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1. INTRODUCTION

The starting point of this work was the notion of a torsor which comes from prin-
ciple bundles in classical geometry. A torsor is a principal homogeneous space over
a group, i.e. a G-set X where G is a group acting freely and transitively over X. An
idea due to Baer which goes back to the 1920’s allows to reformulate the definition
of a torsor without specifying the group G: a torsor is a set, sometimes called herd,
X together with a structure X x X x X — X satisfying some parallelogram relations
(see [Ba, p. 202] or [Pr, p. 170]).

A noncommutative analogue is the notion of a Hopf-Galois object as introduced
by Kreimer and Takeuchi [KT]. Let H be a Hopf algebra, flat over the base
ring k, a (right) H-Galois object A is a (right) H-comodule algebra such that the
Galois map 8 : A® A — A® H given by B(z®y) = zyo) ® ya) is bijective
(where § : A - A® H : x — x(0) ® x¢1) is the H-comodule structure of A) and
Ae) = fp c A|6(z) =0 ® 1y} = k.

A similar concept for the noncommutative case was introduced by Grunspan in [G]
as the notion of a quantum torsor. Together with the definition, Grunspan gives
the proof that every quantum torsor gives rise to two Hopf algebras over which it
is a bi-Galois extension of the base field. Conversely, Schauenburg in [Sch4] proves
that every Hopf-Galois extension of the base field is a quantum torsor in the sense
of Grunspan.

The axioms defining a quantum torsor were simplified allowing to prove anyway
a correspondence between faithfully flat torsors and Hopf-(bi)Galois object (see
[Sch1]). Moreover, Schauenburg in [Sch4] could prove that the two Hopf algebras
coming from a torsor are Morita-Takeuchi equivalent, i.e. their categories of co-
modules are equivalent. Another equivalence between module categories has been
studied in [BMV] and it is related with Morita contexts defined in the pure categor-
ical setting. This gave the hint to investigate a special class of herds at this level of
generality.

The simplified version of the torsor axioms admits a generalization to arbitrary
Galois extensions (not only of the base ring or field) and gave rise to different results
which we try to summarize here. Hopf Galois extensions of an arbitrary algebra B
by introducing the notion of a B-torsor in [Sch1], Galois extensions by bialgebroids
by means of A-B-torsors in [Ho, Chapter 5] and [BB], Galois extensions by corings
using the notion of a pretorsor in [BB] and Galois comodules of corings arising from
entwining structures using the notion of a bimodule herd in [BV]. Generalizing the
notion of pretorsor given in [BB], pretorsors over two adjunctions are introduced in
[BM, Section 4]. Such categorical setting is the one we choose for this work trying
to develop the notion of pretorsor and herd at this pure general level.

The first aim of this thesis is to give a unified and self-contained treatment of a
number of known results related to the theory of herds. This gives us the technical
tools to deal with the second aim of our work which is to obtain some new results
about herds and coherds in the pure categorical setting. A herd at this level is a
pretorsor with respect to a formal dual structure M = (A, B, P,Q, 04, 0®). This is
given by two monads A and B over two different categories, two bimodule functors P
and ) with respect to the monads and functorial morphisms o and o satisfying
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linearity and compatibility conditions. In particular we refer to the study of the
special class of tame herds, which yields a correspondence with Galois functors
(generalizing the historical results we started with). Moreover, under the regularity
assumption on the formal dual structure related to a herd, one can construct a
coherd. Conversely, beginning with a coherd over a regular formal codual structure,
a herd can be obtained. By applying twice this process, one can start with a formal
dual structure and a herd, construct a formal codual structure and a coherd and
then compute also a new formal dual structure. Under the extra assumption that the
starting formal dual structure is also a Morita context, the final formal dual structure
computed from a tame herd comes out to be closely related to the starting one. We
consider a few cases in which the monads are in fact isomorphic. As an application,
we develop some examples. The first is given by a right Galois comodule from which
we derive the herd. Then we simplify the setting and we study the Schauenburg case
of A/k a faithfully flat Hopf-Galois extension with respect to H. In this example we
can compute the comonads associated to the herd and the coherd. The last example
is a non trivial example of a coherd. It allows to compute the two monads associated
and the equivalence between the module categories with respect to these monads.
Finally we investigate the bicategory of balanced bimodule functors which are one
of the most useful tools in this work and is inspired by the balanced bimodules in
the classical sense.

We developed the portions of the theory of herds, resp. coherds, we found more
suitable for our purposes.

In the first part we collect some well-known results including proofs. It is about
equalizers and coequalizers, contractible equalizers and coequalizers and notation
for adjunctions.

Then we concentrate, in the second section, the needed materials for the se-
quel about monads. Similarly we do for comonads. At this point we also include
the Beck’s Tripleability Theorem and the generalized version which introduce the
Eilenberg-Moore comparison functor and the categories of modules and comodules.

We reserve a short section to the notion of distributive laws and above all the
correspondence between distributive laws and liftings of monads and comonads.

The next section introduces the notion of pretorsor and herd bringing all the
details and the results needed to prove the equivalence between herds and Galois
functors in the tame case. The same has been done for the dual case of copretorsors
and coherds.

Later on a section dedicated to a new fundamental functor built from a herd
and a coherd respectively and then the theorem relating the starting formal dual
structure and the one obtained after applying the two processes from a herd and
from a coherd.

One section is dedicated to the equivalence between the module categories ob-
tained from a copretorsor and to the equivalence between the comodule categories
obtained from a pretorsor.

The following section is a collection of the examples we provide in this work, about
herds and coherds first and then applications of Beck’s Theorem and of its gener-
alization. In particular, the example of a coherd was produced during some useful
discussions with T. Brzezinski. In the subsection dedicated to Galois comodules we
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need some material related to Gabriel-Popescu theorem which is contained in the
appendix.

The last part is the first outcome of a joint work with J. Gomez-Torrecillas.
It is devoted to the introduction of the bicategory of balanced bimodule functors
BIM (C). First we fix some notation and terminology about 2-categories and bi-
categories. Then we define the bicategory of balanced bimodule functors and finally
we study how it can be related to entwined modules and comodules.

2. PRELIMINARIES

2.1. Some results on equalizers and coequalizers. In the following, most of
the computations are justified. We denote by the name of a functorial morphism,
its naturality property.

DEFINITIONS 2.1. Let o : B — C be a functorial morphism. We say that « is

e a functorial monomorphism, or simply a monomorphism, if for every 3, :
A — B such that ao = a0~ we have § = ~.

e a functorial reqular monomorphism, or simply a regular monomorphism, if
« is the equalizer of two functorial morphisms.

e a functorial epimorphism, or simply an epimorphism, if for every g,v: C —
D such that foa = oa we have f = .

e a reqular epimorphism, or simply a regular epimorphism, if « is the coequal-
izer of two functorial morphisms.

DEFINITION 2.2. A parallel pair o, : FF — F’ is said to be reflexive if the two
arrows have a common right inverse § : F' — F.

DEFINITION 2.3. A reflezive equalizer is an equalizer of a reflexive parallel pair.
DEFINITION 2.4. A reflexive coequalizer is a coequalizer of a reflexive parallel pair.

LEMMA 2.5. Let F,G, H be functors and let f: F -G, 9g:G— H andh: F — H
be functorial morphisms such that h = go f. Assume that f is a functorial isomor-
phism. Then h is a reqular epimorphism if and only if g is a reqular epimorphism.

Proof. First, let us assume that ¢ is a regular epimorphism, i.e.
(H,g) = Coequp,, (o, 3). Then we have

hofloa=gofofloa=gofofloB=hoflop.

Now, let x : F — X be a functorial morphism such that y o f~'oa = yo f~1opg.
By the universal property of the coequalizer (H,g) = Coequp,, (o, 3), there exists
a unique functorial morphism ¥ : H — X such that Yo g = x. Then, by composing
to the right with f we get

Xoh=YXogof=xoflof=x

Moreover, let x’ be another functorial morphism such that y’oh = y. Since we also
have X o h = x we have

Xogof=xoh=x=Xoh=YXogof



and since g o f is an epimorphism, we deduce that x’ =X so that
(H,h) = Coequp,, (foa, fof).

Conversely, let us assume that A is a regular epimorphism, i.e.
(H, h) = Coequp,, (a,b). Then we have

gofoa=hoa=hob=go fob.

Now, let £ : G — X be a functorial morphism such that £ o foa =& o fob. By
the universal property of (H,h) = Coequg,, (c,b), there exists a unique functorial
morphism € : H — X such that £oh = &o f,ie. £ogo f=E&o f and since f is
an isomorphism we deduce that € o ¢ = &. Let us assume that there exists another
functorial morphism ¢ : H — X such that & o g = £. Since we also have o g = ¢
we get that

goh=¢gogof=cof=Eogof=Eoh
and since h is an epimorphism, we deduce that & = ¢ Therefore, (H,g) =
Coeunun (f ca, f o b) D

LEMMA 2.6. Let F',G, H be functors and let f: F —- G, g9g:G— H andh: F — H
be functorial morphisms such that h = go f. Assume that g is a functorial isomor-
phism. Then h is a reqular epimorphism if and only if f is a regular epimorphism.

Proof. Assume first that f is a regular epimorphism, i.e. (G, f) = Coequp,, (a, 3).
Then we have

hoa=gofoa=gofoB=hop.
Let £ : F — X be a functorial morphism such that £ o a = £ o 3. By the universal
property of the coequalizer (G, f) = Coequp,, (a, ), there exists a unique functorial
morphism £ such that £ o f = £ Then we have

fogloh=C¢oglogof=CEof=¢
so that & factorizes through h via £o0g~!. Moreover, if there exists another functorial

morphism & : F' — X such that & o h = £, since we also have £ = o g~ ' o h we
have

fogof=Coh=¢(=Cog 'oh=Cog logof=Cof

and since f is epi we get
from which we deduce that

Therefore we obtained

(H, h) = Coequg,, (o, 3) .
Conversely, let now assume that h is a regular epimorphism, i.e.
(H,h) = Coequp,, (a,b). Then we have

gofoa=hoa=hob=gofob
and since g is mono we get that

foa=fob.
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Let now y : ' — X be a functorial morphism such that y oa = y ob. by the
universal property of the coequalizer (H, h) = Coequp,, (a,b) there exists a unique
functorial morphism X : H — X such that Yo h = x and hence Yo go f = x so that
x factorizes through f via Y o g. Moreover, let ¥’ : F — X be another functorial
morphism such that x’ o f = x. Since we also have Y o h = xy we have

Xogloh=xoglogof=xof=x=Xoh

and since h is epi we get that X’ o g~ =¥ from which we deduce that

X' =Xog.
Therefore (G, f) = Coequpy, (a,b) . O

LEMMA 2.7. Let A and B be categories, let F, F' : A — B be functors and o, 3 : ' —
F’ be functorial morphisms. If, for every X € A, there exists Coequgz(aX, 5X),

then there exists the coequalizer (C,c) = Coequp,, (o, B) in the category of functors.
Moreover, for any object X in A, we have (CX,cX) = Coequg(aX, 5X).

Proof. Define a functor C': A — B with object map (CX,cX) = Coequgz(aX, X)
for every X € A. For a morphism f : X — X’ in A, naturality of o and [ implies
that
(F'f) o (aX) = (aX) o (Ff) and (F'f) o (8X) = (8X') o ()
and hence
(eX')o (F'f) o (aX) = (eX')o(aX')o (Ff) “E" (cX) o (3X') o ()
= (cX) o (F'f) o (BX)
ie. (cX') o (F'f) coequalizes the parallel morphisms X and aX. In light of this
fact, by the universal property of the coequalizer (CX,cX), Cf : CX — CX'is
defined as the unique morphism in B such that (C'f) o (¢X) = (¢X’) o (F'f). By
construction, ¢ is a functorial morphism F’ — C' such that coa = co 3. It remains
to prove universality of ¢. Let H : A — B be a functor and let x : I/ — H be
a functorial morphism such that y o & = x o 8. Then, for any object X in A,
(xX) o (aX) = (xX) o (BX). Since C (CX,cX) = Coequg(aX,X), there is a
unique morphism £X : CX — HX such that (£X) o (¢X) = xX. The proof is
completed by proving naturality of £X in X. Take a morphism f: X — X’ in A.
Since ¢ and y functorial morphisms,

(Hf)o (EX) o (eX) = (Hf)o (xX) = (xX") o (F'f)
= (£X") o (cX") o (F'f) = (£X") o (Cf) o (cX).
Since c¢X is a epimorphism, we get that ¢ is a functorial morphism. 0
LEMMA 2.8 ([BM, Lemma 2.1]). Let C and K be categories, let G,G' : C — K be
functors and 7y, 0 : G — G' be functorial morphisms. If, for every X € C, there

exists Eque(vX,0X), then there exists the equalizer (E,i) = Equp,(v,0) in the
category of functors. Moreover, for any object X in C, (EX,iX) = Equc(vX,0X).

LEMMA 2.9. Let A and B be categories, let F',F' : A — B be functors, and let o, 3 :
F — F" be functorial morphisms. Assume that, for every X € A, B has coequalizers

of aX and X and let (Q,q) = Coequp,, (o, B). Under these assumptions, for any
functor P : D — A, Coequy,, (P, P) = (QP,qP).
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Proof. Clearly (¢P)o(aP) = (¢P)o(BP). Lety : F'P — Y be a functorial morphism
such that y o (aP) =y o (GP). Then,
(yD) o (aPD) = (yD) o (3PD)

and hence, since by Lemma 2.7 (QPD, qPD) = Coequg(aPD,3PD), there exists
a unique dp : QPD — Y D such that

dp o (¢PD) = yD.

Let us prove that the assignment D +— dp yields a functorial morphism d : QP — Y.
Let h : D — D' be a morphism in D. We compute

(Yh)odpo (¢gPD) = (Yh)o(yD)= (yD')o (F'Ph)
= dp o (qgPD')o (F'Ph) < dp o (QPh)o (¢PD).
Since ¢PD is an epimorphism, we conclude. O

LEMMA 2.10 ([BM, Lemma 2.2]). Let G,G’ : C — K be functors, and let v,6 :
G — G’ be functorial morphisms. Assume that every pair of parallel morphisms in

K has an equalizer and let (E,1) = Equg,, (7,0). Under these assumptions, for any
functor P : D — C, Equp,, (vP,0P) = (EP,iP).

LEMMA 2.11. Consider the following serially commutative diagram in an arbitrary
category K

f i
A . B C
| O
A / B’ C’
g
e
A// B// O//

Assume that all columns are coequalizers and also the first and second rows are
coequalizers. Then also the third row is a coequalizer.

Proof. In order to see that the third row is a fork, note that, by commutativity of
the diagram and fork property of the second row,

illof//oezi//oelofl:eIIOZ-/OfI:elloilog/:illoe/ogl
:i//Oglloe.

Since e is an epimorphism, this proves that the third row is a fork that is " o f” =
,l:// o g//'

To conclude we want to prove the universality of i”. To do so, let us take any
morphism z : B” — X such that x o f” = x 0 ¢”. Then we want to prove that there
exist a unique functorial morphism z : C” — X such that z 0" = x.

We observe

rocof =xofloe=r0g"ce=xo0eoyg.
so we get that
rxoeof=z0coyg.
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Since the second row is a coequalizer by assumption, there is a unique morphism
y : C" — X such that

(1) yoi =zoe.
We calculate
yon'oi = yoi'on’one'on':xoe'om'gyoi'om'
— y o m/l OZ'
and since ¢ is an epimorphism we get that

yon”:yom”.

Since the third column is a coequalizer, there exists a unique morphism z : C" — X
such that

zoe =uy.
Then
-1/ / " -/ -/ /
zoi o€ =zoe of =yoi =xoe
g . " YY) ’ "o . .
so we get that z 0" = x. Since €’ 0i' = 1" o €’ and €”,¢€’,i" are epimorphism, we

deduce that ¢” is epimorphism and hence z is unique with respect to zo0i” = x. [0

COROLLARY 2.12. Let F, F' : A — B be functors and o, 3 : F — F' be functorial
morphisms. Assume that, for every X € A, B has coequalizers of aX and X
hence there exists (Q,q) = Coequp,,(a, ), cf. Lemma 2.7. Assume that (P,p) =
Coequy,(f,g) of morphisms f,g : X — Y in A and that both F and F' preserve
Coequ4(f,g). Then also Q) preserves Coequ4(f,g).

Proof. The following diagram (in B) is serially commutative by naturality

Ff Fp
FX - FY FP
g
aX| | BX adiﬂy ozFuﬁP
)il F,f Flp
F'X o F'Y F'P
g
qX J/ qY J/ qu
Qf
QX : QY @ QP
g

The columns are coequalizers by Lemma 2.7. The first and second rows are coequal-
izers by the assumption that ' and F’ preserve coequalizers. Thus the third row is
a coequalizer by Lemma 2.11. O
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LEMMA 2.13 ([BM, Lemma 2.5]). Consider the following serially commutative dia-
gram in an arbitrary category IC

; !
A B c
| |,
A B L c’
! b
A// i’ B// f” C/l
g//

Assume that all columns are equalizers and also the second and third rows are equal-
izers. Then also the first row is an equalizer.

