assumed that the beam is infinitely rigid 
with respect to the half-space along y direction and deflection takes place only in 
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the x-z plane. This is an approximate method of taking into account the three-
dimensional effects of the elastic half-space. The distribution of contact stress in 
the transverse direction is assumed to be equal to the contact stress generated by 
a rigid foundation of width b in a plane strain problem (Sadowsky 1928). The 

contact stress distribution ),( yxr  is given by (Fig. 4.20b): 

)(

)(2
),(

22 yb

xr
yxr


  (4.59) 

The simple case of constant pressure distribution along beam width (Fig.20a) is 
related to a foundation weak in transversal direction with respect to the half-
space, then a transversal deformation of the foundation is expected. However, a 
beam model is not able do describe such behaviour, then the hypothesis 
described by Eq. 4.59 and Fig. 4.20b is considered. It is worth noting that the 
discretization of the problem will not be able to follow exactly that hypothesis. 
 

(a) 

b
y

zr (x,y)

b
y

zr (x,y)
 (b) 

 
Fig. 4.20 – Limit cases for the contact stress distribution in transverse direction. 

 

4.5.1 Variational formulation 

The potential energy of the Timoshenko beam is given by: 

e
L

bbbe LxxxvAGkxD   d]))()(())(([
2

1 22   (4.60a) 

   
L

e xxxmxvxrxpbL d)()()()()(   (4.4.60b) 

whereas the potential s of the half space, similarly to the plane state case, can 

be written as 
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
S
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where Us is the strain energy of the soil and S is the contact surface. Due to 

Clapeyron’s theorem, the strain energy of the soil is equal to one half of the 

external work, therefore, the potential energy s can be rewritten as 


S

s Ayxvyxr d),(),(
2

1
. (4.62) 

The expressions above are similar to the ones defined in the first and second 
chapter, however, in this case, surface displacement and half-space pressures are 
defined on a two-dimensional domain. Considering the three-dimensional half-
space, the displacement of soil points underneath the foundation is given by Eq. 
4.1. Substituting it into Eq. 4.62 yields 

 
SS

s AryxgAyxr d),(),,,(d),(
2

1
, (4.63) 

where g is the expression known as Boussinesq’s solution of the surface vertical 
displacement generated by a unitary force (Eq. 4.2). 

Hence, the total potential energy  = b + s turns out to be 

  1, ( ) d ( , ) ( ) d
2e L L

v r r x x g x y r y y     , (4.64) 

Variational formulation analogous to Eq. 4.64 was obtained by Kikuchi (1980), 
Bjelak and Stephan (1983) for beams resting on a Pasternak soil and by Tullini 
and Trallli (2010) for beams resting on elastic half-plane. 
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4.5.2 Discrete model 

 

 
 

Fig. 4.21 – Beam on elastic half-space subdivided into equal FEs 

 
The discrete model for the beam was described in the previous paragraph. The 
beam may be subdivided into equal FEs having length li along x direction, as 
shown in Fig. 4.21. The rectangular contact surface may be discretized in x and 
y directions following different methods, as it has been shown for the Galerkin 
boundary element method. The discretization along beam length (x direction) 
can follow the beam subdivision into FEs, then, the length dxi of a generic soil 
surface sub-element is equal to li. However, in order to evaluate correctly the 
soil pressure singularities near beam ends, it is possible to further subdivide the 
FEs at beam ends by defining a number of subdivisions nx,end and adopting a 
local coordinate which follow a power-graded expression (Eq. 4.13). 
An important choice is the number of surface subdivisions along beam width (y 
direction). One soil element along beam width (Fig. 4.22a) leads to solutions 
characterized by constant soil pressures along y direction. A constant soil 
pressure in transverse direction corresponds to a foundation beam with a 
transverse section deformable with respect to the half-space (Fig. 4.22a), this 
behaviour is completely different than the hypothesis of the problem. Vice-
versa, more soil elements along beam width (Fig. 4.22b) allow to represent 
surface pressure singularities close to beam edges, however, the behaviour of a 
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beam with an infinite transversal stiffness with respect to the half space can be 
achieved only with an infinite number of subdivisions. 
 

(a)   (b) 
 

Fig. 4.22 – Discretization of the contact surface between beam and half-space. One element 
along beam width (a), four equal elements along beam width (b). 

 
Tab. 4.3 shows some examples of contact surface discretizations. Starting from 
the simple case of a beam with nx = 8 and ny = 1, nx,end = 1, the second and third 
row show discretizations characterized by ny = 3 and 5, respectively. Such 
discretizations are obtained by defining a power graded function (Eq. 4.13) 
along y axis with β = 3 and n = 4 and 6, respectively, and joining the 
subdivisions near the midpoint. Second and third column show discretizations 
characterized by nx,end = 2 and 3, respectively. 
In the following, analyses are carried out by increasing the number of 
subdivisions nx along longitudinal direction and considering the nine 
combinations presented in Tab. 4.3. 
The soil reaction is approximated as done for the Galerkin boundary element 
method, adopting a piecewise constant function inside each element (Eq. 4.8).  
Then, considering beam discretization and contact surface discretization, the 

total potential energy  written in discrete form takes the expression: 

rGrrHqFqqKqrq TTT
b

T

2

1

2

1
),(   (4.65) 
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Tab. 4.3 – Examples of contact surface discretizations, varying ny and nx,end. 

 
Which is similar to the corresponding one obtained for the beam on half-plane. 

The stationarity condition of the total potential energy  written in discrete form 

provides the following system: 

2
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b
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b
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bDL
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  






K K H
q F
r 0

H G

 


 (4.66) 

where the vector q collects nodal displacements, r denotes the vector of constant 

soil reactions, F is the external load vector, Db/L
 3

bK
~  is the elastic stiffness 

matrix of the beam, P/L gK
~  is the geometric (or incremental) matrix. Element 

matrices biK and giK  are equal to those introduced in the second chapter. 
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Moreover, the matrix G


 turns out to be coincident with the one introduced in 
the Galerkin boundary element method (Eq. 4.10). The matrix H turns out to be 
coincident to the corresponding matrix obtained for the plane state case if one 
subdivision along beam width is considered, whereas for ny = 3 and 5, H is 
reported in appendix A5. 
System in Eq. 4.66 yields the following solution: 

qHGr T1
21








s

sE
. (4.67) 

3

soilgb
b

bL
D

 
 

  K K K q F
   (4.68) 

where soilK


 is the stiffness matrix of the half-space: 

  T13
soil HGHK 


L . (4.69) 

The load multiplier  and parameter L are defined as follows; 

3
2

32

)1(
,

bs

s

b D

LbE
L

D

PL


 . (4.70a, b) 

The parameter L in Eq. 15b describes the beam-substrate system and it is 

coincident with the one obtained in the plane state case, according to references 
(Biot 1937; Vesic 1961; Tullini and Tralli 2010). Low values of αL characterise 
short beams stiffer than the soil, whereas higher values of αL describe beams on 
stiff soil. In this case, however, b is not set equal to 1, but it can assume any 
value and another parameter needs to be defined in order to describe the 
problem: 

bL /  (4.71) 

Then, long beams on stiff soil are characterized by large values of αL and χ. 
Parameters αL and χ are typically adopted for studying beam resting on a three-
dimensional elastic half space (Gorbunov-Posadov and Serebrjanyi 1961; 
Barden 1962). 
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4.6 Static analysis of beams on 3D elastic half-space 

 
In the following, static analyses of beams with free ends and finite length resting 
on a three-dimensional elastic half-space are presented. Three simple load cases 
are considered: concentrated vertical load at beam midpoint, uniform vertical 
load distribution along beam length and concentrated moment at beam midpoint.  
It is worth noting that the half-space behaviour is linear and bilateral; then, in 
the following examples, pressures along contact surface may result both 
tractions (negative values) and compressions (positive values). However, 
considering more complex load conditions and, in particular, adding the effects 
of the self-weight of the foundation, surface pressures turn out to be 
compressive. 
The following examples show beam deflections, surface reactions and beam 
bending moment varying αL. For simplicity, beams with rectangular cross-
sections are considered. For an isotropic beam with νb = 0.2 and slenderness 

ratios L/h equal to 3 and 5, the coefficient x  is approximately equal to 0.3 and 

0.1, respectively. The Euler-Bernoulli beam case ( 0x ) is also considered. 

 

4.6.1 Foundation beam loaded by a concentrated force at midpoint 

 
 

Fig. 4.23 – Beam on elastic half-space loaded by a concentrated force P at midpoint. 

 
A foundation beam on elastic half-space loaded by a concentrated force P at 
midpoint is considered. The first example is related to an Euler-Bernoulli beam 
having χ = 10, with results determined by assuming nx = 28, nx,end = 1 and by 
considering three cases of subdivision along y direction; ny = 1 represents the 
simplest case, then ny = 3 and 5 adopting a power-graded mesh are considered. 
Figs. 4.25a and b show dimensionless beam displacement generated by the 
concentrated force for αL = 5 and 25, respectively. Displacement obtained with 
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ny = 3 and ny = 5 appears almost coincident, whereas with ny = 1, beam 
displacement is greater with respect to other results, in particular close to beam 
midpoint. Similar considerations can be done about surface pressures along 
beam length (Figs. 4.25c and d). Pressures obtained with one subdivision along 
y direction are greater with respect to the other cases, whereas pressures 
obtained with ny = 3 and ny = 5 are quite close to each other. Moreover, Figs. 
4.25e and f show transversal surface pressures at beam midpoint for αL = 5 and 
25, respectively. Adopting 3 or 5 elements along beam width, pressure 
singularities near surface edges can be determined, then pressures close to y = 0 
are smaller with respect to the case with ny = 1. 
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Fig. 4.24 – Vertical displacement (a, b) and surface pressures (c, d) along beam length of a 

beam loaded by a concentrated force at midpoint. Continuous lines for ny = 1, dashed line for 
ny = 3, dots for ny = 5. 
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Fig. 4.25 –Surface pressures at midpoint along beam width (a, b) for a beam loaded by a 
concentrated force at midpoint. Continuous lines for ny = 1, dashed line for ny = 3, dashed 

bold line for ny = 5. 

 
It is worth noting that ny = 1 corresponds to the case of a flexible beam along 
transverse direction with respect to the half-space, whereas ny > 1 allows to 
consider pressure singularities near surface edges. However, only a large 
number of subvidisions along y direction should be able to fit correctly the 
expression determined by Sadowskyi (Eq. 4.59). 
Prior to present further results for different values of αL, a convergence test is 
performed in order to evaluate errors committed varying the number of 
subdivisions along beam width. Considering a beam with χ = 10, the results 
obtained with nx = 210, nx,end = 1 and ny = 7 are taken as reference solution, 
adopting a power-graded subdivision along y direction. Then, varying nx and ny, 
relative errors are evaluated for beam displacement and surface pressure at 
midpoint for αL = 5 and 25. Figs. 4.26a-d show that the number of subdivisions 
along y direction influences significantly the results, for increasing nx, and, 
indeed, relative errors tend to be constant and do not converge for each case 
considered. If only one subdivision is adopted along beam width, errors are 
obviously greater with respect to reference results, in particular errors for beam 
displacement at midpoint are close to 4% for αL = 5 and 25, whereas errors for 
surface pressure at midpoint are close to 40% for αL = 5. Adopting 3 power 
graded subdivisions along beam width, relative errors are smaller with respect to 
the previous case, in particular relative errors for beam displacement at midpoint 
are less than 1%. However surface pressure at midpoint for αL = 5 is 
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characterized by a relative error close to 10% (Fig. 4.26), which becomes less 
than 1% for αL = 25. 
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Fig. 4.26 – Relative errors for a beam loaded at midpoint with χ = 10, varying mesh 
discretization. 