Proof. Dual to Lemma 2.11. O

COROLLARY 2.14. Let G,G' : C — K be functors and v, 0 : G — G' be functorial
morphisms. Assume that, for every X € C, K has equalizers of X and X hence
there exists (E,e) = Equp,,(7,60), ¢f. Lemma 2.8. Assume that (I,i) = Eque(f, g)
of morphisms f,g: X — Y in C and that both G and G’ preserve Eque(f,g). Then
also E preserves Eque(f,g).

Proof. Dual to Corollary 2.12. O

LEMMA 2.15. Let Z,Z' W, W' : A — B be functors, let a,b : Z — W and o',V :
7' — W' be functorial morphisms, let ¢ : Z — Z' and ¢ : W — W’ be functorial
isomorphisms such that

Ypoa=aop and  Yob=1"bo.

Assume that there exist (E,i) = Equg,, (a,b) and (E',i") = Equp,, (¢/,V'). Then ¢
induces an isomorphism ¢ : E'— E' such that ¢ oi =10 p.

@

A ‘ VA
it |
W W

Proof. Let us define @. Let us compute
a’ogpoi:woaoidéﬁwoboi:b’ogpoi
and since (E',i") = Equp,, (¢, V') there exists a unique functorial morphism ¢ : £ —
E' such that
i'op=poi.
Note that @ is mono since so are i and 7' and ¢ is an isomorphism. Consider
o l:Z"'— Zand ¢t : W' — W. Then we have

aop t=4"tod and bop l=wlol.
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Let us compute

./ def &/

aogp‘loi’:w_loa/oz w_lob'oi/:bogp_loi'

and since (F,i) = Equg,, (a,b) there exists a unique functorial morphism ¢’ : £/ —
E such that
iop =¢plod
Then we have
iofop=yp loilop=¢plopoi=i
and since i is a monomorphism we deduce that
Similarly
‘ofof =poiof =poploi =1
and since 4’ is a monomorphism we obtain that
Q/O\ 9 Q/O\/ = IdE/
O

LEMMA 2.16. Let K : B — A be a full and faithful functor and let f,g: X — Y be
morphisms in B. If (KE, Ke) = Equ, (K f, Kg) then (E,e) = Equg (f,9g)-

Proof. Since K is faithful, from (K f)o (Ke) = (Kg)o(Ke) we get that foe = goe.
Let h : Z — X be a morphism in B such that foh = go h. Then in A we get
(Kf)o(Kh) = (Kg)o (Kh) and hence there exists a unique morphism & : KZ —
KFE such that (Ke)o ¢ = (Kh). Since £ € Homy (KZ, KE) and K is full, there
exists a morphism ¢ € Homg (Z, F) such that £ = K(. Since K is faithful, from
(Ke)o (K() = Kh we get e o ( = h. From the uniqueness of &, the one of ( easily
follows. 0

LEMMA 2.17. Let o,y : F — G be functorial morphisms where F,G : A — B
are functors. Assume that, for every X € A there exists Equg (aX,vX). Let
(E,i) = Equp,, (o,), where i : E — F. Then, for every X € A and Y € B we
have that

(Homg (Y, EX) ,Homp (Y,iX)) = Equg, (Homp (Y, aX),Hom, (Y,7X))

which means that
(Homg (—, E) ,Homg (—, 1)) = Equg,, (Homp (—, @) , Hom,, (=, 7))

where

Hompg (—, E) and Equp,, (Homp (—, «),Hom, (—,7)) : B x A — Sets.
Proof. We have that

Homg (Y, aX) o Homp (Y, iX) = Hompg (Y, (aX) o (iX))
= Homg (Y, (7X) o (iX)) = Homg (Y, 7X) o Homg (Y, iX)
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i.e. Homp (Y, X)) equalizes Homg (Y, aX) and Homg (Y,7X), for every X € A and
Y € B. Let now ¢ : Z — Homg (Y, FX) be a map such that Homp (Y, aX) o ( =
Homg (Y,7X) o (. Then, for every X € A, Y € B and for every z € Z we have
(aX) o ¢ (2) = Homg (Y, aX) (¢ (2)) = Homg (Y, yX) o (¢ (2))

= (7X) o ((2).
Then, for every X € A and Y € B there exists a unique morphism 6, : Y — EX in
B such that

(iX) 00, =((2)
ie.

Homg (Y,iX) (0,) = ((2).

The assignment z +— 6, defines amap 0 : Z — Hompg (Y, EX) such that Homp (Y, 7X)o
0=C. O

2.2. Contractible Equalizers and Coequalizers.

DEFINITION 2.18. Let C be a category. A contractible (or split) equalizer is a
eightuple (7, X,Y,d, dy, dy, s,t) where

do
d 7 .
A T’ X Y
d1
such that
to do - IdX
sod = Idgz

tod;, = dos
doOd == dlod.

PROPOSITION 2.19. Let C be a category and let (Z,X,Y,d,dy,dy,s,t) be a con-
tractible equalizer. Then (Z,d) = Equ, (do, d;) .

Proof. Let & : L — X be such that

dyo§ =diog
then
E=Ildxol=todyol=todio&=do(sof).
Let
' =50&:L—Z
so that

¢=dot.
Let now " : L — Z be such that d o " = £. Then
" =Idgof" =s0dof"=s50&=¢.
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PROPOSITION 2.20. Let C be a category, let (Z,X,Y,d,dy,dy,s,t) be a contractible
equalizer and let F : C — D be a functor. Then

Fdy
Fd —
FZ—=FX FY
Fs —
Fdq
18 a contractible equalizer in D.
Proof. Since functors preserve composition, the statement is proved. [l
PROPOSITION 2.21. Assume that
d do
Z—X Y
dy

1s an equalizer and there exists t :' Y — X such that
tody = Idy
diotody, = dyotod;
Then there exists s : X — Z such that (Z,X,Y,d,dy,dy, s,t) is a contractible equal-
12€er.
Proof. Since dyotod; = dyotod; and (Z,d) = Equ (dy, dy), there exists s : X — Z
such that
tod; =dos.
Let us compute
dosod=todiod=todyod=d
and since d is mono we get
sod=1d,.
O

DEFINITION 2.22. Let F' : C — D be a functor. An F'-contractible equalizer pair is

a parallel pair
do

X Y

d1
in C such that there exists a contractible equalizer

Fdy
_—

d t
D==FX FY

Fdq

in D.

All the previous results can be considered in the opposite category so that they
give the dual notion, namely contractible coequalizers.

DEFINITION 2.23. Let C be a category. A contractible coequalizer is a eightuple
(C,X,Y,c,dy,dy,u,v) where

do
X Y YTC
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such that
dyov = Idy
diov = woc
cou = Id¢
cody = cod.

PROPOSITION 2.24 ([BW, Proposition 2 (a)]). Let C be a category and let
(C, X,Y,c,dy,dy,u,v) be a contractible coequalizer. Then (C,c) = Coequg (do,dy) .

Proof. Dual to Proposition 2.24. O

DEFINITION 2.25. Let F': C — D be a functor. An F'-contractible coequalizer pair
is a parallel pair
do

X Y

di
in C such that there exists a contractible coequalizer

Fdg
FX<— ' _FY==C

Fdq

in D.

2.3. Adjunction.

2.26. Let L : B — A and R : A — B be functors. Recall that L is called a left

adjoint of R, or R is called a right adjoint of L if there exists functorial morphisms
n:1ldg — RL and €: LR — Idy

such that

(eL)o(Ln) =L and (Re)o (nR) = R.
In this case we also say that (L, R) is an adjunction and n is called the unit of the
adjunction while € is called the counit of the adjunction. Let

axy : Homy (LY, X) — Homg (Y, RX)
be the isomorphism of the adjunction (L, R). Then, for every £ € Homy (LY, X)
and for every ¢ € Hompg (Y, RX) we also have
axy (§) = (REomY)  and  ayly (¢) = (eX)o (L().
Moreover, for every X € A, Y € B, unit and counit of the adjunction are given by

?7Y =aryy (IdLy) and eX = a;(,lRX (Ide) .

2.27. Let (L, R) be an adjunction. Then L preserves colimits and thus coequalizers
and R preserves limits and thus equalizers. We also say that L is right exact and
that R is left exact.

LEMMA 2.28. Let (L, R) be an adjunction with unit n and counit €, where L : B — A
and R : A — B. For every Y’ € B the following conditions are equivalent:

(1) Loy = azil/,y_ o Homp (—,nY") is a functorial isomorphism
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(2) Hompg (—,nY") is a functorial isomorphism
(3) nY’ is an isomorphism (n is a functorial isomorphism).
Proof. Since (L, R) is an adjunction, axy : Hom4 (LY, X) — Homp (Y, RX) is an
isomorphism for every X € A and for every Y € B, so that (1) is equivalent to (2).
(3) = (2) Let n7'Y” be the two-sided inverse of nY’. Then Homg (—,n~'Y”) is the
inverse of the functor Homg (—,nY”). In fact, let f € Homp (Y,Y”) and compute
[Homg (—,n~"Y") o Homp (—,nY")] (f) = Homg (—,n~'Y") (nY" o f)
= (Yo (Y)of=f
and
[Homg (—,nY”") o Homg (—,n'Y")] (f) = Homg (—, nY") ((n™'Y") o f)
=Y )o(nY)of=/
Thus Hompg (—,nY”) is a functorial isomorphism.
(2) = (3) Since Homp (—, nY”) is a functorial isomorphism, in particular
Homgp (RLY',nY") : Homg (RLY",Y') — Hompg (RLY’', RLY") is an isomorphism.
Thus, there exists f € Homp (RLY’,Y") such that (nY’) o f = Idgpy which implies
that nY” is an epimorphism. Moreover we also have Homp (Y',nY”") (Idy/) = nY' =
(nY")o fo(nY') = Homg (Y',nY") (f o (nY’)). Since Homp (—,nY”) is a functorial
isomorphism, also Homg (Y’,nY”) is an isomorphism. Thus we deduce that Idy, =
f o (nY’) which implies that nY” is also a monomorphism and moreover nY’ has a

two-sided inverse f: RLY' — Y. O
REMARK 2.29. Note that, for every f € Homp (Y, Y’ ) we have
Lyy (f) = [aLy, o Homg (Y, nY")] (f) = aLy, (nY' o f)

(L,R)a
= (LYo (LYo (Lf) "2V LS
LEMMA 2.30. Let (L, R) be an adjunction with unit n and counit €, where L : B — A
and R : A — B. For every X € A the following conditions are equivalent:
(1) Rx— = a_ gx o Homy (eX, —) is a functorial isomorphism
(2) Homy (eX, —) is a functorial isomorphism
(3) €X is an isomorphism (€ is a functorial isomorphism,).

Proof. Dual to proof of Lemma 2.28. O

REMARK 2.31. Note that, for every f € Homy (X, X’) we have

Rxx (f) = lax,rx o Homa (eX, X')](f) = ax rx (f o eX) = R(f oeX) o (nRX)
= (Rf)e (ReX)o (nRX) "2V Ry,

PROPOSITION 2.32. Let (L, R) be an adjunction with unit n and counit €, where
L:B—- Aand R: A — B. Then R is full and faithful if and only if € is a

functorial isomorphism.

Proof. To be full and faithful for R means that the map
¢ : Homy (X, X") — Homp (RX, RX")
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f—=Rf

is bijective for every X, X’ € A. Since this ¢ (f) = R(f) = Rxx (f), ¢ is an
isomorphism if and only if Rx x/ is an isomorphism for every X, X’ € A and, by
Lemma 2.30, if and only if €X is an isomorphism for every X € A. 0

LEMMA 2.33. Let (L, R) be an adjunction where L : B — A and R : A — B such
that L is an equivalence of categories. Then R is also an equivalence of categories.

Proof. By assumption L : B — A is an equivalence of categories with R’ : A — B.
Then it is well-known that (L, R’) is an adjunction. By the uniqueness of the
adjoint, we have that R ~ R’ which is an equivalence. Thus R is also an equivalence
of categories. 0

3. MONADS

DEFINITION 3.1. A monad on a category A is a triple A = (A, ma,un), where
A: A — Ais a functor, my : AA — A and uy : A — A are functorial morphisms
satisfying the associativity and the unitality conditions:

mao(maA) =mao(Amy) and myo (Aus) =A=mao (usA).

DEFINITION 3.2. A morphism between two monads A = (A,ma,us) and B =
(B,mp,up) on a category A is a functorial morphism ¢ : A — B such that

poma=mpo(pp) and pous=ug.

EXAMPLE 3.3. Let (A, my,u4) be an R-ring where R is an algebra. Then

e Ais an R-R-bimodule

e my: A®r A — Ais a morphism of R-R-bimodules

e uy: R— Ais a morphism of R-R-bimodules satisfying the following
mao(ma®@rA) =mao(A@rma),mao(ARrus) =714 and myo(us @rA) =14

where r4 : AR R — A and 4 : R®r A — A are the right and left
constraints. Let

A = —®rA: Mod-R — Mod-R
my = —Qpma:—QrARrA— —Qr A
uy = (—Qpuy)ort:—— -—®rR— —QrA

We prove that A = (A, ma,us) is a monad on the category Mod-R. For
every M € Mod-R we compute

[mao(mad)] (M) = (M®&grma)o(MerA®rma) =M ®pg[mao(ARrma)
= M®g [on (mA ®RA)] = (M@RTTLA) o (M@RmA ®R.A)
= [mao (Amy)] (M)

[ma o (Aua)l (M) =

M ®pma)o [(M@rua)ory] ®r A

M @rma) o (M @rua®rA)o (ry) @rA)
M &g [mao (ua@r A)])o (ry) @r A)

M @gla)o (ry @rA) = M ®@r A= AM

(
(
(
(
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and

[ma o (usA)] (M) M ®gmy)o (M Qr ARrUA) Ty, 4

=
= (M ®grlmao(A®guy)l)o TJT41®RA
= (M ®rr4)orygua=MerA=AM.

PROPOSITION 3.4 ([H]). Let (L, R) be an adjunction with unit n and counit € where
L:B—AandR:A— B. Then RL = (RL, ReL,n) is a monad on the category B.

Proof. We have to prove that
(ReL)o(RLReL) = (ReL)o(ReLRL) and (ReL)oRLn= RL = (ReL)o(nRL).
In fact we have
(ReL) o (RLReL) = (ReL) o (ReLRL)
and

L,R)

(ReL)o RLy "2 pp 22

(ReL)o (nRL).
U

DEFINITION 3.5. A left module functor for a monad A = (A, ma,uys) on a category
A is a pair (Q, ANQ) where Q : B — A is a functor and “pg : AQ — @ is a functorial
morphism satisfying:

Yig o (AMg) = g o (maQ) and Q=g o (uaQ).

DEFINITION 3.6. A right module functor for a monad A = (A, ma,u,) on a category
A is a pair (P, ,ué) where P : A — B, is a functor and p3 : PA — P is a functorial
morphism such that

pp o (upA) = ppo(Pmy) and P = ppo(Puy).

REMARK 3.7. Let A = (A, ma,u,s) be amonad on a category A and let (Q, A,uQ) be
a left A-module functor and (P, ,uf_—‘,) be a right A-module functor. By the unitality
property of g and pp we deduce that they are both epimorphism.

DEFINITION 3.8. For two monads A = (A,mu,us) on a category A and B =
(B,mp,up) on a category B, a A-B-bimodule functor is a triple (Q, g, ug) , where
Q : B — Ais a functor and (Q, A,uQ) is a left A-module functor, (Q, ,ug) is a right
B-module functor such that in addition

g o (Aug) = ng o (“reB) .
DEFINITION 3.9. A module for a monad A = (A, ma,u,) on a category A is a pair
(X, A,uX) where X € A and 4y : AX — X is a morphism in A such that
Aix o (AAMX) =Auyo (maX) and X = Ax o (uaX).
A morphism between two A-modules (X, Aﬂx) and (X/,A,LLX/) is a morphism f :
X — X" in A such that
Ypxro (Af) = folpx.

We will denote by 4. A the category of A-modules and their morphisms. This is the
so-called Eilenberg-Moore category which is sometimes also denoted by A*.
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REMARK 3.10. Let A = (A, ma,uy4) be amonad on a category A and let (X, A,uX) €
»A. From the unitality property of 4ux we deduce that “ux is epi for every
(X,A,ux) € pA and that us X is mono for every (X,A,ux) € aA, e uy is a
monomorphism.

DEFINITION 3.11. Corresponding to a monad A = (A, ma,us) on A, there is an
adjunction (o F, oU) where ,U is the forgetful functor and 4 F' is the free functor

AU - aA — A WA — A A
(X, 2px) — X X — (AX,muX)
/ —  f [ — Af.