 
In the following examples, nx = 28, nx,end = 1 and ny = 3 are adopted for 
determining beam displacements, surface pressures and bending moments along 
beam length. 
Figs. 4.27 and 4.28 show dimensionless displacement v / [P/(E b)], 
dimensionless half-space reaction r / [P(Lb)] and dimensionless bending 
moment M/(PL) with respect to the dimensionless abscissa x/L, for values of αL 
equal to 1, 5, 10, 50, which correspond to the decreasing beam stiffness with 
respect to the half-space. Each figure show results for three different values of 

 . For simplicity E is used instead of 2/ (1 )s sE  . 



 205

χ = L/b = 10 
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Fig. 4.27 – Foundation beam loaded by a concentrated force at midpoint. Vertical 
displacement (a, d), half-space reactions (b, e) and bending moment (c, f) along the beam for 

αL = 1 (a, b, c) and αL = 5 (d, e, f). 
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χ = L/b = 10 
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Fig. 4.28 – Foundation beam loaded by a concentrated force at midpoint. Vertical 
displacement (a, d), half-space reactions (b, e) and bending moment (c, f) along the beam for 

αL = 10 (a, b, c) and αL = 50 (d, e, f). 
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Fig. 4.27a shows beam displacements referred to αL = 1, in this case it is clear 
that the rigid displacement value is larger with respect to the relative 
displacement of beam midpoint, then beam behaviour is quite close to a rigid 

rectangular indenter. For nonzero values of  , wedge-shaped beam deflection 

are obtained. 
Figs. 4.27b and c show that half-space reaction and bending moment obtained 

with αL = 1 do not depend significantly on   and are characterized by a singular 

behaviour at beam ends. Results obtained with αL = 5 are shown in Figs. 4.27d-
f. In this case beam rigid displacement is smaller with respect to beam deflection 

at midpoint (Fig. 4.27d) and for nonzero values of  , wedge-shaped beam 

deflection generates singular half-space reactions at midpoint (Fig. 4.27e). 

Bending moment values decrease for increasing the value of   (Fig. 4.27f). 

Figs. 4.28a-c show results related to αL = 10, which turn out to be quite 
analogous to the corresponding results obtained with αL = 5. Then Figs. 4.28d-f 
are referred to αL = 100. Considering one surface subdivision for each beam 

element along x axis, the matrix in Eq. 4.66 tends to be singular for 0 , then 

the corresponding results are not shown. Apart from the neighbourhood of the 
point load, the vertical displacement shown in Fig. 4.28d is in good agreement 
with the following expression: 

1( )
| |

Pv x
E x




, (4.72) 

which corresponds to the surface displacement due to a concentrated normal 
force (Eq. 4.1) on x-z plane, as shown with crosses in Fig. 4.28d. 
 
Fig. 4.29a shows dimensionless displacement at beam midpoint and beam end 
for increasing αL. For very low αL values, both displacements tend to be 
coincident with those corresponding to a rigid-punch. Increasing αL, 
displacement at midpoint obviously increases, whereas displacement close to 
beam ends tend to converge to a constant value defined by 

1 2( / 2) / [ / ( )]
/ 2

Pv L v P E b
E L

  
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 (4.73) 

which is quite close to 0.06 for L/b = 10. 
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It is worth noting that, differently from the case of the beam on elastic half-plane 
considered in the previous chapters, in this case a large value of αL does not 
necessarily correspond to a long beam, then, for increasing αL, displacements at 
beam ends do not tend to zero.  
Fig. 4.29b shows dimensionless half-space pressure close to beam end for 
increasing αL. For a beam on stiff soil, pressure assumes large values due to the 
singular behaviour showed in Fig. 4.27b, then, increasing αL, pressure tends 
obviously to zero. 
 

(a) 

L/b = 10

1 10 100
L

10-2

10-1

100

101

v 
/ [

P
/(

E
 b

)]

v(0)

v(L/2)

   

-20

-10

0

10

20

30

r(
L

/2
,0

) 
/ [

P
/(

L
b)

]

L/b = 10

1 10 100
L  (b) 

 = 0 (E-B)

 = 0.1

 = 0.3
 

Fig. 4.29 – Foundation beam loaded by a concentrated force at midpoint. Displacement at 
midpoint v(0) and beam end v(L/2) (a), half-space reaction close to beam end (b). 

 
Biot (1937) studied the behaviour of an infinite Euler-Bernoulli beam on an 
elastic foundation, loaded by a concentrated force P, considering both the case 
of a two-dimensional foundation and of a three-dimensional foundation. In the 
latter case, the maximum bending moment is expressed by: 

Mmax = M(0) = 0.166 Pb [16 k Db / (E b
4)]0.277, (4.74) 

where k  is a parameter set equal to 1 in case of uniform pressure distribution 
along beam width and equal to 1.13 in case of uniform deflection along beam 
width. The present model, characterized by pressures varying both in x and y 
direction (ny = 3), is quite close to the hypothesis of uniform deflection along 
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beam width. Then, setting χ equal to 10, 30 and 100, bending moments at beam 

midpoint are evaluated for increasing αL and compared to Eq. 1.37 with k  = 
1.13 (Fig. 4.30). Eq. 1.37 is in good agreement with the results of the present 
analysis for αL greater than 3. 
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Fig. 4.30 – Foundation beam loaded by a concentrated force P at midpoint. Bending moment 
at midpoint for three values of L/b and increasing αL. Continuous lines for the present mode, 

dashed line for Biot solution (Eq. 1.37). 