Note that U, F = A. The unit of this adjunction is given by the unit u4 of the
monad A:

ug: A— AUpF = A.
The counit Ay : 4 FoU — 5 A of this adjunction is defined by setting
AU (M (X, AuX)) =4y for every (X, AMX) € 4 A
Therefore we have
(AaaF) o (aFuy) = o F and (AUAA) 0 (uapU) = 4U.

PROPOSITION 3.12. Let A = (A, ma,un) be a monad on a category A. Then ,U is
a faithful functor. Moreover, given Z,W € A we have that

Z =W if and only ify,U (Z) = U (W) and yU (AaZ) = oAU (AaW).
In particular, if F,G : X — A are functors, we have
F =G if and only if \UF = y\UG and pU (M F) = ,U (M sG)

PROPOSITION 3.13. Let A = (A,ma,ua) be a monad on a category A. Then
(AU, (AUNR)) is a left A-module functor.

Proof. We have to prove that

(AUA)\) e} (AAUAA) = (AUA)\) e} (mAAU) and
(AUA)\) o (UAAU) = AU.

Let us consider (X A X) € ,A. We have to show that
(aU aA (X,A fix)) o (AsUaN (X,A x)) = (aUaX (X7A fix)) o (manlU (X,A fx))
and that

(aUaX (X,A px)) o (uanU (X,A nx)) = aU (X,A 1x)
l.e. that

AMX o (AA,UX) = A,UX o (muX) and A,UX o(usX)=X
which hold since (X A X) is an A-module. 0
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PROPOSITION 3.14. Let A = (A, ma,uas) be a monad on a category A and let
(X, A,uX) be a module for A. Then we have

(X7 AMX) = Coequ 4 (AA#X, mAX) :
In particular iof (Q,A ,uQ) s a left A-module functor, then we have
(QaA :MQ) = COeunun (AAuQv mAQ) :
Proof. Note that

AAX <4 me—ij'
Apx “a

is a contractible coequalizer and thus, by Proposition 2.24,
(X, A,uX) = Coequ 4 (AA,uX, mAX) . Let now (Q,A ,uQ) be a left A-module functor
where @) : B — A. Then, by the foregoing, for every Y € BB we have that

(QY, " 1qY) = (QY, " pgv) = Coequy (A% pgy,maQY) = Coequy (A%QY maQY) .
Then, by Lemma 2.7, we have that (Q,A HQ) = Coequpy, (AAMQ, mAQ). U

COROLLARY 3.15. Let A = (A, ma,ua) be a monad on a category A and let (3 F, nU)
be the associated adjunction. Then (U, (,UNa)) is a left A-module functor and

(AUv (AU)\A)) - Coeunun (AAUAA7 mAAU) .

Proof. By Proposition 3.13 (,U, (4UM4)) is a left A-module functor. By Proposition
3.14 we get that (o U, (AUAa)) = Coequp,, (AsUAa, manU). O

PROPOSITION 3.16. Let A = (A, ma,uas) be a monad on a category A and let
(P, ué) be a right A-module functor, then we have

(2) (P, pp) = Coequpy, (upA, Pm.a) .
Proof. Note that

Pma

A
PAA < T2~ pp——=p
—_— Puy
ppA

is a contractible coequalizer and thus, by Proposition 2.24,
(P7 ﬂ?’) = Coeunun (M?’Av PmA) . O
LEMMA 3.17. Let A = (A, ma,u4) be a monad on a category A and let (Q, AuQ) be

a left and (P, ,uﬁ) be a right A-module functors where @ : @ — A and P: A — P.
Let F: X — Q and G : P — B be functors. Then

(1) (QF, AMQF) is a left A-module functor and
2) (GP,Gus) is a right A-module functor.
P

Proof. From

Mg o (Apug) =g o (maQ) and Q ="ugo (uaQ)
we deduce that
AgF o (A% gF) = uoF o (maQF) and QF = "ugF o (uaQF)
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and from
ppo (upA) = ppo (Pmy) and P =ppo(PA)
we deduce that
Gupo (GupA) = Gupo (GPmy) and GP = Gujpo (GPA).
0

PROPOSITION 3.18. Let A = (A,ma,us) be a monad on a category A and let
(o F, pU) be the adjunction associated. Then pU reflects isomorphisms.

Proof. Let f : (X, A,uX) — (Y, Auy) be a morphism in 4.A such that ,Uf has a
two-sided inverse f~! in A. Since
Apixro (Af) = foux
we get that
fhotuxe =Apux o (Af71).
O
LEMMA 3.19 ([BMV, Lemma 4.1]). Let A = (A, ma,ua) be a monad on a category
A, let (P, ,ué) be a right A-module functor and let (Q,A,LLQ) be a left A-module

functor where P : A — B, Q : B — A. Then any coequalizer preserved by PA is
also preserved by P and any coequalizer preserved by AQ is also preserved by Q).

Proof. Consider the following coequalizer

z

X Y

Z

in the category A and assume that PA preserves it. By applying to it the functors
PA and P we get the following diagram in B

pPAf PAz
PAX PAY PAZ
PAg
PuAXNM‘?,X PuAYN//Lf_},Y PuAZNu;‘,Z
Py Pz
PX PY PZ.
Pg

By assumption, the first row is a coequalizer. Assume that there exists a morphism
h : PY — H such that

ho(Pf)=ho(Pg).
Then, by composing with upX we get
ho(Pf)o (upX) =ho(Pg)o (upX)
and since 4 is a functorial morphism we obtain
ho (upY) o (PAf) =ho (upY) o (PAg).

Since (PAZ,PAz) = Coequg (PAf, PAg), there exists a unique morphism k :
PAZ — H such that

(3) ko (PAz) =ho (upY).
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By composing with PusY we get
ko (PAz)o (PusY)=ho (upY) o (PusY)
and thus
ko (PusZ)o (Pz) = h.
Let l := ko (PusZ): PZ — H. Then we have
lo(Pz) =ko (PusZ)o(Pz) 2 ko (PAz) o (Pu,Y)

D ho (,u£Y) o (PuyY) = h.

Let ' : PZ — H be another morphism such that
I'o(Pz)=h.
Then we have
lo (,uéZ) o(PAz)=1o(Pz)o (méY) =ho (pé,Y)
=1'o(Pz)o (upY) =10 (upZ) o (PAz).
Since PA preserves coequalizers, we have that PAz is an epimorphism. Since usZ
is also an epimorphism, we deduce that [ = . Therefore we obtain that (PZ, Pz) =

Coequg (Pf, Pg). The second statement can be proved similarly. We consider the
above coequalizer

X Y

Z

in the category B and assume that AQ) preserves it. By applying to it the functors
AQ and @Q we get the following diagram in A

AQz

AQX " AQY AQZ
g
uaAQX N AugX uAQY NAHQY uaQZ N/ Aoz
Q z
OX ———=qy — % .z
Qg

By assumption, the first row is a coequalizer. Assume that there exists a morphism
h: QY — H such that

ho(Qf)=ho(Qg).
Then, by composing with 4ugX we get
ho (Qf) o (“neX) =ho(Qg) o ("ueX)

and since ‘4 is a functorial morphism we obtain

ho (YuqY) o (AQf) = ho (*ugY) o (AQg).
Since (AQZ, AQz) = Coequg (AQf, AQg), there exists a unique morphism k :
AQZ — H such that
(4) ko (AQz)=ho (A/LQY) .
By composing with u QY we get

ko (AQz) o (uaQY) = ho (*pgY) o (uaQY)
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and thus
ko (uaQZ) o (Qz) = h.
Let [ := ko (uaQZ) : QZ — H. Then we have
[0(Qz) = ko (uaQZ) o (Qz) 2 ko (AQz) o (uaQY)

Dho (A,uQY) o (uaQY') = h.

Let I’ : QZ — H be another morphism such that
"o (Qz) = h.
Then we have
lo (A,uQZ) 0(AQz)=10(Qz)o (A,uQY) =ho (AMQY)
=1'0(Q2)o (*ueY) =10 ("ugZ) o (AQz).
Since AQ preserves coequalizers, we have that AQz is an epimorphism. Since 4pgZ

is also an epimorphism, we deduce that [ = I’. Therefore we obtain that (QZ, Qz) =
Coequg (Qf, Qg) - O

LEMMA 3.20 ([BMV, Lemma 4.2]). Let A = (A, ma,ua) be a monad on a category
Aandlet f,g: (X, ApX) — (Y, A,uy) be morphisms in yA. Assume that there exists

(C,c) = Coequ 4 (AU f, aUg) and assume that AA preserves coequalizers. Then there
exists (I',7y) = Coequ, 4 (f,9) and AU (I',y) = (C,c).

Proof. Since AA preserves coequalizers and (A, m4) is a right A-module functor, also
A preserves coequalizers by Lemma 3.19, in particular, A preserves (C,c) . Since

colpy o (ALUS) Tt oo (WU f) oy

ccoequ

co (Ug) o px "= copy o (A4,Ug)
by the universal property of the coequalizer (AC, Ac) there exists a unique morphism
A+ AC — O such that
co?uy =4puc o (Ac).

Moreover, by composing with u4Y this identity we get

c="Yc o (Ac)o (uaY) 2 e o (uaC) oc.
Since c¢ is an epimorphism we obtain

C =uc o (us0).

Now, consider the following serially commutative diagram

maX A

AAX AX YL x
Alpx
AAAUjikAAUg AAUi\%AUg AU‘fi\%Ug
maY A
AAY ————= Ay — ™ .y
AAL
l AAc i Ac l c
maC A
AAC ——= 4C —" .

AAY,
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Since we already observed that the columns are coequalizers and also the first and
the second row are coequalizers by Proposition 3.14, in view of Lemma 2.11 also the
third row is a coequalizer, so that (C,c) has a left A-module structure, i.e. there
exists (I',7y) € 4A such that (I',v) = Coequ, 4 (f,g) and ,U (I',y) = (C,¢). O

LEMMA 3.21 ([BMV, Lemma 4.3]). Let A = (A, ma,ua) be a monad on a category
A with coequalizers and let (o F,  \U) be the adjunction associated. The following
statements are equivalent:

(i) A: A— A preserves coequalizers
(11) AA: A — A preserves coequalizers

(131) oA has coequalizers and they are preserved by yU : pA — A
(1v) AU : a A — A preserves coequalizers.

Proof. (1) = (ii) and (iii) = (iv) are clear.

(1) = (¢ii) follows by Lemma 3.20.

(iv) = (i) Note that 4 F' is a left adjoint, so that in particular it preserves coequal-
izers. Then ,U,F = A also preserves coequalizers. O

LEMMA 3.22. Let A = (A, ma,ua) be a monad over a category A and assume that A
preserves equalizers. Then o F' preserves equalizers where (o F, AU) is the adjunction
associated to the monad.

Proof. Let

E—=X Y

be an equalizer in A. Let us consider the fork obtained by applying the functor 4, F
to the equalizer

Fe
WFE 5 FX AFY
aFg
i.e.
Ae Af
(AE,mAE) I (AX, mAX) 1 (AY, mAY)
g

Now, let (Z, A,uz) € sAand z: (Z, Auz) — (AX, m4X) be a morphism in 4.4 such
that (Af) oz = (Ag) o z. Since A preserves equalizers, we know that (AE, Ae) =
Equ, (Af, Ag). By the universal property of the equalizer (AFE, Ae) in A, there
exists a unique morphism 2’ : Z — AFE in A such that (Ae) o 2’ = z. We now want
to prove that 2’ is a morphism in 4A, i.e. that (maE)o (Az') = 2’ o 4y Since 2 is
a morphism in 4 A we have that
(maX)o(Az) =20y,
and since also Ae is a morphism in 4 A we have that
(maX)o (AAe) = (Ae) o (maE).
Then we have
(Ae) o (maE) o (A2) “E* (maX) o (Ade) o (A2

Pr;pz (mAX) o (AZ) Ze:AAZOA,U,Z prgpz (Ae) OZ/OAMZ
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and since A preserves equalizers, Ae is a monomorphism, so that we get
(maE) o (AZ) =2 o4y,
O

LEMMA 3.23. Let A = (A, ma,ua) be a monad over a category A, let L, M : B — A
be functors and let p : AL — L be an associative and unital functorial morphism,
that is (L, p) is a left A-module functor. Let h : L — M and let ¢ : AM — M be
functorial morphisms such that

(5) hop=¢o (Ah).

If AAh and h are epimorphisms, then ¢ is associative and unital, that is (M, ) is
a left A-module functor.

Proof. We calculate
@0 (Ap) o (A4h) P g o (Ah) o (Ap) 2 hopo (An)
M o o (mal) 2 o (Ah) o (mal) ™ o (maM) o (AAR).
Since AAh is an epimorphism, we deduce that ¢ is associative. Moreover we have
wo(uaM)oh™ po(Ah)o (usl) 2 hopo (ual) = h.
Since h is an epimorphism, we get that ¢ is unital. 0
3.1. Liftings of module functors.

PRrOPOSITION 3.24 ([Ap] and [J]). Let A = (A, ma,ua) be a monad on a category
A and let B = (B, mp,up) be a monad on a category B and let Q : A — B be a
functor. Then there is a bijection between the following collections of data

F functors @ : aA — B that are liftings of Q (i.e. BU@ =QuU)
M functorial morphisms ® : BQ) — QA such that

®o (mpQ) = (Qmy) o (PA) o (BD) and Do (upQ) = Quy
given by
a : F — M wherea (@) = (BU)\B@AF> o (gUpFQuy,)
M — F where gUb (®) = QuU and gUAgb (P) = (QaUI4) 0o  i.e.
M — F where b(®) (X" 1x)) = (QX, (@ ux) o (2X)) and b(®) (f) = Q(f).
Proof. Let @ : aA — B be a lifting of the functor @ : A — B (i.e. BU@ = QnU).
Define a functorial morphism ¢ : g F'() — @AF as the composite
¢ = ()\B@AF) o (pFQua)

where ug : A — pAUpF = A is also the unit of the adjunction (4 F,,U) and Ap :
pF'gU — B is the counit of the adjunction. Let now define

Y LU¢: yUsFQ = BQ — sUQLF = QuUAF = QA.
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We have to prove that such a ® satisfies ® o (mpQ) = (Qmy) o (PA) o (BP) and
® o (upQ) = Qua. First, let us compute

(Qma) o (24) 0 (BD) = (Qma) o (sUAQLFA) © (sUsFQusA)
o (BsUNs@uF) o (BsUsFQua)
B (QUUALF) o (8UAsQuFA)
© (sUsFQuaA) o (BaUApQ.F ) o (BsUsFQua)
Qlifting (BU@AAAF> o (BUAB@AFA>
o (sUsFQuad) o (BsUApQ,F ) o (BaUnFQua)
— U [(@)\AAF) 0 <>\B@AFA> 0 (BFQUAA)}
o (BBUAB@AF> o (BBQuy)
250 [(AsQuF) o (sFsUQAAF) 0 (sFQuaA)]
o (BBUAB@AF> o (BBQu.y)
WL 0 [(AsQuF) 0 (sFQuUALF) 0 (sFQuaA)|
o (BBUAB@AF> o (BBQu.,)
VT [(AsQF) © (8FQma) o (sFQuad)]
o (BBUAB@AF> o (BBQu.s)
et (UARQAF) o (BsUAQAF ) o (BBQu.)
P2t (UAsQuF) o (mpsUQLF) o (BBQua)
2 (sUAsQ4F ) 0 (BQua) © (muQ)

_ (BUAB@AF> o (5UsFQua) o (mpQ)
= (8U¢) o (mpQ) = ® o (mpQ).

Moreover we have
o (upQ) = (8U®) o (upQ) = (BU)\B@AF> o (gUpFQuy) o (upQ)
u:B (]BU)\B@AF> @) (uBQAUAF) e} (QUA)

Qlifting <BU/\B@AF> o (uBBU@AF) o (Quyn) (8 FU)adj Ouy.
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Conversely, let ® be a functorial morphism satisfying ® o (mpQ) = (@ma) o (PA)o
(B®) and ® o (upQ) = Qua. We define Q : A — pB by setting, for every
(X?A ,uX) € AA7

QX px)) = (QX (QAux) o (¢X)).
We have to check that (Q (QA/L)() )) € B, that is
Pug o (BPugy ) = gy o (mpQX) and Ppgy o (upQX) = QX.
We compute
Bligy o (BBM@X) — (Q*1x) 0 (BX) 0 (BQ*ix) o (BOX)
2 (Q*px) o (QA%ux) o (PAX) o (BDX)
A (QA0x) o (QmaX) o (PAX) o (BDX)
PPV (Q41x) 0 (BX) 0 (mpQX) = Prgy o (mpQX).
Moreover we have
Pugy o (upQX) = (Q"ux) o (®X) o (upQX)
prope:rtyof@ (QAH/X) o (QU,AX) Xm%dule QX

Now, let f : (X A X) — (Y, A,uy) a morphism of left A-modules, that is a morphism
f:X — Y in A such that

Ay o (Af) = folux.
We have to prove that Q (f) : QX = (QX.B uox) — QY = (QX.P poy) is a
morphism of left B-modules. We set Q (f) = Q (f) and we compute
~ N\ 7/~
Pugy o (BOS) £ (Qr) o Pugy
i.e. by definition of the functor é
Pugy o (BQf) = (Qf) o Puox

in fact
By o (BQf) = (Q"py) o (BY) o (BQf) = (Q py) o (QAS) o (DX)
ot Q) o (Qpx) © (8X) = (QF) 0 Phgx.
Let now check that @ is a lifting of Q. Let (X,* ux) € 44 and compute
sUQ (X" 1ix)) = sU (QX.” pox) = QX = QuU (X, ux))

and thus on the objects N
sUQ = QuU.
Let f: (X,*ux) — (YV,* py) € 4A be a morphism, we have
sUQ (f): QX — QY = QuU(f) : QX — QY.
Therefore @ is a lifting of the functor Q.
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We have to prove that it is a bijection. Let us start with @ : oA — B a lifting
of the functor @ : A — B. Then we construct ¢ : BQ — QA given by

@ = (UXsQuF) o (sUsFQua)

and using this functorial morphism we define a functor @) : . A — B as follows: for
every (X, ux) € aA
Q (X x)) = (QX, (Q"px) o (X))

Since both @ and @ are lifting of @), we have that BU@ = QaU = gUQ. We have
to prove that gU (AB@) =gU (AB@>. Let Z € , A. We compute

sU (AsQZ) = (QuUMaZ) o (sUAsQAFAUZ) 0 (sUsFQuasUZ)

QlifingQ (BUQ)\AZ) o (BU)\B@AFAUZ) o (BUIBFQUAAUZ)

AB

2 (5UAsQ2) o (sUsFsUQMZ) o (sUs FQuarUZ)

- <BU)\B@Z) o (sUsF [QuUMaZ 0 QuapUZ]) " 227V LUN,02.

Conversely, let us start with a functorial morphism ® : BQ — QA satistying ® o
(mpQ) = (Qma)o (PA)o (BP) and P o (upQ) = Qua. Then we construct a functor

Q : » A — 5B by setting, for every (X,* pux) € 4 A,

which lifts @ : A — B. Now, we define a functorial morphism ¥ : BQ) — QA given
by

U = (]BU/\B@AF> o (gUsFQua) .
Then we have

¥ = (sUAsQuF) © (sUsFQua) X (QuUAAF) o (®4F) 0 (sUsFQu)

= (Q@ma) o (PA) o (BQua) 2 (Qma) o (QAuy) o ® Amonad &
U
COROLLARY 3.25. Let X', A be categories, let A = (A, ma,ua) be a monad on a cate-

gory A and let F : X — A be a functor. Then there exists a bijective correspondence
between the following collections of data:

H Left A-module actions Ay : AF — F
G Functors o F : X — aA such that yU,F = F,

given by
a:H — G where yUa (AMF) =F and \UX4sa (App) = A,up i.e.
@ () (X) = (FX, e X) and @ (“ur) (f) = F (f)
b:G—H whereg(AF) = \UMNuF : A — F.
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Proof. Apply Proposition 3.24 to the case A = X, B = A, A = Idy and B = A.
Then @ = 4F is the lifting of F and ® = 4y satisfies Appo(maF) = Appo (Alpup)
and App o (uaF) = F that is (F, A,up) is a left A-module functor. O

COROLLARY 3.26. Let (L, R) be an adjunction with L : B — A and R : A — B
and let A = (A, ma,ua) be a monad on B. Then there is a bijective correspondence
between the following collections of data

R Functors K : A — xB such that \U o K = R,
£ functorial morphism o : AR — R such that (R, ) is a left module functor
for the monad A

given by
¢ : R— £ where ®(K) = UMK : AR — R
Q : £— K where Q(a) (X) = (RX,aX) and \UQ (a) (f) = R(f).
Proof. Apply Corollary 3.25 to the case "F” = R : A — B where (L, R) is an

adjunction with L : B — A and R : A — B and A = (A, m4,us) a monad on
B. O

In the following Proposition we give a more precise version of Lemma 3 in [J].

PROPOSITION 3.27. Let A = (A,ma,us) be a monad on a category A and let
B = (B mp,up) be a monad on a category B. Let Q : A — B be a functor and
let Q AA — gB be a lifting of Q (i.e. gUQ = QaU) and ® : BQ — QA as
in Proposition 3.24. Then ® is an isomorphism if and only iof ¢ = (AB@AF> o
(BFQuya) : pFQ — @AF is an isomorphism.

Proof. By construction in Proposition 3.24 we have that ® = gU¢. Assume that
® is an isomorphism. Since, by Proposition 3.18, pU reflects isomorphisms, ¢ :

Q) — QAF is an isomorphism. Conversely, assume that ¢ : g F'() — QAF is an
isomorphism. Then ® = gU¢ is also an isomorphism. 0

COROLLARY 3.28. Let (L, R) be an adjunction where L : B — A and R : A — B
and let B = (B, mp,up) be a monad on B. Let K : A — B be a functor such that
pU o K = R and let (R, «) be a left B-module functor as in Corollary 3.26. Then «
is an tsomorphism if and only if \gK : gFFR — K s an isomorphism.

Proof. Apply Proposition 3.27 with @) = R, A = Id 4. Then Cj = K is the lifting of
Rand ® =a: BR — R, given by a = gU¢ = gUAgK. O

Some results in the following part of this section can be found in the literature

(see e.g. [BM] and [BMV]). To introduce our main tools of investigation, for the
reader’s sake, we give here a full description.

LEMMA 3.29. Let A = (A, ma,ua) be a monad over a category A with coequalizers.
Let Q : B — A be aleft A-module functor with functorial morphisms “pug : AQ — Q.
Then there exists a unique functor oQ : B — A such that

wU04Q = Q and yUNAQ = 1ug
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Moreover if ¢ : QQ — T is a functorial morphism between left A-module functors and
@ satisfies
Ao (Ap) = po (q)
then there is a unique functorial morphism ap : 4Q) — AT such that
aUap = .

Proof. Corollary 3.25 applied to the case where F' = () gives us the first statement.
Let B € B. Then we have

(“urB) o (ApB) = (¢B) o (“11oB)
which means that B yields a morphism 4B in »A. 0

PROPOSITION 3.30. Let A = (A,ma,ua) be a monad over a category A and let
B = (B,mp,up) be a monad over a category B. Assume that both A and B have
coequalizers and that A preserves coequalizers. Let QQ : B — A be a functor and let
g T AQ — Q and ,ug : QB — Q be functorial morphisms. Assume that “pugq is
associative and unital and that *jg o (Aug) = #5 o (AuQB). Set

(6) (@8, pq) = Coequyy, (norU, QeUAp)

Then Qp : B — A is a left A-module functor where *1g, : AQp — Qp is uniquely
determined by

(7) pq o (“rqsl) = uq, o (Apq) .
Moreover there ezists a unique functor 4 (Qg) : gB — aA such that
(8) 2U4(QB) = Qp and y\Ulaa (Qp) = *11g,

Proof. By Lemma 2.7 we can consider (()g,pg) = Coequp,, (,ug]BU, QBU)\B). Since

g o (Ang) = ngo (“neB)
we deduce that

) (igall) o (AuBsl) = (1BsU) o (YuoBal)
Also, in view of the naturality of /g, we have
(10) (“pgsU) o (AQeUAp) = (QsUAp) o (“1gBsU) .

We compute

0
po © (“ugrU) o (AQeUAp) © pg o (QeUAg) o (*1oBeU)

PQ coeq

9)
=" po o (ugeU) o (*rgBeU) = pg o (*ugsl) o (AugeU)
and hence we obtain
pq © (*1grU) o (AQsUAp) = pq © (*11gaU) o (AugsU) .
Since A preserves coequalizers, we get
(AQ37 ApQ) = Coeunun (A:ugBU7 AQBU/\B) .

Hence there exists a unique functorial morphism A,uQ 5 AQp — @Qp such that

po o (MrgsU) =g, o (Apg) -



29

Since @ is a left A-module functor, by Lemma 3.17, also QgU is a left A-module
functor. Now pq is an epimorphism and hence, since A preserves coequalizers, also
AApg is an epimorphism. Therefore we can apply Lemma 3.23 to "¢ = 4ug,,
"h” = pq and "p” = “uoeU and hence we obtain that (Qp, " pq,) is a left A-
module functor that is “ug, is associative and unital. By Lemma 3.29 applied
to (QB,A;/JQB) there exists a functor 4 (@Qp) : B — aA such that ,U. (Qp) =
Qp and \Ulaa (Qp) = “ug,. Moreover 4 (Qp) is unique with respect to these
properties. [l

PROPOSITION 3.31. Let A = (A,ma,ua) be a monad over a category A and let
B = (B,mp,up) be a monad over a category B. Assume that both A and B have
coequalizers and A preserves them. Let QQ : B — A be an A-B-bimodule functor
with functorial morphisms “ug : AQ — Q and /,Lg : QB — Q. Then the functor
4Q B — A A is a right B-module functor via ,qu : AQB — 4Q where qu 18
uniquely determined by

Let ((4Q) g, Paq) = Coequpy, (1PosU, aQsUAp). Then we have
(AQ)B = A (QB) B — AA.

Proof. Since () is endowed with a left A-module structure, by Lemma 3.29 there
exists a unique functor 4Q : B — 4A such that ,U,Q = @Q and ,UMs4Q =
“1g. Note that, since @ is an A-B-bimodule functor, in particular the compatibility
condition
Yg o (Aug) = ng o (“rgB) -
holds. Thus, by Lemma 3.29, there exists a functorial morphism ”EQ :AQB — 4Q
such that
WUt = 1o

By the associativity and unitality properties of ug and since pU is faithful, we

get that also 1%, is associative and unital, so that (4@, %) is a right B-module
functor. Thus we can consider the coequalizer

B
:U'AQ]BU pAQ

(12) AQBgU AQU (4Q)p

AQUAB

so that we get a functor (4Q)z : 8B — aA. Since A preserves coequalizers, by
Lemma 3.21, also ,U preserves coequalizers. Then, by applying the functor ,U to
12 we still get a coequalizer

AUuﬁQJBU

aUpyq
2UAQBgU AU QU AU (4Q)p
aUAQpUAR
that can be written as
Hg]BU Up
QBgU QU P LU (1Q)p

QeUApB
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Since, by Proposition 3.30, (@, pg) = Coequp,, (uggU,QBU)\B) , we get that

AU (4Q)p = Qp and ,Up,q = pqg-
Moreover
aUAA (4Q)p + AWU (4Q) p = AQp — aU (4Q) = U
By Proposition 3.30, we know that (QB,A NQB) is a left A-module functor and
aUNaa (Qp) = Hug,. Hence we get

2UM (4Q) 5 = Yoy © aUXaa (@B)
1.e.
(4Q)p = 4 (@p).
[l

NOTATION 3.32. Let A = (A,ma,us) be a monad over a category A and let
B = (B, mp,up) be a monad over a category B. Assume that both A and B have
coequalizers and A preserves them. Let Q) : B — A be an A-B-bimodule functor. In
view of Proposition 3.31, we set

AQp = (4Q)p = 4(QB).

LEMMA 3.33. Let B = (B, mp,ug) be a monad over a category B and assume that B
have coequalizers. Let (Q :B— A, ug) be a right B-module functor. With notations
of Proposition 3.30 we have that

(13) QB)\BIB%F = Mg
Furthermore, if we assume that the functors QQ, B preserve coequalizers we also have
(14) QpAppP = pQBP-
Proof. Let us consider the following diagram
MgBUJBFBUJBF posFsUsF
QBpUpFpUpF QpUpFpUpl’ QpplpUpl’
QeUApppUpF
QBpUApRF QeUAppF QpAppF
HgJBU]BF posF
QBpUsF QuUsF - QpsF
QrUABpF

Note that QBgUMgpF = QBmp and QpUAggF = (mp so that the left square
serially commutes because of the associativity of mp and of ,ug. Both the rows are
coequalizers in view of the dual version of Lemma 2.10 so that, by the universal prop-
erty of coequalizers, there exists a unique functorial morphism ( : Qg FpUpF —
QBIBF such that (:O (pQBFIB%UIBF) = (pQIB%F) O (QBUABIEBF) Since pq - QBU — QB is
a functorial morphism, we know that (QgApgF makes the right square be com-
mutative, but since by (15) we have popF = ug we also have that ug makes
the right square commute. Therefore, we deduce that { = QgAggl’ = ,ug. As-
suming that ) and B preserve coequalizers, by Lemma 3.21, we get that gU
also preserves coequalizers so that, in view of Corollary 2.12 we also have that
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(@B, pg) = Coequpy, (,uggU, QBU/\B) preserves them. Hence, using that
(QB;QB)\B> = Coeunun (QB)\BIBSFBU; QBIBF]BU)\B)7 in view of Lemmas 2.10 and
3.29, we have
(@epP,QpAppP) = Coequpy, (QpApslBUpP,QprFsUNspP)

= Coeunun (MSBUBpaQB:uP)

= (QsBP,pgsP)
so that we get QpApplP = porP. O
PROPOSITION 3.34. Let A = (A,ma,ua) be a monad over a category A and let
B = (B,mp,up) be a monad over a category B. Assume that both A and B
have coequalizers and let QQ : B — A be an A-B-bimodule functor. Then, with

notations of Proposition 3.30, we can consider the functor Qp where (Qp,pg) =
Coequpy, (1osU, QUAg) . Then

(15) QpeF = Q and popF = #3

Proof. By construction we have that (Qg,pg) = Coequp,, (ug]BU, QBU)\B) . By ap-
plying it to the functor g F' we get that

(QpeF,pesF) = Coequpy, (1oeUsF, QeUApsF)
= Coeunun (/'1’537 QmB) .
Since @ is a right B-module functor, by Proposition 3.16 we have that
(Q, 1g) = Coequpy, (1GB, @mp)
so that we get
(QBBF, pgeF) = Coequg,, (M?}B, QmB) = (Q, Mg) .
O

PROPOSITION 3.35. Let B = (B, mp,up) be a monad on a category B with coequal-
izers such that B preserves coequalizers. Let G : gB — A be a functor preserving
coequalizers. Set

Q = GogF and let ,ug = GAgpF

Then (Q,pg) 1s a right B-module functor and
(16) Qp=(Gopl)y =0G.
Proof. We compute
1B o (uEB) = (GAgsF) o (GApsFB) 2 (GApsF) o (GsFpUApsF)
= (GA\gpF) o (GogFmp) = NS o (Q@mp)

and
adj

,ug ) (QU,B) = (G)\BIB%F) o (GBFUB) = Go [BF = Q
Thus (Q,xg) is a right B-module functor. Recall that (see Proposition 3.30)

(Q5,pq) = Coequp,, (1osU, QeUAs)
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and by Proposition 3.34 we have QppF’ = @) and popl’ = /Lg . In particular we get

QB]BF: Q = GIBF

In order to prove that Qg = G it suffices to prove that

(G,GAg) = Coequp,, (pggU, QBU)\B). In fact, by Corollary 3.15, (gU,gUAp) =
Coequp,, (BgUAp, mpplU) and, since by Lemma 3.20 gU reflects coequalizers, we
have

(IdBB, >\B) = COunFun (IBFIBU/\Ba )\BIBFIBU) .
Since GG preserves coequalizers, we get that
(G, G)\B) = Coeunun (GBFBU)\B, G/\BBFBU>
= Coequp,, (QsUAs, MSBU) = (@B, pg) -
O
PROPOSITION 3.36. Let A = (A, ma,ua) be a monad on a category A with coequal-
izers such that A preserves coequalizers. Let H : B — , A be a functor preserving
coequalizers. Set
Q = AUOH and let AILLQ = AU)\AH
Then (Q, A,uQ) 1s a left A-module functor and

(17) AQ=4(wUoH)=H.

Proof. First we want to prove that “ug = 4UM4H is associative. We have

o (A%%q) = (WUMAH) 0 (AsUNAH) 22 (WUAAH) 0 (WU an FAUH)
= (WUMaH) o (mapUH) = pig o (maQ)
so that we get
Mg o (Aug) =g o (maQ) .
Now we prove that AMQ = AUM4H is unital. We compute

adj
g o (uaQ) = (WUMsH) 0 (uspUH) = LUH = Q
so that we get
A _
fq o (uaQ) = Q.
Thus (Q,“1q) is a left A-module functor. Recall that (see Lemma 3.29) there exists
a unique functor 4@ : B — 4 A such that
aUo04Q =Q and yUMaaQ = 1.
Thus we have
AUo0aQ =Q=,UocH
and
2UNaaQ =g = nUNsH
so that, by Proposition 3.12, we obtain that

AQ=H.
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THEOREM 3.37. Let B = (B, mp,up) be a monad on a category B with coequalizers
such that B preserves coequalizers. Then there exists a bijective correspondence
between the following collections of data:

Fp right B-module functors Q@ : B — A such that QB preserves coequalizers
(A «— gB) functors G : gB — A preserving coequalizers

given by

vg : Fp— (A« pB) where vg ((Q,ug)) =Qp
kg : (A<« pB) — Fp where kp (G) = (GpF,G\gpF)

where Qg is uniquely determined by (Qp,pg) = Coequpy,, (#5BU, QBU)\B) )

Proof. Let Q : B — A be a right B-module functor. Then we can consider Qp :
BB — A defined by (6) as

<QB7PQ) = COeunun (MSBUa QBU)\B> .