 



 210

4.6.2 Foundation beam loaded by a uniform force distribution 

The case of a beam on elastic half-space loaded by a uniform force distribution q 
along its entire length (Fig. 4.31) is now considered. 
 

 
 

Fig. 4.31 – Beam on elastic half-space loaded by a uniform force distribution. 

 
Adopting nx = 28, nx,end = 1 and ny = 3, beam displacements, surface pressures 
and bending moments along beam length are determined for χ = 10 and different 
αL values. 
For αL = 1, Fig. 4.32a shows that beam displacement is characterized by a rigid 
body vertical translation and a small deflection. Half-space pressures presented 
in Fig. 4.32b are typical of a rigid indenter and, moreover, reaction and bending 

moment are in this case not influenced by . For αL = 5, reaction (Fig. 4.32e) is 

characterized by singularities at beam ends but soil reaction close to beam 
midpoint are larger than those of the previous case. Both displacement (Fig. 

4.32d) and reaction are not influenced by  , whereas bending moment (Fig. 

4.32c) decreases as   increases. Displacement and reaction obtained with αL = 

10 (Figs. 4.33a and b) are quite similar to those obtained with αL = 5, whereas 
bending moment (Fig. 4.33c) is quite different and characterized by large values 
close to L/4. For αL = 100, the results are presented only for the Euler-Bernoulli 
beam case (Figs. 4.33d-f) due to the singular behaviour of matrix in Eq. 4.66. 
Beam displacements (Fig. 4.33d) are quite different to those determined with 
Love analytic solution (Eq. 4.21 for y = 0), which are shown with crosses in the 
figure. Half-space reaction (Fig. 4.33e) is nearly constant along beam length 
excluding singularities at beam ends, whereas bending moment (Fig. 4.33f) is 
characterized by two peaks close to beam ends.  
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Fig. 4.32 – Foundation beam loaded by a uniform force distribution. Vertical displacement (a, 
d), half-space reactions (b, e) and bending moment (c, f) along the beam for αL = 1 (a, b, c) 

and αL = 5 (d, e, f). 
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Fig. 4.33 – Foundation beam loaded by a uniform force distribution. Vertical displacement (a, 
d), half-space reactions (b, e) and bending moment (c, f) along the beam for αL = 10 (a, b, c) 

and αL = 50 (d, e, f). 
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Fig. 4.34 – Beam on half space loaded by a uniform force distribution. Displacement at 

midpoint and at beam end, half-space pressure at midpoint for increasing αL. 

 
Fig. 4.34a shows beam displacement at midpoint and at beam ends for 
increasing αL. For beam on stiff soil, both displacement tend to be similar, due 
to the rigid punch behaviour assumed by the beam. Increasing αL, displacement 
at midpoint tend to converge to a constant value close to 2.4 q/E, which is 
smaller than 2.51 q/E = 0.8 π q/E, which is the solution of a rectangular loaded 
area having a/b = 10 (Love 1929), whereas displacement at beam ends is quite 
close to the analytic solution (1.48 q/E = 0.47 π q/E). 

4.6.3 Foundation beam loaded by a concentrated moment at midpoint 

 

 
 

Fig. 4.35 – Foundation beam loaded by a concentrated moment C at midpoint. 

 
The case of a foundation beam loaded by a concentrated moment C at midpoint 
is finally considered. Adopting nx = 28, nx,end = 1 and ny = 3, beam displacements, 
surface pressures and bending moments along beam length are determined for χ 
= 10 and different αL values. 
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Fig. 4.36 – Foundation beam loaded at midpoint. Vertical displacement (a, d), half-space 
reactions (b, e) and bending moment (c, f) along the beam for αL = 1 (a, b, c) and αL = 5 (d, e, 

f). 
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Fig. 4.37 – Foundation beam loaded at midpoint. Vertical displacement (a, d), half-space 
reactions (b, e) and bending moment (c, f) along the beam for αL = 10 (a, b, c) and αL = 100 

(d, e, f). 
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Figs. 4.36a-c show results relative to αL = 1. In this case results do not depend 

appreciably on  . Beam displacement is a rigid body rotation, whereas reactions 

present singularities near beam ends. For αL = 10, Figs. 4.37a-c show results 

quite different and depending on  . For αL = 100, Figs. 4.37 d-f show results 

obtained with 0  (Euler-Bernoulli beam). In this case, the displacement, 

reaction and bending moment are concentrated close to beam midpoint, then a 
large number of subdivisions along x axis is necessary in order to obtain 
accurate results. 
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4.7 Buckling analysis of beams on 3D elastic half-space 

 

The buckling of Euler-Bernoulli beams ( 0 ) is considered. In order to obtain 

accurate results, the following examples adopt the same beam and surface 
discretizations considered for the static cases. Starting from a beam with aspect 
ratio χ = 10, critical loads and mode shapes are determined for increasing αL 
while considering three different end restraint cases. Then, similar analyses are 
carried out varying parameter χ. 
 

4.7.1 Beam with sliding ends 

The buckling of a beam with sliding ends on elastic half-space is considered. In 
Figs. 4.38a and b dimensionless critical loads Pcr/Pcr,E are plotted versus αL3 and 
αL, respectively. The curves appear to have a behaviour quite similar to the 
results obtained for the same beam on elastic half-plane. Critical loads increase 
for increasing αL and present crossing points and curve veering. 
For αL equal to zero, critical loads converge to the values: 

Pcr,m(0)/Pcr,E = m2   with m = 1, 2, 3… (4.75) 

typical of a beam with pinned or sliding ends without supporting medium. Fig. 
4.38a clearly shows that each critical load is linearly dependent on αL3, then an 
expression similar to the one defined by Reissner (1937) or Gallagher (1974) 
may be found. Normalized critical loads turn out to be proportional to the square 

of the beam-subgrade parameter αL. Fig. 4.38c shows the ratio Pcr/[Pcr,E (L)2] 

versus the parameter αL; for increasing αL, the ratios corresponding to the first 
eigenvalue converge to 

2
Ecr,cr,3 )α(143.0 LPP  . (4.76) 

which is obviously different with respect to the corresponding one determined 
for the case of the beam on elastic half-plane. 
Figs. 4.39a-d show first and second mode shapes for increasing αL. Similarly to 
the case of the beam with sliding ends on elastic half-plane, mode shapes are 
sinusoidal and characterized by an increasing number of half-waves for 
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increasing αL. Moreover, half-waves amplitude is not uniform along beam 
length, but it is bigger close to beam midpoint with respect to its ends. 
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Fig. 4.38 – Dimensionless critical loads Pcr versus αL for a beam with sliding ends on elastic 
half-space. 
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Fig. 4.39 – First (continuous line) and second (dashed line) mode shapes for a beam with 

sliding ends and L equal to 1 (a), 5 (b), 10 (c) and 25 (d). 

 
 

4.7.2 Beam with pinned ends 

The buckling of a beam with pinned ends on elastic half-space is considered. In 
Figs. 4.40a and b, dimensionless critical loads Pcr/Pcr,E are plotted versus αL3 and 
αL, respectively. For αL equal to zero, critical loads converge to the values given 
in Eq. 30. Critical loads increase for increasing αL and present crossing points 
and curve veering, however first critical load appears quite far from other 
results, whereas second critical load is quite close to the third and fourth ones, 
differently with respect to the beam with pinned ends on elastic half-plane. 
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Considering Fig. 4.40c, for increasing αL, the first critical load converges to the 
following value: 

2
Ecr,cr,1 )α(095.0 LPP  , (4.77) 

whereas the second critical load converges to 

2
Ecr,cr,2 )α(136.0 LPP  , (4.78) 

which is smaller but quite close to Eq. 4.76, reached by the third and fourth 

critical loads. In particular, Pcr,2 (L)2 is 95% of Pcr,3 (L)2, this ratio is bigger 

with respect to the corresponding critical loads obtained for the beam on elastic 
half plane (0.106 / 0.121 = 88%). It is worth noting that values in Eqs. 4.78 and 
4.76 are reached for large values of αL and in Fig. 4.40c, the second, third and 
fourth critical loads can not be distinguished. 
 
Figs. 4.41a-f show first and second mode shapes for increasing αL. For αL = 5 
(Fig. 4.41a), first and second mode shapes are sinusoidal, whereas for αL = 10 
(Fig. 4.41b), first and second mode shapes can not be described by sinusoidal 
functions, similarly to the case of a beam with pinned ends on elastic half-plane. 
For αL = 15 (Fig. 4.41c), the first mode shape is characterized by large 
deflection at beam ends, but the second mode shape is sinusoidal. Increasing αL, 
the first mode shape has the same behaviour found for the beam with pinned 
ends on elastic half-plane, characterized by large deflections at beam ends and 
negligible displacements near beam midpoint. In this case however, for αL = 20, 
25 and 50 (Fig. 4.41d-f), the second mode shape is characterized by large 
deflections at beam ends and sinusoidal deflections not negligible along its 
length. This behaviour may justify the corresponding critical load (Eq. 4.78), 
which is quite close to the third and fourth critical loads and to Eq. 4.76. 
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Fig. 4.40 – Dimensionless critical loads Pcr versus αL for a beam with pinned ends on elastic 
half-space. 
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Fig. 4.41 – First (continuous line) and second (dashed line) mode shapes for a beam with 

pinned ends and L equal to 5 (a), 10 (b), .15 (c) and 20 (d), 25 (e) and 50 (f). 
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4.7.3 Beam with free ends 

The buckling of a beam with free ends on elastic half-space is finally 
considered. In Figs. 4.40a and b, the dimensionless critical loads Pcr/Pcr,E are 
plotted versus αL3 and αL, respectively. Fig. 4.40c shows the ratio 

Pcr/[Pcr,E (L)2] versus the parameter αL. Critical loads increase for increasing 

αL and present crossing points and curve veering. First and second critical loads, 
which are separated with respect to other results, present some crossing points 
and both converge to the value given in Eq. 4.77 for increasing αL, whereas the 
third and fourth eigenvalues converge to Eq. 4.76. 
 
Figs. 4.43a-d show first and second mode shapes for increasing αL. Similarly to 
the case of the beam with free ends on elastic half-plane, for αL = 1 (Fig. 4.43a) 
the first mode shape represents a rigid body rotation and the corresponding 
critical loads tends obviously to zero, whereas the second mode shape is 
sinusoidal. For αL = 5 (Fig. 4.43b), after the first intersection point between first 
and second critical load curves, the fist mode shape is sinusoidal, but the second 
one is antisymmetric and characterized by large displacements at beam ends. 
Increasing αL (Figs. 4.43c and d), both mode shapes are characterized by large 
displacements at beam ends and negligible deformations close to beam 
midpoint. The symmetric mode shapes presented in Figs. 4.43a-d turn out to be 
obviously coincident with the first mode shape obtained for the beam with 
pinned ends. 
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Fig. 4.42 – Dimensionless critical loads Pcr versus αL for a beam with free ends on elastic 
half-space. 
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Fig. 4.43 – First (continuous line) and second (dashed line) mode shapes for a beam with free 

ends and L equal to 1 (a), 5 (b), 10 (c) and 25 (d). 
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4.7.4 Critical loads of a beam on stiff half-space varying L/b ratio 

Varying χ, critical loads follow the same behaviour described for χ = 10 for all 
the beam cases considered. Then the buckling of a beam with a generic L/b ratio 
on a three-dimensional half-space turns out to be similar to the behaviour of any 
beam on an elastic support. However, the values presented in Eqs. 4.77, 4.78 
and 4.76, which correspond to the dimensionless critical load of a beam on very 

stiff soil (large L), strictly depend on χ. Then, varying χ, dimensionless critical 

loads are determined for increasing L. Tab. 4.4 collects Pcr,1/[Pcr,E (L)2], 

Pcr,2/[Pcr,E (L)2], and Pcr,3/[Pcr,E (L)2] values varying χ. 