Since by assumption QB preserves coequalizers, by Lemma 3.19 also () preserves
coequalizers. Moreover, since B preserves coequalizers, by Lemma 3.21 also the
functor gU preserves coequalizers. Thus both Q BgU and QU preserve coequalizers.
By Corollary 2.12 we get that also Qp : gB — A preserves coequalizers.
Conversely, let us consider a functor G : g3 — A that preserves coequalizers. By
Proposition 3.35 we can consider the right B-module functor defined as follows

@ = GopF and let p,g = GAgpF.

Since gF' is left adjoint to gU, in particular gF preserves coequalizers and since
by assumption G preserves coequalizers, we get that also ) = G o gF’ preserves
coequalizers and so does ) B.

Now, we want to prove that vg and kg determine a bijective correspondence be-
tween Fp and (A < gB). Let us start with a right B-module functor (Q : B — A, 11§}).
Then we have

(kpovp) ((Q, Mg)) = rp (@B) = (QeF,QpAsBT)

= (QuaFug,r) = (Quif).

Moreover we have
(v 0 5) (G) = v (GaF,GApsF)) = (GaF), & G.
OJ

THEOREM 3.38. Let A = (A, ma,uys) be a monad on a category A with coequalizers
such that A preserves coequalizers. Then there exists a bijective correspondence
between the following collections of data:

aF left A-module functors @ : B — A such that AQ preserves coequalizers
(s A — B) functors H : B — A preserving coequalizers

given by
AV 1 aF — (WA — B) where 4v ((Q,AMQ)) = aQ
Ak (WA — B) — 4 F where ak (H) = (U o H, \UN+H)
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where 4Q : B — oA is the functor defined in Lemma 3.29.

Proof. Let (Q B — A, A,uQ) be a left A-module functor. Then, by Lemma 3.29,
there exists a unique functor 4Q : B — A such that

aU o0 4Q = Q and 2UN44Q = 1.

Note that, since AQ) preserves coequalizers, by Lemma 3.19, () = ,U o 4@ preserves
coequalizers. Then, by Lemma 3.20, also 4@ preserves coequalizers. Conversely, if
H : B — A is a functor preserving coequalizers, we get that ,U o H : B — A.
Moreover, by Lemma 3.21, 4U preserves coequalizers and thus also ,U o H preserves
coequalizers. Now, let us prove that 4 and 4« determine a bijective correspondence
between 4F and (4 A «+ B). We compute

(ak0av) ((Q,*pq)) = 4k (4Q) = (U AQ, aUM44Q) = (Q, " 10) -
On the other hand we have

(a0 ak) (H) = av (3U o H, \UNAH)) = 4 (uU 0 H) "2 .
O

THEOREM 3.39. Let A = (A, ma,uas) be a monad on a category A with coequalizers
such that A preserves coequalizers. Let B = (B, mp,up) be a monad on a category
B with coequalizers such that B preserves coequalizers. Then there exists a bijective
correspondence between the following collections of data:
AaF B A-B-bimodule functors QQ : B — A such that AQ and QB preserve coequal-
12ers
(A A — gB) functors G : gBB — 5 A preserving coequalizers

given by

ave : aFp — (WA pB) where avp ((Q,AMQaﬂg)) = aUs
akp + (aA —BB) — aFp where akp (G) = (WU 0 G ogF, \UNAGREF, \UGApsF) .

Proof. Let us consider an A-B-bimodule functor (Q B — A, g, ,ug) such that AQ
and QB preserve coequalizers. In particular, (Q, ,ug) is a right B-module functor,
so that we can apply the map vp : Fg — (A < B) of Theorem 3.37 and we get a
functor vg ((Q, ,ug)) = @Qp : gB — A which preserves coequalizers. By Proposition
3.30, (QB,A/LQB) is a left A-module functor so that we can also apply the map
av i aF — (a A« B) of Theorem 3.38 where the category B is gpB. The map v

is defined by AV((QB,A,MQB)) = A4(@Qp) = 4Qp : BB — sA and 4Qp preserves
coequalizers. Conversely, let us consider a functor G : g8 — 4. A which preserves
coequalizers. By Theorem 3.38, we get a left A-module functor given by

AR (G) = (AU o) G, AU)\AG)

where ,U o G : gB — A and A UG preserves coequalizers. By Lemma 3.19, also
AU o G : gB — A preserves coequalizers. Thus, we can apply Theorem 3.37 and we
get a right B-module functor

RpB (AUG) = (AUGBF,AUGAB]BF)
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where ,UGgF : B — A is such that ,UGgF' B preserves coequalizers. Clearly, since
AUG preserves coequalizers, gF is a left adjoint and A preserves coequalizers by
assumption, we deduce that also ApUGgF preserves coequalizers. Now, we want
to prove that gvp : AFp — (aA «— pB) and akp : (A A «— gBB) — 4Fp determine a
bijection. We have

(ks o av) ((Q, 1, 15)) = akp (4Qp)
= (AU 0 4Qp opF, sUNsaQpsF, sUaQpApsEF)

= (QaAU)\AAQaQB)‘BBF> = (Q?AMQ7MgBBF) = (QJA/’LQ7I’LS)
and

(avp o akp) (G) = avp (AU o GogF, \UNAGRF, \UGAgpF))

=4(wWUo0GopF)p=4(aUocGogF)p)

Y wea)¥a.

O

PROPOSITION 3.40. Let A = (A, m4,ua) be a monad over a category A with coequal-
izers and assume that A preserves coequalizers. Let Q : A — A be an A-bimodule
functor. Then there exists a unique lifted functor sQ4 : s A — 4 A such that

AUAQanF = Q.

Proof. By Proposition 3.31 there exists a unique functor 4Q4 : 4 A — 5 A such that
2UaQ4 = Q4. Now, by Proposition 3.34 we also get that Q4o F = @ so that we
obtain
aUaQanF = Q.
O

PROPOSITION 3.41. Let A = (A, ma,ua) be a monad over a category A with coequal-
izers and assume that A preserves coequalizers. Let B = (B, mp,up) be a monad
over a category B with coequalizers and let Q@ : B — A be an A-B-bimodule functor.
Then there exists a unique lifted functor Qg : B — oA such that

AUaQpsF = Q.

Proof. By Proposition 3.31 there exists a unique functor 4@p : gB — oA such that
AUAQp = Qp. Now, by Proposition 3.34 we also get that QppF = @ so that we
obtain
AUAQppF = Q.
O

PROPOSITION 3.42. Let A = (A,ma,ua) be a monad over a category A with co-
equalizers and assume that A preserves coequalizers. Let B = (B,mp,up) be a
monad over a category B with coequalizers and let P,Q : B — A be A-B-bimodule
functors. Let f : P — @ be a functorial morphism of left A-module functors and
of right B-module functors. Then there exists a unique functorial morphism of left
A-module functors

fB:Pp— @p
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satisfying
feopp =pgo(fsU).
Then we can consider
AfB 1 aPp — 4QB

such that
aUafs = fB.
Proof. Consider the following diagram
npeU pp
PBBU P]BU —_— PB
PsUNp
fB]BU\L - f]ESUl fB
roB \%
QBsU QeU 2~ Qp
QpUAB

Since f is a functorial morphism and it is a functorial morphism of right B-module
functors, the left square serially commutes. Note that

o (feU) o (1peU) = pg o (f8U) o (PeUAp)
so that, by the universal property of the coequalizer, there exists a unique morphism
iR PB — @p such that

(18) feopp =pgo(fsU).
We now want to prove that fg is a functorial morphism of left A-module functor.
In fact we have

f5 0 1p, o (App) 2 fB oppo (“1upsU)
= pgo (U)o (upstl) " pg o (Ygsl) o (Af5U)

(M A (18)
gy © (Apg) o (AfsU) ‘2 AMQB o (Afp) o (App)
and since A preserves coequalizers Apg is an epimorphism so that we get

(18

fB OA:U’PB = A/’LQB © (AfB>

Then there exists a functorial morphism 4fg : 4Pg — 4@ p such that

2Uafs = fB.
[l

3.2. The category of balanced bimodule functors. We will construct here the
monoidal category of balanced bimodule functors with respect to a monad.

DEFINITION 3.43. Let A = (A, ma,us) be a monad over a category A such thatA
has coequalizers and the underlying functor A preserves coequalizers. Let us define
the category (, A < 4.A) of balanced bimodule functors as follows

Ob Objects are functors 4Q4 : g A— 4 A where Q : A — A is an A-A-bimodule
functor such that ()4 preserves coequalizers.

M Morphisms are functorial morphisms 4f4 : 4Pa — 4Q4 where f: P — @ is
a functorial morphism of A-A-bimodule functors.
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PROPOSITION 3.44. Let A = (A, ma,ua) be a monad on a category A such that the

underlying functor A preserves coequalizers and let s4Pa, 4AQa € Ob ((x A — 2 A)).
Then the functor APaaQ4 € Ob ((a A — 4A)).

Proof. We will prove that 4PaaQa = 4 (PaaQ) 4. Let us consider the functor
PyaQ : A — A. Since 4(Q is a right A-module functor by Proposition 3.31, then
also P4a() is a right A-module functor by Lemma 3.17. Thus, we can consider

((Paa@Q) 4 - PPanq) = Coequpy, (15, ,oaU, PaaQaUMA)
Lem3 17 Coeunun (PANAQAU PAAQAUAA)

Pjpreserves coequ

= (PsaQa, Pap,q)
1.e.
(19) ((PaaQ) 4, 0Psaq@) = (PaaQa, Pap,q) -

Now, observe that (P4aQ), is a left A-module functor by Proposition 3.30 and
PyaQ 4 is a left A-module functor by Lemma 3.17. So we can consider both lifting
functors : 4 (Paa@®) a4 and 4 (P4) 4Q4 and we have

aUA ((PaaQ) ) Prodst (PaaQ) a = PyaQa

DSt Uy, (Pa) AQa

and
Pro3.30 4 A (19)
AUNA4 ((PAAQ) ) H(PaaQ), = HPaaQa
LA aQa T WU (Pa) 4Qa.
Hence
Pr03 31
A ((P4aQ) ) A (PaaQ) a = a(Pa) aQa
Pro3.31 APaaOa
Thus

AP1aQa = A (P1aQ) a
where Py4Q : A — A is an A-bimodule functor satisfying the required conditions.
O

PROPOSITION 3.45. Let A = (A, ma,ua) be a monad on a category A such that the
underlying functor A preserves coequalizers. Then sAs € Ob(( A — aA)) and it
is the unit element for the category (4 A «— 5 A).

Proof. Since A is a monad, in particular an A-bimodule functor. Then we can
consider 444 € Ob((, A+ 4A)) as the object coming from the endofunctor A :
A — A. By definition we have

(AAapA) = Coeun‘un (mAAUaAAU)‘A) = (AUaAU)‘A>

and it is a left A-module functor by Proposition 3.13. By Lemma 3.29, we can
consider

4As=4(WU)=1d, 4
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as the unique functor which satisfies

aAUaAL = pUld, 4= ,U = Ay
and

aUNaadAs = UMl a = 2UNa = "0 = “pua,.

Clearly 4A4 = 1d, 4 is the identity element for the category (4 A «— 4.A). O
COROLLARY 3.46. Let A = (A,ma,ua) be a monad on a category A such that the
underlying functor A preserves coequalizers. Then we have

AAAOF:F andFoAAA:F
for every F' € Ob ((4 A <+ 4 A)).
Proof. By Proposition 3.45 we have that 4A4 = Id, 4 is the identity element for the
category (A < 4 A). Therefore, in particular, we have that

AAAOF:FaHdFOAAA:F
for every F' € Ob((a A — 4 A)). O

PROPOSITION 3.47. Let A = (A, ma,ua) be a monad on a category A such that the
underlying functor A preserves coequalizers, let 4Pa, aAQa, AT4 € Ob ((4 A «— aA))
and let afa: aPa — aQa, 494 : aAQa — aTa be morphisms in (, A« o A). Then
A9a © afa is still a morphism in the category (a A — aA) and

(20) algof)a=aga0afa

Proof. We will prove that 4g4 0 afa = 4 (go f) 4 where go f is an A-bilinear func-
torial morphism as composite of A-bilinear functorial morphisms. By assumption,
using notations of Proposition 3.42 we have the following serially commutative dia-
gram

ppal PP
PAAU PAU I PA
PpUXa
fAAUi Ay fAU\L lfA
HQA
QAU QU —2> Q4
WU
gAAUi gAU\L \LHA
pipaU
TAU ———= T, U =T,
TaUXg

Then 4 f4 is the unique morphism such that
aUafa= fa
where
(21) faopp=pqo(fal)
and 494 is the unique morphism such that
aUaga = ga
where

(22) gaopg =pro(gal).
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Note that, since f and g are A-bilinear morphism, g o f is still an A-bilinear mor-
phism, so that we can also consider (g o f), such that

(23) (goflaopp=prol(go f)aU] =pro(gal)o (fal).

First we prove that (go f), = ga o fa. In fact we have

(go f)sopr 2 pro(gall) o (f4U)

22 21
@ gaopgo (fal) = gao faopp

and since pp is an epimorphism we obtain
(9o fla=gao fa
The, we can both consider 4 (go f) 4 = a((go f) a) such that
aUa(gofla=aUa((gof)a)=1(g90f)a
and the composite of the liftings 494 o 4fa such that

aUaga o afal = (aUaga) o (8Uafa) = gao fa.
We have

aUa(goflaopp=aUa((gof)a)opp=(90f)acpp

2 pro(gall) o (Fal) = gaopgo (fall) = gao faopp

and since pp is an epimorphism we deduce that

aUa(gof)a=gao fa=aUagaoaUafa.

Since 4 U reflects we conclude that
Algof)a=aga0afa
where yUa (9o f)a=(go f)aand (go f)opp=prol(go f)aU]. O

PROPOSITION 3.48. Let A = (A, ma,ua) be a monad on a category A such that the
underlying functor A preserves coequalizers, let 4Pa, AQa, AT4 € Ob ((a A — 4A))
and let AfA . APA - AQA7 AdA AQA - ATA; AhA . ATA — AWA be morphisms m

(AA — A.A) Then
Ahao(agaoafa) = (ahaoaga)o afa.

Proof. By Proposition 3.47 we have that, for every morphisms 4 fs : aP4 — a4Qa,
494 2 AQa — AT in (4 A — 4 A), also the morphism g4 0 4fa is in (4 A «— 4 A)
and 4 (go f)a = aga o afa. Hence we have that

ahao(agaoafa) @ ahao(a(gof)a) Z (4(ho(gof))a)

Astrictly monoida 20
e mondital (o g)o f)a) D a(hog)aoafa
20
@ (ahaoaga)o afa.
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THEOREM 3.49. Let A = (A, ma,uas) be a monad over a category A such thatA
has coequalizers and the underlying functor A preserves coequalizers. The category
(A A — aA) of balanced bimodule functors is a strict monoidal category.

Proof. By Proposition 3.44, we defined a composition of the objects of the cate-
gory (aA < 4 A). Moreover, by Proposition 3.45, 4A4 is the unit for the category
(s A — aA). Since the composition of functors is associative and by Corollary 3.46,
it is easy to prove that (4.4 < 4.A) is a strict monoidal category. 0

3.3. The comparison functor for monads.

PROPOSITION 3.50. Let (L, R) be an adjunction where L : B — A and R : A — B
with unit n and counit € and let A = (A,ma,uq) be a monad on the category B.
There exists a bijective correspondence between the following collections of data:
M monad morphisms ¢ : A = (A, ma,us) — RL = (RL, ReL,n)
R functorial morphism r : LA — L such that (L,r) is a right module functor
for the monad A
£ functorial morphism | : AR — R such that (R, 1) is a left module functor for

the monad A
given by
© M — R where O (¢) = (eL) o (L))
= R — M where Z(r) = (Rr) o (nA)
' M — £ where ' (¢) = (Re) o (YR)
A £ — I where A () = (IL) o (An).

THEOREM 3.51. Let (L, R) be an adjunction where L : B — A and R : A — B
and let A = (A, ma,us) be a monad on the category B. There exists a bijective
correspondence between the following collections of data:

R Functors K : A — 4B such that \U o K = R
M monad morphisms ¢ : A = (A, ma,us) — RL = (RL, ReL, n)
given by
U R — I where U (K) = ([AUMAK] L) o (An)
T : M — KR where T (¢) (X) = (RX, (ReX) o (YRX)) and Y () (f) = Rf.
REMARK 3.52. When A = RL = (RL, ReL,n) and ¢ = Idgy the functor K =

Y (¢) : A — guB such that gU o K = R is called the Filenberg-Moore comparison
functor.