 

χ = L/b 
Pcr,i/[Pcr,E (L)2] 

2D 
(§1) 0.1 1 2 3 4 5 10 50 100 

1 0.083 0.083 0.084 0.086 0.087 0.088 0.089 0.095 0.124 0.147

2 0.106 0.107 0.112 0.115 0.119 0.122 0.125 0.136 0.194 0.240

3 0.121 0.122 0.124 0.126 0.128 0.130 0.133 0.143 0.199 0.244

 
Tab. 4.4 – Dimensionless critical loads varying χ. 

 
Dimensionless critical loads increase for increasing χ; moreover, the second 
dimensionless critical load tends to be more and more close to the third one 
increasing χ. For example, for χ = 1 the ratio between Pcr,2 and Pcr,3 is close to 
0.9, whereas for χ = 100 the same ratio is close to 0.98. Then, increasing χ, the 
second critical load tends to converge to the third and fourth one. This behaviour 
is clearly shown in Fig. 4.45 as, where, for increasing χ, the curves 
corresponding to the second and the third critical load tend to converge. 
Figs. 4.44a-f show the second mode shapes for a beam with pinned ends for αL 
= 50 and increasing χ. It is clear that the large beam deflections are located close 
to beam ends in all the cases considered, but, increasing χ, beam displacements 
along beam length become bigger and bigger. In particular, Figs. 4.44e and f 
show that beam deflections turn out to be sinusoidal with different amplitude 
along beam length and half-wave length appears to be constant. This behaviour 
is quite similar to the one that can be obtained with a beam with sliding ends and 
increasing αL. Moreover, this behaviour turns out to be quite similar to the one 
of the beam with pinned ends on Winkler half space (§ 1.5.3.4), which is 
characterized by the second critical load converging to the same value of the 
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third and fourth eigenvalues and the corresponding mode shape is sinusoidal 
over the entire beam length. 
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Fig. 4.44 – Second mode shape for a beam with pinned ends, αL = 50 and χ = 10 (a), 20 (b), 
50 (c) and 100 (d). 
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For low values of χ, the beam is characterized by a very short length with 
respect to its width. However, buckling modes along beam width are not 
allowed by the model adopted; then, dimensionless critical loads for χ < 1 can be 
also determined. Results are shown in Fig. 4.45 together with values collected in 
Tab. 4.4. 
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Fig. 4.45 – First three dimensionless critical loads of a beam on stiff half-space versus χ 

 
The case of a beam having a large width with respect to its length, neglecting 
deformations along beam width, is quite close to a plane strain condition. In fact, 
for χ tending to zero, critical loads Pcr,i for i = 1, 2 3, are very close to the 
corresponding ones obtained for the beam on elastic half plane: 

PA 2D 2
cr,Ecr,1 0.083 ( )P P L  , (4.79a) 

PA 2D 2
cr,Ecr,2 0.106 ( )P P L  , (4.79b) 

PA 2D 2
cr,Ecr,3 0.121 ( )P P L  . (4. 79c) 
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Conclusions 
 
In the first chapter of this thesis, the simple and effective FE-BIE coupling 
method proposed by Tullini and Tralli (2010) is applied to stability problems of 
Euler-Bernoulli beams on elastic half-plane with finite length, different end 
restraints and for a beam with a weak section at midpoint. The parameter αL has 
been adopted to describe the interaction between beam and half-plane; low 
values of αL represent short beams on soft half-plane, whereas large values of 
αL represent long beams on stiff half-plane. The present model has turned out to 
be effective in evaluating buckling loads and the corresponding mode shapes; 
moreover, the model has turned out to be faster than traditional models, 
characterized by the half-plane modelled by 2D FEs. For increasing beam 
slenderness and/or soil stiffness, a variation of critical loads proportional to 

(αL)2 has been found. For low values of L, the well-known analytic results 

derived by Reissner (1937) and Murthy (1973) for a beam of infinite length on 
elastic half-plane are quite similar to those of a beam with either pinned or 

sliding ends; whereas, for large values of L, Reissner results are well achieved 

by beams with sliding ends. Comparing the smallest critical load of a beam with 
sliding ends on half-plane with that of a beam on Winkler half-space, a relation 
between half-plane parameters and Winkler subgrade constant has been 
determined. Then, analyses performed for beams with pinned or free ends show 
that the first two critical loads are smaller than those obtained by Reissner. The 
corresponding mode shapes are characterized by large amplitudes close to beam 
ends, whereas third and fourth critical loads converge to the value given by 
Reissner. Similar behaviour has been found for beams with pinned or free ends 
on Winkler half-space, if rigid body vertical displacements are allowed, as it was 
underlined by Goodier and Hsu (1954). Moreover, the solution derived by 
Gallagher (1974) for the buckling of a beam with pinned ends on elastic half 
plane has found to be almost coincident with the results obtained with the 
present model for a beam with sliding ends. Then, the present model has been 
used for performing nonlinear incremental analysis of beams including second 
order effects and finally, nonlinear incremental analyses of rectangular frames 
with compressed columns and free or pinned foundation ends have been 
considered. As for pipes with pinned foundation ends, snapthrough instability is 
significant for pipes stiffer than the soil. The most important results showed in 
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this chapter, such as the new critical load values related to mode shapes with 
large displacements close to beam ends and the nonlinear analysis of pipes, have 
recently been presented in Tullini et al. (2013). 
Then, in the second chapter, the simple and effective finite element model 
adopted in Tullini and Tralli (2010) has turned out to be fast and effective also 
for the determination of critical loads of Timoshenko beams. In particular, two 
beam slenderness cases have been considered (L/h = 5 and 15). The results of 
the present model have been compared with those obtained with a traditional 2D 
FE model. For a simply supported beam without supporting soil, numerical 
results are in excellent agreement with the classical analytical solutions. For 
beams on stiff soil, i.e. for large values of αL, the buckling loads converge to the 
critical load Pcr,∞, which is also reached by beams on Winkler half-space 
increasing Winkler subgrade constant. However, buckling loads determined with 
the 2D finite element model converge to values smaller than Pcr,∞. In particular, 
for the slender beam on stiff soil (L/h = 15, αL = 25), the first and second 
buckling modes are characterised by localization of deformations near beam 
ends; whereas, for short beams on stiff soil (L/h = 5, αL = 25), the first two 
buckling modes present short wavelength depending on mesh size. In this case 
the buckling mode is localized in the upper part of the beam and a beam model 
is unable to describe such a behaviour. Nonetheless, the Timoshenko beam 
model appears to be very useful in determining buckling loads in good 
agreement with the reference solutions. Conversely, the Euler-Bernoulli beam 
model provides satisfactory results for long beams on soft soil. The results 
obtained in this chapter have recently been proposed and discussed by Tullini et 
al. (2012b). 
In the third chapter, analyses of slender beams and frames on elastic half-plane 
have been performed including material nonlinearity for the structure. For this 
purpose, the efficient procedure proposed by Hasan et al. (2002) for pushover 
analysis of frames has been adopted. Material nonlinearity has been introduced 
into the discrete model by lumping it at the end of beam FEs without increasing 
the total number of degrees of freedom, but simply modifying the stiffness 
matrices of the FEs, adopting the procedure commonly used for modelling semi-
rigid connections introduced by Monforton and Wu (1963), Xu (1992) and 
improved by Shakourzadeh et al. (1999). Incremental analyses of beams 
including material nonlinearity have been carried out up to the development of a 
three-hinge mechanism. Then, a pipe on half-plane representing a reinforced 
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concrete box culvert, built to grant the flow of a stream under a railway, has 
been studied. Potential plastic hinges have been placed at beam-column 
connections and at beams midpoint. Three incremental analyses have been 
performed by increasing service loads and lateral earth pressures up to the 
development of a collapse mechanism. The present model has turned out to be 
simple and effective for the determination of the ultimate loads of the structure, 
which are smaller than the corresponding limit loads, determined applying the 
collapse mechanism to a portal frame, due to the soft soil support under the pipe. 
Finally, in the fourth chapter, the static and buckling analyses of beams on a 3D 
half-space have been considered. Starting from Boussinesq solution for the 
displacement generated by a normal force acting on half-space surface, the 
Galerkin boundary element method has been considered by discretizing surface 
pressures and displacements with a piecewise constant function. The problem of 
the indentation of a rigid punch on the half-space has been solved and the 
stiffness of a square foundation turned out to be in excellent agreement with 
other numerical solutions. Moreover, displacements generated by a uniform 
pressure over a rectangular area turned out to be in good agreement with Love 
(1929) analytic solution. Then, a Timoshenko beam with finite length on elastic 
half-space has been studied by extending the approach proposed by Tullini and 
Tralli (2010) to the half-space case. The parameter αL has been considered 
together with the new parameter χ, representing the ratio between beam length 
and width. Several examples have been performed in order to determine beam 
displacement, beam bending moment and half-space reactions. Finally, buckling 
analyses of Euler-Bernoulli beams on elastic half-space with different end 
restraints have been performed. Critical loads and mode shapes turned out to 
have a behaviour similar to that found in the first chapter and, for decreasing χ, 
the values of the first three critical loads of a beam with pinned ends turned out 
to be quite close to those of the same beam on half-plane. 
It is worth noting that a traditional model for representing structures on elastic 
half-space is very difficult to realize and study. Therefore, the present model 
represents a promising tool for studying three dimensional frames on half-space, 
performing elastic analyses or including second order effects due to axial loads. 
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4.8 Appendix A1 – Discrete model for a beam on 2D half-space 

For a prismatic Timoshenko beam element having length li, subjected to uniform 
loads p(x) and with a constant soil pressure, element matrices are: 

2 23
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with )(12 2
ibbbi lAGkD , ai = (2 + i) i,  

T22 ]12,2,12,2[ iiiii llllp F , (A.3) 

T22 ]12,2,12,2[ iiiii llll H , (A.4) 
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where G(x) = x2/2 ln|x|. 

Setting i = 0, biK  and giK  turn out to be equal to the stiffness and geometric 

matrix o fan Euler-Bernoulli beam element. 
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4.9 Appendix A2 – Discrete model for a beam on Winkler half-
space 

The idealized model of half-space proposed by Winkler (1867) assumes that the 
deflection v at a point of the surface is directly proportional to the stress or soil 
pressure r applied at the same point and independent of stresses applied at other 
locations: 

)()( xvcxr   (A.7) 

where c is a constant known as the Winkler constant or the modulus of subgrade 
reaction. Physically, Winkler’s half-space idealization model consists on a 
system of elastic springs mutually independent and having elastic constant equal 
to c. 
 