COROLLARY 3.53. Let A = (A,ma,ua) and B = (B, mp,up) be monads on a
category B. There exists a bijective correspondence between the following collections

of data:

K Functors K : \B — gB such that gU o K = ,U,
M monad morphisms 1 : A — B

given by
U o K — M where ¥ (K) = ([AUMK]| o F) o (Auy)
T : M— K where Y (¢) (X) = (WUX, (AUIAX) 0 (YaUX)) and Y () (f) = aU (f) .
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PROPOSITION 3.54. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,us) be a monad on the category B and let b : A = (A, ma,ua) —
RL = (RL, ReL,n) be a monad morphism. Let r = © (¢)) = (eL) o (Ly). Then the
functor Ky = Y (¢) : A — 4B has a left adjoint Dy, : o8B — A if and only if, for
every (Y, A[Ly) € aB, there exists Coequ 4 (TY, LA,uy). In this case, there exists a
functorial morphism dy, : LyU — Dy, such that

(Dy, dy) = Coequpy, (ral, LaUX4)
and thus
[Dy (Y, py)) o dy (Y, py)] = Coequy (rY, L py) .

COROLLARY 3.55. Let (L, R) be an adjunction where L : B — A and R : A —
B. Let r = ©(Idgy) = €eL. Then the functor K = T (Idgy) : A — gLB has a
left adjoint D : B — A if and only, for every (Y, RL,uy) € rLB, there exists
Coequy (eLY, L™y ). In this case, there exists a functorial morphism d : Lg U —
D such that

(D» d) = Coequp,, (ELRLUa Lri,UARL)
and thus
[D (Y, puy)) . d (Y, puy)] = Coequy (eLY, L™ py) .

REMARK 3.56. In the setting of Proposition 3.54, for every X € A, we note that
the counit of the adjunction (Dy, Ky) is given by

eX = iy, x (i) : Dy, (X) = X.

We will consider the diagram

(24) Hom 4 (Dw (V. Ay)) s X) —2 s Hom, s (Y Apy) . Ky X)
Hom.a (dy ( (Y Ay ) i l
Homy (LY, X) Y Homg (Y, RX)
HomA(rY,X)uHomA(LAW,X) (F(q/;)X)o(A—)uHomB(Auy,RX)
ax,ay

Hom 4 (LAY, X) Homy (AY, RX)

defining a_y in the particular case of (Y, A/,Ly) = K, X. Note that, since K, X =
(RX, (ReX) o (YRX)) = (RX,1X), we have

(DQ/JKQJ, (X) s d¢Kw (X)) = (D¢ (RX, lX) ,d¢K¢ (X)) = COunB (T‘RX, LZX)
= Coequg ((eLRX) o (LY RX),(LReX) o (LYpRX))
(25) (DypKy (X),dyKy (X)) = Coequg (rRX, LIX)
where [ = I' (¢) = (Re) o (¥ R) . We compute
(€X) o (dyKypX) = Homy (dyp Ky X, X) ((€X))

= Homu (dy K X, X) (a5, x (1, x) )
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[HOTHA (dy Ky X, X)oax KwX] (IdeX)

= ax g, xaU (Idmx) = a)_(lK x (Id,uk,x)

so that

(E:X) o (dwKwX) =eX.
Since €X = ay’' KX (IdeX) and ZL/}}KwX is an isomorphism, we deduce that €X :
Dy Ky, (X) — X is defined as the unique morphism such that

(26) (€X) o (dypKypX) = €eX.

On the other hand, for every (Y, Auy) € aB, the unit of the adjunction (D, Ky),
AB — KyDy, is given by

(Y My) = CLDw(yAMY (IdDw Y,Au )) : (Y, A/Ly) — Ky Dy ((Y, Auy)) :
Then by commutativity of the diagram (24), we deduce that
U (Y, y) = aUap, vy (1dp, va)
= ap,,(vauy)y © Homy (dy (Y. uy)) Dy (Y, pv)) (1dpyv,ap))
= ap, vy (do (V. py))) = (Rdy (Y, py)) o (nY).
Thus we obtain that
(27) AU (Y, py) = (Rdy (Y, " py)) o (Y).
Observe that, for every Y € B we have that o/ (Y) = (AY, maY) . Moreover
(DynF (Y), dynF (V) = (Dy (AY.maY) . dy (AY, maY))
= Coequy (rAY, Lm,Y) @ (LY, rY)
so that we get

(28) (D¢AF, deF> = (L, T') .
In particular
(29) dy (AY,maY) =1rY.

THEOREM 3.57. Let (L, R) be an adjunction where L : B — A and R : A — B, let
A = (A, ma,ua) be a monad on the category B and let v : A = (A, ma,uq) — RL =
(RL, ReL,n) be a monad morphism. Letr = O (1) = (eL) o (Ly). Assume that, for
every (Y, Auy) € aB, there exists Coequ 4 (rY, LAuy). Then we can consider the
functor Ky, =Y (¢) : A — aB. Its left adjoint Dy : 4B — A is full and faithful if
and only if

1) R preserves the coequalizer
(Dy, dy) = Coequpy, (ral, LaUX4)

2) ¥ : A — RL is a monad isomorphism.
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COROLLARY 3.58. Let (L, R) be an adjunction where L : B — A and R : A — B.
Let r = ©(Idgy) = €L. Assume that, for every (Y, RLuy) € rLB, there exists
Coequ 4 (eLY, LRL,uy). Then we can consider the functor K =Y (Idgp) : A — grLB.
Its left adjoint D : gB — A is full and faithful if and only if R preserves the
coequalizer

(D, d) = Coequyy, (eLrrLU, Lr,UARL) -

THEOREM 3.59. Let (L, R) be an adjunction where L : B — A and R : A — B,
let A = (A,ma,uas) be a monad on the category B and let ¢ : A = (A,ma,us) —
RL = (RL,ReL,n) be a monad morphism. Let r = O (1) = (eL) o (L)) and
| = T(¥) = (Re) o (YR). Assume that, for every (Y, uy) € B, there exists
Coequ 4 (TY, LA,uy). Then we can consider the functor Ky =Y () : A — 4B and
its left adjoint Dy, : \B — A. The functor K, is an equivalence of categories if and

only if
1) R preserves the coequalizer

(Dw, dw) = Coeunun (T’AU, LAU/\A)

2) R reflects isomorphisms and
3) ¥ : A — RL is a monad isomorphism.

DEFINITION 3.60. Let A = (A, ma,us) be a monad on the category B and let
(R, A,uR) be a left A-module functor. We say that (R, AuR) is a left A-coGalois
functor if R has a left adjoint L and if the canonical morphism

cocan := (*purL) o (An) : A — RL
is a monad isomorphism, where 1 denotes the unit of the adjunction (L, R).

COROLLARY 3.61. Let (R, A,uR) be a left A-coGalois functor where R : A — B
preserves coequalizers, R reflects isomorphisms and A = (A, ma,uy) is a monad on
B. Assume that, for every (Y, Auy) € aB, there exists Coequ 4 (T’Y, LAMy) where
r = (eL) o (Lcocan) where L is the left adjoint of R and € is the counit of the
adjunction (L, R). Then we can consider the functor Keocan : A — aB and its left
adjoint Depean - aAB — A. Then the functor K ocqn S an equivalence of categories.

THEOREM 3.62 ( Beck’s Theorem for monads). Let (L, R) be an adjunction where
L:B—AandR: A — B. Let r = ©(Idgr) = €L and assume that, for every
(Y, RL,LLy) € ruB, there exists Coequ 4 ((—:LY, LRLuy). Then we can consider the
functor K =Y (Idgy) : A — gruB and its left adjoint D : g . B — A. The functor K

is an equivalence of categories if and only if

1) R preserves the coequalizer
(D, d) = COunFun (EL]R[LU, LRILU)\RL) .
2) R reflects isomorphisms.

DEFINITION 3.63. Let A = (A, ma,us) be a monad on the category B and let
R : A — B be a functor. The functor R is called )-monadic if it has a left adjoint
L : B — A for which there exists 1) : A — RIL a monad morphism such that the
functor K, =Y (¢) : A — 4B is an equivalence of categories.
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DEFINITION 3.64. Let R : A — B be a functor. The functor R is called monadic if
it has a left adjoint L : B — A for which the functor K = T (Idgy) : A — gB is an
equivalence of categories.

The following is a slightly improved version of Theorem 3.14 p. 101 [BW].

THEOREM 3.65 (Generalized Beck’s Precise Tripleability Theorem). Let R : A — B
be a functor and let A = (A,ma,uas) be a monad on the category B. Then R is
Ww-monadic if and only if
1) R has a left adjoint L : B — A,
2) ¥ : A — RL is a monads isomorphism where RL = (RL, ReL,n) with n and
€ unit and counit of (L, R),
3) for every (Y, Auy) € AB, there exist Coequ 4 (TY, LA,uy) , wherer = O (V) =
(eL) o (Lv), and R preserves the coequalizer
Coequpy, (ralU, LyUX4) ,
4) R reflects isomorphisms.
In this case in A there exist coequalizers of R-contractible coequalizer pairs and R
preserves them.
COROLLARY 3.66 (Beck’s Precise Tripleability Theorem). Let R : A — B be a
functor. Then R is monadic if and only if
1) R has a left adjoint L : B — A,
2) for every (Y, RL[Ly) € ruLB, there exist Coequ 4 (eLY, LRL,uy) and R pre-
serves the coequalizer
COunFun (ELRLU, LR]LU)\RL> 3
3) R reflects isomorphisms.
In this case in A there exist coequalizers of R-contractible coequalizer pairs and R
preserves them.

THEOREM 3.67 (Generalized Beck’s Theorem for Monads). Let (L, R) be an ad-
Junction where L : B — A and R : A — B, let A = (A, ma,uas) be a monad on
the category B and let ¢ : A = (A,ma,us) — RL = (RL, ReL,n) be a monads
morphism such that VY is an epimorphism for every Y € B. Let Ky = T (¢) =
(R, (Re) o (YR)) and \UKy, (f) = aUY () (f) = R(f) for every morphism f in A.
Then Ky : A — aB is full and faithful if and only if for every X € A we have that
(X,eX) = Coequ (LReX,eLRX).

COROLLARY 3.68 (Beck’s Theorem for Monads). Let (L, R) be an adjunction where
L:B—Aand R: A— B. Then K =Y (Idgy) : A — guB is full and faithful if
and only if for every X € A we have that (X,eX) = Coequ, (LReX,eLRX).

4. COMONADS

DEFINITION 4.1. A comonad on a category A is a triple C = (C’, Ac,sc) , Where
C:A— Ais a functor, A° : C — CC and ¢“ : C — A are functorial morphisms
satisfying the coassociativity and the counitality conditions

(ACC) o A = (CAY) 0 AY and (CeY) 0 AY =C = (¢“C) 0 A“.
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DEFINITION 4.2. A morphism between two comonads C = (C, Ac,ec) and D =
(D, AP, 5D) on a category A is a functorial morphism ¢ : C'— D such that

Ao p=(pp)o AP and £%o0¢p=cP.

EXAMPLE 4.3. Let (C, AC, 5‘3) an A-coring where A is a ring. Then

e C is an A-A-bimodule
o A®:C — C®4C is a morphism of A-A-bimodules
e € :C — Ais a morphism of A-A-bimodules satisfying the following

(A ®@4C)oA’ = (C®4 A%) oA, (C®A)oA’ =1g! and  (€®4C)oA° ="
where r¢ : C®4A — C and l¢ : A® oC — C are the right and left constraints.

Let
C = —®4C:Mod-A— Mod-A
AY = —@4A°: —®4C— —®4C®4C
¢ = T_O(—®A€C):—®AC—>—®AA—>—

Then, dually to the case of the R-ring, C = (C’, AC, 50) is a comonad on the
category Mod-A.

ProposITION 4.4 ([H]). Let (L, R) be an adjunction with unit n and counit € where
L:B—Aand R: A— B. Then LR = (LR, LnR,€) is a comonad on the category
A.

Proof. Dual to the proof of Proposition 3.4. 0

DEFINITION 4.5. A left comodule functor for a comonad C = (C, AC,EC) on a
category A is a pair (Q, CpQ) where Q : B — A is a functor and “pg : Q — CQ is
a functorial morphism such that

(C%q) 0 po = (A°Q) 0 %pg and Q = (°Q) o “pq.

DEFINITION 4.6. A right comodule functor for a comonad C = (C’, Ac,ec) on a
category A is a pair (P, plcg) where P : A — B is a functor and p% : P — PC is a
functorial morphism such that

(p5C) 0 ps = (PA“) 0 ps and P = (Pe%) o pf.
DEFINITION 4.7. For two comonads C = (C, AC,EC) on a category A and D =
(D,AD,ED) on a category B, a C-D-bicomodule functor is a triple (Q,CpQ,pg) ,

where @) : B — A is a functor and (Q, CpQ) is a left C-comodule, (Q, ,08) is a right
D-comodule such that in addition

(Cpg) o “po=(“paD) o pg.

DEFINITION 4.8. A morphism between two left C-comodule functors (Q,CpQ) and
(Q’, CpQ) is a morphism [ : @ — @' in A such that

“poof=(Cf)opq.
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DEFINITION 4.9. A comodule for a comonad C = (C, AY, 50) on a category A is a
pair (X, CpX) where X € A and “pyx : X — CX is a morphism in A such that
(C’Cpx) R (ACX) 0%y and X = (5CX) 0%x.

A morphism between two C-comodules (X,%px) and (X’,“pxs) is a morphism f :
X — X’ in A such that

“pxof=(Cf)opx.
We denote by €A the category of C-comodule and their morphisms.

DEFINITION 4.10. Corresponding to a comonad C = (C, AC,{:‘C) on A, there is an
adjunction ((CU CF ) where €U is the forgetful functor and ©F is the free functor

v ‘4 - A CF: A — cA
(X, CpX) - X X — (C’X, ACX)
f - f f— cf

Note that “UCF = C. The counit of the adjunction is given by the counit ¢ of the
comonad C
¢ . C="UF - A

The unit v¢ : ©4 — CFCU of this adjunction is defined by setting

U (70 (X, CpX)) = Cpx for every (X, CpX) cCA.
Therefore we have

(eccU) o (CUVC) =tU and (CFsc) o (7CCF) =CF.
ProproSITION 4.11. Let C = (C, Ac,sc) be a comonad on a category A and let
Z,W € CA. Then Z = W if and only if “U (Z) = “U (W) and ‘U (’yCZ) =
Cu (WCW). In particular, if F,G : X —CA are functors, we have
F =G if and only if “UF = “UG and “U (°F) = U (1°G).

PrROPOSITION 4.12. Let C = (C, Ac,sc) be a comonad on a category A. Then
(CU, (CUWC)) 15 a left C-comodule functor.

Proof. We have to prove these two equalities
(OCU’}/C) o ((CU/}/C) — (ACCU) o ((CU’}/C)
(°CU) o (*UA°) = “U
Let us consider (X ) CpX) € A, we have to show that
(CZUT) (X, px) o (FUF7) (X, “px) = (ATU) (X, “px) o (FUF) (X, “px)
and that
(<7U) (X, px) o (CUA°) (X, Opx) = U (X, px)
i.e.
(Ccpx) 0%px = (ACX) 0 %px and (°X)o%x =X
which both hold in view of the definition of C-comodule. O
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PROPOSITION 4.13. Let C = (C, Ac,sc) be a comonad on a category A and let
(X, CpX) be a comodule for C. Then we have

(X, CpX) = Equy, (C’CpX, ACX) .
In particular if (Q, C,oQ) 15 a left C-comodule functor, then

(Q-%po) = Eaup, (C%po. A°Q).

COROLLARY 4.14. Let C = (C, AC,EC) be a comonad on a category A and let
(CU,CF) be the associated adjunction. Then (CU, (‘CU”yC)) s a left C-comodule
functor and
(CU, (CU’yc)) = Equp,, (CCU”yC, AT .
Proof. By Proposition 4.12 (CU , (CU 70)) is a left C-comodule functor. By Propo-
sition 4.13 we get that (CU, (CUfyC)) = Equp,, (C’CU’yC, AC(CU) . O
ProOPOSITION 4.15. Let C = (C’, AC,SC) be a comonad on a category A and let
(P, pg) where P : A — B a right C-comodule functor. Then we have
(P.pp) = Equp,, (ppC, PA%).
Proof. By definition we have that
(P5C) 0 pp = (PAT) 0 pf.
Now, let ( : Z — PC be a functorial morphism such that (pg ) o( = (PAC) o(
and consider ¢ := (Pec) o(:Z — P. Then we have

— pC
5 0T = G0 (P°) 0 ¢ (PCE%) o (5C) o =
_ (PCEC) o (PAC) ° < Cconé)nad C
Moreover, let (' : Z — PC' be another functorial morphism such that (pIC;C) o(' =¢(.
Then
¢ = (PEC) 0pGol = (Pso) o(=C_
so that ¢ is the unique functorial morphism such that (ng’) ol =¢(. U

LEMMA 4.16. Let C = (C’, AC, 60) be a comonad on a category A and let (Q, CpQ) be

a left and (P, pg) be a right C-comodule functors where Q) : @ — A and P: A — P.
Let F: X — Q and G : P — B be functors. Then

(1) (QF, CpQF) is a left C-comodule functor and
(2) (GP,Gp%) is a right C-comodule functor.