The potential energy of a beam resting on a Winkler soil and considering second 
order effects due to axial load is given by same expression adopted for the beam 
on elastic half-plane, however in this case reactions r are given by Eq. A.1.32, 
then the total potential energy becomes: 

2( ) ( ) ( ) d [ ( )] de L L
v b p x v x x c v x x     , (A.8) 

where Πe is the energy of the Timoshenko beam. 
Adopting the same discrete model defined for the half-plane case, the total 
potential energy, written in discrete form, is given by: 

1( ) ( )
2

T T
Wb b   q q K K q q F  (A.9) 

Where KW is the stiffness matrix of the Winkler half-space. 
Considering a generic Timoshenko beam element of length li, the corresponding 
foundation stiffness matrix is (Yokoyama 1987): 

2

,11 ,12 ,13 ,14

2 2
,22 ,23 ,24

,33 ,34

2
,44

4 4

840(1 ) 4

sym

i iwi wi wi wi

i i iwi wi wii
Wi

i iwi wi

i wi

k l k k l k

l k l k l kcl
k l k

l k

 
 
 
 
 
 
  



 



K  (A.10) 



 235

2
,11 ,33

2
,12 ,34

2
,13

2
,23 ,14

2
,22 ,44

2
,24

78 147 70

44 77 35

27 63 35

26 63 35

8 14

6 14 7

i iwi wi

i iwi wi

i iwi

i iwi wi

i iwi wi

i iwi

k k

k k

k

k k

k k

k

     

     

    

     

    

    

 (A.11) 
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4.10 Appendix A3 – Discrete model for a layer on 2D half-space 

A simple discretization of the layer can be created by subdividing the domain 
horizontally and vertically in nel,x and nel,y subdivisions, respectively, obtaining a 

mesh of yelxelel nnn ,,   quadrilateral elements having length li and height hi. 

For simplicity, a mesh of equal quadrilateral elements is considered (Fig. 27), in 
order to adopt isoparametric quadrilateral elements to represent layer behaviour. 
 

 
Fig. A.1 – Layer subdivided into 4 × 8 = 32 equal quadrilateral elements. 

 

Each quadrilateral element is defined by four nodes in natural coordinates (ξ,η), 
which are interpolated as 

4 4
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where Ni are the Lagrange shape functions: 
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which are also adopted for interpolating the displacement field in each element 
by the nodal displacements: 
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Displacements can also be expressed in matrix form as 
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And the strain vector is obtained by derivation of the displacements: 
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The potential energy in discrete form can be defined at each element by 

2D 2D1( )
2

T T
e e e ebe b  q q K q q F . (A.17) 

The element stiffness matrix and the vector of nodal forces are obtained as: 

2D 2D
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,T T
ebe
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where A and s are the area and the boundary of the generic element of the layer. 
The integral in the stiffness matrix is computed numerically by Gauss 
quadrature in two dimensions. Considering 2 2  Gauss points, for example, the 
stiffness matrix turn out to be: 

1 1 2 2
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det detT T T
i jbe
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where det J is the determinant of the Jacobian matrix, introduced for relating 
natural coordinates and global coordinates and wi, wj are the Gauss weights. 
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4.11 Appendix A4 – Discrete model for a beam with semi-rigid 
ends (Monforton-Wu-Xu)  

l

@ @

R1 R2

 
Fig. A.2 – Beam-column element with semirigid ends. 

 
Considering a generic beam-column element having semi-rigid connections at 
its ends (Fig. A.2), r1 and r2 are the flexural rigidity factors at each end: 
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Where Db and l are beam bending stiffness and length, respectivel 
Then, first and second order correction matrices Ce and Cg are given by 
(Monforton and Wu 1963, Xu 1992, Hasan et al. 2002): 
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4.12 Appendix A5 – Discrete model for a beam on 3D half-space 

 

Matrix G 

 
 

Fig. A.3 – Rectangular half-space surface, subdivided in rectangular sub-elements. 

 
Considering a half-space surface subdivided by rectangular elements (Fig. A.3), 
the components of the flexibility matrix G of the half-space are: 
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where d = [(x − ξ)2 + (y − η)2]1/2 represents the distance from the origin of the 
global coordinate system of a generic point into the surface sub-element. The 
solution of the quadruple integral on a generic subdivision is: 
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where 

F(x, ξ) = F0(x, ξ) + F1(x, ξ) (A.26) 
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1 0( , ; , ) for orF x y x y       (A.28b) 

 

Matrix H 

(a)   (b) 
 

Fig. A.4 – Discretization of the contact surface between beam and half-space. One element 
along beam width (a), four equal elements along beam width (b). 
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Considering one subdivision (ny = 1) along beam width (Fig. A.22a), matrix H 
for the generic ith element is: 

1 2 2 T[ 2, 12, 2, 12]i i i i ib l l l l H , (A.29) 

where li = dxi. 
Considering several subdivisions ny along beam width (Fig. A.22b), the generic 
matrix H is given by the following expression: 
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Then, adopting a power graded mesh with β = 3 and n = 4 and joining the 
subdivisions close to beam y axis, ny = 3 subdivisions are obtained (Fig. A.5a) 
and the corresponding width turn out to be: 

dy1 = dy3 = b/16,   dy2 = 7 b / 8. (A.31) 

For ny = 5 (Fig. 5b), dyi values are: 

dy1 = dy5 = b/54,   dy2 = dy4 7 b / 54,   dy3 = 19 b / 54 (A.32) 
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Fig. A.5 – Contact surface between a foundation beam and the half-space subdivided into 8 

elements along its length and 3 (a), 5 (b) elements along its width. 
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