PROPOSITION 4.17. Let C = (C’, Ac,ec) be a comonad on A and let (CU,CF) be
the adjunction associated. Then U reflects isomorphisms.

Proof. Let f : (X, CpX) — (Y, pr) be a morphism in A such that U f has a
two-sided inverse f~! in A. Since

“pyof=(Cf)o px
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we get that
(Cf ") oy =C%xof
O

LEMMA 4.18. Let C = (C’, Ac,ec) be a comonad on a category A, let (P, pICD) be a

right C-comodule functor where P : A — B and let (Q, CpQ) be a left C-comodule
functor. Then any equalizer preserved by PC' is also preserved by P and any equalizer
preserved by C'Q is also preserved by Q.

Proof. Consider the following equalizer

xT

X

Y A

in the category A and assume that PC preserves it. Applying to it functors PC
and P we get the following diagrams in B

Px Pf
PX PY PZ
Pg
PCX /N pEX PCY w pEY PCz w P8z
PCx pPCf
PCX PCY = PCZ
g

By assumption, the second row is an equalizer. Assume that there exists a morphism
h: H — PY such that

(Pf)oh=(Pg)oh.
Then, by composing with p&Z we get
(652) o (Pf) o h = (652) o (Pg) o h
and since p$ is a functorial morphism we obtain
(PCf)o (pICDY) oh=(PCg)o (ng) o h.

Since (PCX, PCx) = Equgz (PCf, PCyg), there exists a unique morphism k : H —
PCX such that

(30) (PCz)ok = (p3Y) o h.
By composing with P“Y we get
(P“Y) o (PCx) ok = (PeY ) o (ppY) o h

and thus

(Pz)o (P“X) ok = h.
Let | := (Pe“X) ok : H — PX. Then we have

(Pz)ol=(Pz)o (PCX) ok = (PCY) o (PCx) o k
W (PCYY) o ()5Y) 0 h = h.
Let I’ : H — PX be another morphism such that
(Pz)ol = h.
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Then we have
(PCz)o (p5X) ol = (ppY) o (Px)ol' = (p§Y) o h
= (p3Y) o (Pz) ol = (PCz)o (p$X) ol
Since PC preserves equalizers, we have that PCx is a monomorphism. Since p$X is

also a monomorphism, we deduce that [ = I’. Therefore we obtain that (PX, Px) =
Equg (Pf, Pg). The second statement can be proved similarly. O

LEMMA 4.19. Let C = (C, Ac,gc) be a comonad on a category A and let f,qg :

(X, CpX) — (Y, pr) be morphisms in CA. Assume that there exists (E,e) =

Equ 4 (CUf, (CUg) and assume that CC' preserves equalizers. Then there exists (Z,&) =

Equeq (f,9) and U (2,€) = (E.e).

Proof. Since C'C' preserves equalizers and (C, AC) is a right C-comodule functor,

also C' preserves equalizers by Lemma 4.18, in particular, C' preserves (E, e). Since
(CCUf) och oe fG;CA pr o ((ch) oe

D Chy 0 (CUg) o e “EM (CTUG) 0 px e

by the universal property of the equalizer (C'E, Ce) there exists a unique morphism
®pp: E — CE such that

(Ce) o CpE = CpX oe.
Moreover, by composing with €“X the first term of this equality we get

(e9X) o (Ce) 0 “pg Zeo (e“E) 0 “pp

whereas the second term becomes

(SCX) 0Cxoe=ce
so that we obtain the following equality

eo(eE)o“pp =e.
Since e is a monomorphism we deduce that

(e°E) o “pp = E.

Now, consider the following serially commutative diagram

“pr AYE

E CE CCFE
C%pp

e Ce CCe
“px AYX

X CcX ccxX
C%px

Curl||Cug CtUf || cCuyg ccCuyf || cctuyg

“py A%Y

Y cY ccy

CCPY
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Since we already observed that the columns are equalizers and also the second and
the third row are equalizers by Proposition 4.13, in view of Lemma 2.13 also the
first row is an equalizer, so that (E,e) has a left C-comodule structure, i.e. there
exists (Z,€) € ©A such that (Z,€) = Eque 4 (f,9) and CU (5,€) = (E,€). O

LEMMA 4.20. Let C = (C, A, 50) be a comonad on a category A with equalizers and
let (CU,CF) be the adjunction associated. The following statements are equivalent:
(i) C: A— A preserves equalizers
(1) CC : A — A preserves equalizers
(4ii) ©A has equalizers and they are preserved by “U : A — A
(iv) CU : ©A — A preserves equalizers.

Proof. (i) = (i1) and (iii) = (iv) are clear.

(17) = (i4i) follows by Lemma 4.19.

(iv) = (i) Note that ©F is a right adjoint, so that in particular it preserves equalizers.
Then CUCF = C also preserves equalizers. O

LEMMA 4.21. Let C = (C, AC760) be a comonad over a category A and assume

that C' preserves coequalizers. Then ©F preserves coequalizers where (CU,CF) 18
the adjunction associated to the comonad.

Proof. Dual to proof of Lemma 3.22. Let

Yy —*- K

X

be a coequalizer in A. Let us consider the fork obtained by applying the functor ©F
to the coequalizer

CFf
CFX == CFY - CFK
g
ie.
(CX,AX) (CY,A%Y) -5 (CK, ACK)

Cyg
Now, let (Z,%z) € “Aand z : (CY,A°Y) — (Z,%pz) be a morphism in ©A such
that zo (C'f) = zo(Cyg). Since C preserves coequalizers, we know that (CK,Ck) =
Coequ 4 (C'f,Cyg) . By the universal property of the coequalizer (C'K, Ck) in A, there
exists a unique morphism 2’ : CK — Z in A such that 2’ o (Ck) = z. We now want
to prove that 2’ is a morphism in ©A, i.e. that (C2') o (AYK) = “pz 0 2'. Since 2
is a morphism in ©A we have that

(Cz)o (ACY) =% 02
and since also C'k is a morphism in 4 we have that
(CCk) o (A°Y) = (A°K) o (CK).
Then we have
(CZ)o (AYK) o (Ck) = (C2)o(CCEk)o (AY)
P27 (C2) 0 (ACY) = %0272 C 02 0 (Ck)
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and since C' preserves coequalizers, C'k is an epimorphism, so that we get
(C2)o (AYK) =Cpyoz.
O

LEMMA 4.22. Let C = (C, Ac,ec) be a comonad over a category A, let L, N :
B — A be functors and let p : L — CL be a coassociative and counital functorial
morphism, that is (L, p) is a left C-comodule functor. Let w : N — L and let
¢: N — CN be functorial morphisms such that

(31) pou=(Cu)o¢.

If CCu and u are monomorphisms, then ¢ is coassociative and counital, that is
(N, ¢) is a left C-comodule functor.

Proof. Let us prove that ¢ is coassociative
(CCu) o (Cg) 06 E (Cp)o (Cu)oo ™ (Cp)opou
P2 (ALY opou™ (ACL) o (Cu) o ¢ 2 (CCu) o (ACN) 0 ¢,
Since C'Cu is a monomorphism we get that
(Cp)o¢=(A°N) oo

Let us prove that ¢ is counital

pcounit

uo (¢°N) ongE:C (e“L) o (Cu) o ¢ @ (e9L) opou™=
Since u is a monomorphism we conclude. 0

4.1. Lifting of comodule functors. This subsection collects the dual results for
liftings of module functors so that one can skip reading all the proofs we keep here
in order to give details of the results we use in the following.

PropoSITION 4.23 ([W] 3.5). Let C = (C, AC,EC) be a comonad on a category A,

let D= (D, AP, 5D) be a comonad on a category B and let T : A — B be a functor.
Then there is a bijection between the following collections of data

F functors T :CA —PB that are liftings of T' (i.e. DUT = TCU)
M functorial morphisms = : TC — DT such that

(APT) o2 = (DE)o (EC) o (TA®)  and  (e"T)o==Te"
given by
a:F — M where a (f) = (PUPFTe%) o (DUWDTCF>
b: M — F where "Ub(Z) = T°U and "UrPb(Z) = Zo (TUAC) i.c.
b(2) ((X.9px)) = (TX,(EX) o (Tx)) and b(Z) (f) =T (f).

Proof. Let T : €A — PB be a lifting of the functor T': A — B (i.e. DUT = TCU).
Define a functorial morphism ¢ : TF — PFT as the composite

= (DFT&tC) o (W/DTCF)
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where €¢ : C = CU®F — A is also the counit of the adjunction (CU,CF) and
vP:PB — PFPY is the unit of the adjunction (DU, DF). Let now define

=% Py . PUTCF = T°UCF = TC — PUPFT = DT

that is

= ="U¢ = ("UPFT=") o (PUAPTCF).
Dually to Proposition 3.24 you can prove that = is a functorial morphism satisfying

(APT) o= = (DE)o (EC) o (TAY) and (¢°T) 0= = Te,

Conversely, let = be a functorial morphism satisfying (APT) o =2 = (DE) o (EC) o
(TA®) and (ePT) 0 2 = Te®. We define T : “A — PB by setting, for every
(X% px) € “A,

T((X,%px)) = (TX,(EX) o (T px))
and for every f: (X.,% px) — (Y.% py) € CA4,

T(f)=T(f).

Dually to Proposition 3.24 you can prove that T is a functor between €A — P which
lifts T" and that a : F — M and b: M — F define a bijective correspondence. [

COROLLARY 4.24. Let X, A be categories and let C = (C’, AC,EC) be a comonad on
a category A and let ' : X — A be a functor. Then there is a bijection between the
following collections of data:

F Functors °F : X — A such that “U°F = F,
G Left C-comodule coactions ©pp : F — CF

given by

a : F—=g wherea(cF) =CUyY°F . F - CF

B : G — F where “US (Cpp) = F and “U~“p (Cpp) =%y ie.

B 1 G— F where 3 (“pr) (X) = (FX,“prX) and 3 (“pr) (f) = F (f).
Proof. Apply Proposition 4.23 to the case A = X, B = A,C = Idy,D = C. Then
T = ©F is the lifting of F and = = “pp : F — CF satisfies (A“F) o “pp =
(CCpp)opp and (e9F)opp = F that is (F, “pp) is a left C-comodule functor. [
COROLLARY 4.25. Let (L, R) be an adjunction where L : B — AR : A — B and

let C = (C’, Ac,ec) be a comonad on a category A. Then there exists a bijective
correspondence between the following collections of data:

R Functors K : B— ©A such that “Uo K = L,
£ Functorial morphism (3 : L — CL such that (L, 3) is a left comodule functor
for the comonad C

given by
® : R— & where ®(K)="U(“K):L—CL
Q : £ — & where Q) (Y) = (LY, BY) and “UQ(B) (f) = L(f).
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Proof. Apply Corollary 4.24 to the case "F” = L : B — A where (L, R) is an
adjunction and C = (07 A, 50) a comonad on A. O

PROPOSITION 4.26. Let C = (C’, AC,&?C) be a comonad on a category A and let
D = (D,AD,&tD) be a comonad on a category B. Let T : A — B be a functor,

let T : A — PB be a lifting of T (i.e. PUT = TCU) and let = : TC — DT
as in Proposition 4.23. Then = is an isomorphism if and only if £ = (DFT&?C) o

(fnyCF> . TCF — PFT is an isomorphism.

Proof. By construction in Proposition 4.23 we have that = = PU¢. Assume that
E is an isomorphism. Since, by Proposition 4.17, PU reflects _isomorphisms, § :
TCF — PFT is an isomorphism. Conversely, assume that ¢ : TCF — PFT is an
isomorphism. Then PU¢ is also an isomorphism. U

COROLLARY 4.27. Let (L, R) be an adjunction where L : B — A and R : A — B
and let C = (C’, Ac,gc) be a comonad on B. Let K : B — ©A be a functor such
that “U o K = L and let (L, 3) be a left C-comodule functor as in Corollary 4.25.
Then f3 is an isomorphism if and only if YK : K — ©FL is an isomorphism.

Proof. Apply Proposition 4.26 with 7" = L so that the categories A and B are
interchanged, C = Idg and D = C. Then T' = K is the liftingof Land == (: L —
CL, given by 3 = CU¢ = “U/CK. O

LEMMA 4.28. Let C = (C’, AC, 50) be a comonad over a category A with equalizers.

Let Q : B — A be a left C-comodule functor with functorial morphisms “pg : Q —
CQ. Then there exists a unique functor ¢Q : B — ©A such that

CUCQ = Q and “UACQ = ©pq.
Moreover if i : QQ — T is a functorial morphism between left C-module functors and
Y satisfies
“po o (C) =vo (“pr)
then there is a unique functorial morphism €1 : €Q — ¢T such that
Uy = .
Proof. Corollary 4.24 applied to the case where F' = Q and “pp = pg gives us the
first statement. Let B € B. Then we have

(“poB) o (CyB) = (¢B) o (“prB)
which means that ¥'B yields a morphism “¢'B in CA. 0

PROPOSITION 4.29. Let C = (C, Ac,gc) be a comonad over a category A and let
D= (D, AD,ED) be a comonad over a category B. Assume that both A and B have
equalizers and that C preserves equalizers. Let QQ : B — A be a functor and let
po : Q — CQ and pg 1 Q — QD be functorial morphisms. Assume that ©pg is
coassociative and counital and that (C’pg) 0Cpg = (CpQD) o pg. Set

(32) (QDa LQ) = Eunun (pSDUa QDU’}/D) .
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Then QP : PB — A is a left C-comodule functor where CpQD QP — CQP is
uniquely determined by

(33) (“po"U) 0 1% = (C1%) 0 “pgp.
Moreover there exists a unique functor © (QD) :PB — CA such that
(34) (CUC (QD) _ QD and CU")/CC (QD) — CPQD-

Proof. By Lemma 2.8 we can consider (Q,:1%) = Equp,, (p5°U, Q°U~”). Since
(Crg) ° pa = (“raD) g

we deduce that

(39 (CABPU) o (Cng?U) = (CpaDPU) o (s8°U).

Also, in view of the naturality of “pg, we have

(36) (€Q°U7") 0 (“0g"U) = (“paD"U) 0 (Q°U4") .

We compute

(€Q°UY") 0 (“p°U) 012 2 (Yo DPU) o (Q°UA") 017

1Qequ

< (CpaDPU) o (p5°U) 012 ) (CpBPUY o (CpoPU) 012,
Since C' preserves equalizers, we have
(C’QD, CLQ) = Equgp,, (CpéDU, CQDUVD)
hence there exists a unique functorial morphism “pgo : QP — CQP such that
(CLQ) o CpQD = (CpQDU) 0.9,

Since Q is a left C-comodule functor, by Lemma 4.16, also QU is a left C-comodule
functor. Now (9 is a monomorphism and hence, since C' preserves equalizers, also
CC.? is a monomorphism. Therefore we can apply Lemma 4.22 to "¢” = CpQD,
"u’ =% and 7p" = CpQDU and hence we obtain that (QD,CpQD) is a left C-
comodule functor that is CpQD is coassociative and counital. By Lemma 4.28 applied
to (QP,%pgn) there exists a functor © (QP) : PB — €A such that “U® (QP) =
QP and “pop = U (QP). Moreover ¢ (QP) is unique with respect to these
properties. U

ProPOSITION 4.30. Let C = (C, Ac,ac) be a comonad over a category A and let
D= (D, AD,gD) be a comonad over a category B. Assume that both A and B have
equalizers and C preserves them. Let QQ : B — A be a C-D-bicomodule functor
with functorial morphisms “pg : Q — CQ and pg : QQ — QD. Then the functor
°Q : B — ©A is a right D-comodule functor via pCDQ . ¢Q — “QD where pCDQ 18
uniquely determined by

(37) “Upty = r.
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Let ((CQ)D ; LCQ) = Equp,, (PgQCU, CQCU7D> . Then we have

(CQ)D _cC (QD) DR, C Y.

Proof. Since @ is endowed with a left C-comodule structure, by Lemma 4.28 there
exists a unique functor “Q : B — ©A such that “U“Q = @ and “U~+°“Q = “pg.
Note that, since ) is a C-D-bicomodule functor, in particular the compatibility
condition

(Cpg) o po = (“poD) o pg
holds, that is pg : @ = “U°Q — QD = “U“QD is a morphism in ©A. Thus, there
exists a functorial morphism ng :¢Q — QD such that
By the coassociativity and counitality properties of ,08 we get that also ng is

coassociative and counital, so that <CQ, pé)Q> is a right D-comodule functor. Thus

we can consider the equalizer

D ]DU
LCQ Pc

(38) (CQ)D CQDU CQD]D)U

CQDU’)/D

so that we get a functor (CQ)D :PB — CA. Since C preserves equalizers, by Lemma
4.20 also CU preserves equalizers. Then, by applying the functor U to (38) we still
get an equalizer

p cu.fe “Ueeg’V
Cyr (C ___Yt T _Cyicnb CyrrC D
U (°Q) UcQPU S U°QDPU
that is
c LCQ pgmU
Cu (CQ)D v Q]D)U QD]D)U
QU~P

By Proposition 4.29 (Q7,:?) = Equp,, (05U, Q"U~") , then we have
U (CQ)D = QP and Cu,fR = 9.

Moreover
D

c D D
CU’}/ (CQ) . CU (CQ> — QD N O(CU (CQ) — CQD
so that, using Proposition 4.29 where we prove that (QD © pQD) is a left C-comodule
functor and that Uy°“ (QP) = “pgo, we get

(CUVC (CQ>D _ chD _ (CU,YCC (QD)
le.

(CQ)" = (Q").
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NOTATION 4.31. Let C = (C, Ac,ec) be a comonad over a category A and let
D= (D, AD,sD) be a comonad over a category B. Assume that both A and B have
equalizers and A preserves them. Let Q) : B — A be a C-D-bicomodule functor. In
view of Proposition 4.30, we set

c D c\P _c(nHD
Q" =("Q) =7(@").
PROPOSITION 4.32. Let C = (C, Ac,sc) be a comonad over a category A and let

D = (D,AD,sD) be a comonad over a category B. Assume that both A and B
have equalizers and let Q : B — A be an C-D-bicomodule functor. Then, with
notations of Proposition 4.29, we can consider the functor QP where (QD,LQ) =

Equp,, (p5°U,Q°U~P) . Then
DD _ QD _ D
(39) Q7 F =Q and 7 F = pg.
Proof. By construction we have that (QD, LQ) = Equgp,, (pgDU, QDU’yD). By ap-
plying it to the functor PF we get that
(QDDF7 [’QDF) = Eunun (pgDUDF7 QDUWDDF)
= Eunun (pCDQDa QAD) :
Since () is a right D-comodule functor, by Proposition 4.15 we have that
(QJ /08) = Eunun (pgDa QAD)
so that we get
(QDDF7 LQDF) = Eunun (pCDQDv QAD> = (Qv Pg) :
O

PROPOSITION 4.33. Let D = (D,AP eP) be a comonad over a category B with
equalizers such that D preserves equalizers. Let G : °B — A be a functor preserving

equalizers. Set
Q=Go F and let pg =GAPPF

Then (Q,pg) 1s a right D-comodule functor and
(40) QP = (Go"F)” =a.
Proof. We compute
(0BD) o pB = (GAP°FD)o (G/°F) = (GPF°UAPPF) o (Gy°F)
= (G°FAP) o (Gy"PF) = (QAP) o pg
and .
(Q&D) o ,08 = (GDF&‘D) o (G’yDDF) WEPE = Q.
Thus (Q, pg ) is a right D-comodule functor. Recall that (see Proposition 4.29)
(QD7 LQ) = Eunun (pé)DUu QDU’}/D)
and by Proposition 4.32 we have QPPF = Q and (*PF = pg . In particular we get
QPPF =Q =G"F.
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In order to prove that QP = G it suffices to prove that
(G, G’”yD) = Equgp,, (pgm’U, QDUfyD) . In fact, by Corollary 4.14,
(1D>U7 (DUWD)) — Eunun (D]D)U,yDy AD]D)U) _ Eunun (DDU,YD7]D>U,YDIDJFID>U) and,
since by Lemma 4.19 PU reflects equalizers, we have
(Idsg, v”) = Equp,, ("FPUA",v"PFPU) .
Since G preserves equalizers, we get that
(G, GVD) = Equp,, (GDFDUVD, GVDDFDU)
= Equp, (Q°U~”,p5"U) = (Q7,.9).
O

PROPOSITION 4.34. Let C = (C’, Ac,éC) be a comonad on a category A with equal-

izers such that C preserves equalizers. Let H : B — CA be a functor preserving
equalizers. Set
Q=" UoH and let “pg = “U~“H.

Then (Q,CpQ) 15 a left C-comodule functor and
(41) “Q=°(UoH)=H.
Proof. First we want to prove that “pg = CUy“H is coassociative. We have

C

(Cpg) 0 “pg = (C°U~“H) o (*U“H) & (*UACFCUH) o (‘U7 H)
= (ACUH) o (“Ur“H) = (A“Q) 0 “pg
so that we get
(C%q) ©“pg = (A°Q) © “pq.
Now we prove that CpQ = CU~YH is counital. We compute
(5CQ) 0% = (e’fCCUH) o UAYH Weyy = Q
so that we get
(e9°Q) o “po = Q.

Thus (Q,CpQ) is a left C-comodule functor. Recall that (see Lemma 4.28) there
exists a unique functor ¢Q : B — ©A such that

CU0Q = Q and “U~““Q = “py.
Thus we have
Uo“Q=Q="UcH
and
CUACCQ = CpQ —CUACH
so that, by Proposition 4.11, we obtain that
“Q=H.

O

THEOREM 4.35. Let D = (D,AD,eD) be a comonad on a category B with equaliz-

ers such that D preserves equalizers. Then there exists a bijective correspondence
between the following collections of data:
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FP right D-comodule functors Q : B — A such that QD preserves equalizers.
(A — DB) functors G : PB — A preserving equalizers

gien by
P FP o (A — DB) where vP ((Q,pg)) =QP
P 0 (A —PB) — FP where k" (G) = (G°F,G~""F)
where QP is uniquely determined by (QP,19) = Equy,, (p§°U, Q"U~") .

Proof. Let Q : B — A be a right D-comodule functor. Then we can consider
QP : "B — A defined by (32) as

(QDa LQ) = Eunun (pCLQ)DU7 QDU’}/D) :

Since by assumption QD preserves equalizers, by Lemma 4.18 also () preserves
equalizers. Moreover, since D preserves equalizers, by Lemma 4.20 also the func-
tor PU preserves equalizers. Thus both QDPU and QPU preserve equalizers. By
Corollary 2.14 we get that also QP : PB — A preserves equalizers.

Conversely, let us consider a functor G : PB — A that preserves equalizers. By
Proposition 4.33 we can consider the right D-comodule functor defined as follows

Q=G oPF and let p[Q):GyDDF.

Since PF is right adjoint to PU in particular PF preserves equalizers and since by
assumption G preserves equalizers, we get that also Q = G o”F preserves equalizers
and so does QD.

Now, we want to prove that v” and x” determine a bijective correspondence
between FP and (.A — DB). Let us start with a right D-comodule functor

(Q: B — A, p5). Then we have
(57 0vP) ((Q.08)) = K” (QP) = (QPF,Q +P"F)
= (@ P ponr) = (Qur5)
Moreover we have
(V" 0 kP) (@) = vP ((G°F,G4""F)) = (¢°F)” © a.
O

THEOREM 4.36. Let C = (C, AC,{:‘C) be a comonad on a category A with equaliz-
ers such that C' preserves equalizers. Then there exists a bijective correspondence
between the following collections of data:

CF left C-comodule functors Q : B — A such that CQ preserves equalizers
((CA — B) functors H : B — © A preserving equalizers

given by
‘v . Fo (C.A — B) where v ((Q, C,oQ)) =
“6 :+ ("A« B) = “F where “x (H) = (“U o H,“U~“H)
where €Q : B — ©A is the functor defined in Lemma 4.28.
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Proof. Let (Q B — A, CpQ) be a left C-comodule functor. Then, by Lemma 4.28,
there exists a unique functor ¢Q : B — ©A such that

CU0%Q = Q and “U~“CQ = “pp.
Note that, since CQ preserves equalizers, by Lemma 4.18, Q = U o Q) preserves
equalizers. Then, by Lemma 4.19, also “Q preserves equalizers. Conversely, if
H : B — ©A is a functor preserving equalizers, we get that U o H : B — A.

Moreover, by Lemma 4.20, “U preserves equalizers and thus also U o H preserves
equalizers. Now, let us prove that “v and “k determine a bijective correspondence

between ©F and (CA — B). We compute
(o) ((Q.00)) = (°Q) = (0°Q. Q) = (@ o).

On the other hand we have
(“vo“k) (H) = ((*UoH,°U~“H)) =“ (‘U o H)

4 H

O

THEOREM 4.37. Let C = (C, A, ec) be a comonad on a category A with equalizers

such that C' preserves equalizers. Let D = (D, AD,sD) be a comonad on a category
B with equalizers such that D preserves equalizers. Then there exists a bijective
correspondence between the following collections of data:

CFP C-D-bimodule functors Q : B — A such that CQ and QD preserve equalizers
(CA — DB) functors G : PB — C A preserving equalizers
given by
P CFP — (CA<"B) where SV ((Q,%pq.pd)) = Q"
“6P 0 (CA—PB) = “FP where “k" (G) = (*U 0o G o "F,“UA“G F,“"UGH""F) .

Proof. Let us consider a C-D-bicomodule functor (Q :B— A, g, pg) such that
CQ and QD preserve equalizers. In particular, (Q, pg ) is a right D-comodule func-
tor, so that we can apply the map v” : FP — (.A — DB) of Theorem 4.35 and we
get a functor v ((Q, ,08 )) = QP : PB — A which preserves equalizers. By Propo-
sition 4.29, (QD , C,OQD) is a left C-comodule functor so that we can also apply the
map “v : °F — (A « B) of Theorem 4.36 where the category B is B. The map
“v is defined by “v ((QP,%pgr)) = (QP) =°QP : PB — ©A and “QP preserves
equalizers. Conversely, let us consider a functor G : PB — €A which preserves
equalizers. By Theorem 4.36, we get a left C-comodule functor given by

“k(G) = (U G,"U~°G)

where U o G : PB — A and C®UG preserves equalizers. By Lemma 4.18, also
CU o G : "B — A preserves equalizers. Thus, we can apply Theorem 4.35 and we
get a right D-comodule functor

& (CUG) = (“UGPF,“UGHPPF)
where CUGPF : B — A is such that “CUGPFD preserves equalizers. Clearly, since

CUG preserves equalizers, PF is a right adjoint and C preserves equalizers by as-
sumption, we deduce that also C°UGPF preserves equalizers. Now, we want to
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prove that €vP : € FP — ((CA — DB) and “kP : ((C.A — DB) — CFP determine a
bijection. We have
(kP 0%P) ((Q.%pa.0B)) = K" (°Q”)
— (CU o CQD o DF, CU’}/CCQDDF, CUCQD’VDDF) — (Q’ (CU,YCCQ’ QDIVDDF)
= (Quch7p3DDF) = (QJCPQ7PS)
and
(CVD o Cl{D) (G) — CVD (((CU o G ODF7CU’}/CGDF,CUG7DDF))
:C((CUOGO]D)F)D =C<(CUOGODF) D)
]

PROPOSITION 4.38. Let C = (C’, AC, 80) be a comonad over a category A with equal-

izers and assume that C' preserves equalizers. Let D = (D, AD,aD) be a comonad
over a category B with equalizers and let QQ : B — A be a C-D-bicomodule functor.
Then there exists a unique lifted functor QP : PB — ©A such that

CUCQD]D)F _ Q

Proof. By Proposition 4.30 there exists a unique functor QP : PB — €A such that
CUCQP = QP. Now, by Proposition 4.32 we also get that QPPF = @ so that we
obtain
(CUC’QDID)F — Q
O

COROLLARY 4.39. Let C = (C, JANCH sc) be a comonad over a category A with equal-
izers and assume that C' preserves equalizers and let QQ : A — A be a C-bicomodule
functor. Then there exists a unique lifted functor Q¢ : ©A — © A such that

(CUCQC(CF — Q
Proof. We can apply Proposition 4.38 to the case D = C and B = A. O

PROPOSITION 4.40. Let C = (C’, AC, €C> be a comonad over a category A with equal-
wzers and assume that C preserves equalizers. Let D = (D, AD,eD) be a comonad
over a category B with equalizers and let P,Q : B — A be C-D-bicomodule func-
tors. Let f : P — @ be a functorial morphism of left C-comodule functors and of
right D-comodule functors. Then there exists a unique functorial morphism of left
C-comodule functors

. pP QP
satisfying

Qo fP = (fDU) o.f.
Then we can consider
Cgb.Cpb _ CoD

such that

]D)UCfD — fD-
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Proof. Consider the following diagram

P ppPU
pb—— poy PDyU
: PPU~P
EfD fDU fDPU
V o pgDU
D _t D
Q ~ QU Pu.D QDpU

Since f is a functorial morphism and it is a functorial morphism of right D-comodule
functors, the right square serially commutes. Note that

(0 U)o (F7U) 0" = (Q7UAP) o (fPU) 01"
so that, by the universal property of the equalizer, there exists a unique morphism
fP: PP — QP such that
(42) (fDU)oLP:LQofD.

We now want to prove that f” is a functorial morphism of left C-comodule functor.
In fact we have

(CLQ) o CpQD o fP (33) (C’pQ]D)U) 01Qo fP
= Cp’U) e (£PU) 0"
fleftgcolin (Of]D)U) o (CpPDU) o [,P
(33) (C'fDU) o (CLP) o Cppp
42
@ (CLQ) o (CfD) o%ppp
and since C' preserves equalizers Ct? is a monomorphism so that we get
©pgn 0 P = (CfP) 0 ppo.
Then there exists a functorial morphism ¢ fP : “ PP — €QP such that
(CUCfD — fD-
U

COROLLARY 4.41. Let C = (C, A, 50) be a comonad over a category A with equal-
izers and assume that C' preserves equalizers and let P,Q : B — A be C-bicomodule
functors. Let f: P — @ be a functorial morphism of C-bicomodule functors. Then
there exists a unique functorial morphism of left C-comodule functors

fC . PC N QC

satisfying
9o f¢= (f(CU) o,
Then we can consider
CpC.CpC _, Col

such that

(CUCfC — fC.
Proof. We can apply Proposition 4.40 to the case D = C and B = A. O
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4.2. The comparison functor for comonads.

PROPOSITION 4.42 ([GT, Proposition 2.1]). Let (L, R) be an adjunction where L :
B—Aand R: A— B and let C = (C’, Ac,ec) be a comonad on a category A.
There exists a bijective correspondence between the following collections of data:
M comonad morphisms ¢ : LR = (LR, LnR,¢) — C = (C, AY, 50)
R functorial morphism o« : R — RC such that (R, «) is a right comodule functor
for the comonad C
£ functorial morphism (3 : L — CL such that (L, 3) is a left comodule functor
for the comonad C

gien by
© M — R where © (p) = (Ryp) o (NR)
= R — M where Z(a) = (eC) o (La)
' MM — £ where I'(¢) = (L) o (Ln)
A £ — M where A (B) = (Ce) o (BR)

Proof. For a given ¢ € 9, we compute
(©(p) C) 0O (p) = (RpC) o (nRC) o (Ry) o (nR)
< (R¢C) o (RLRp) o (NRLR) o (nR)
¥ (Rpp) o (RLnR) o (nR) "2 " (RA) o (Rp) o (nR) = (RA) 0 © (p)

and
¢morphcom
)=

(Re“) 0O (p) = (Re%) o (Rp) o (nR Re) o (nR) = R.
Therefore we deduce that © (p) € R. For a given a € R, we compute
(2(0)Z(a)) o (LyR) £ (2(a) C) o (LRZ (a)) o (LyR)
= (eCC) o (LaC) o (LREO) o(LRLx) o (LnR)
2 (eCC) o (LaC) o (La) & (eCC) o o (LRA®) o (La)
= AY%0 (eC) o (La) = AY 0 Z ()

and
€€ 0Z(a) =0 (eC) o (La) < o (LRC) o (La) B¢
Therefore we deduce that = (a) € 9. For a given ¢ € M, we compute
[CT (p)] o T (¢) = ( L) o (CLn) o (pL) o (Ln)

= (¢CL) o (LRyL) o (LRLn) o (Ln) = (soCL) ( ReL) o (LnRL) o (Ln)

= (L) o (LnRL) o (Ly) ™" E*™" (A°L) o (L) o (Ln) = (A°L) o T'(¢)
and

(&?CL) ol'(p) = (ch) o (pL)o(Ln) pmotpheom (eL)o (Ln) = L.

Therefore we deduce that I' (¢) € £. For a given g € £, we compute

(A(BYA(B)) o (LnR) "L (CA (B)) o (A(B) LR) o (LnR)
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= (CCe€) o (CBR) o (CeLR) o (BRLR) o (LnR)
2 (CC€) o (CBR) o (CeLR) o (CLyR) o (BR) = (CCe) o (CBR) o (BR)

D (CCe)o (ACLR) o (BR) =

25 A6 (Ce) o (BR) = AC 0 A ()

and

L,B)
=€

€0 A(B) =0 (Ce)o (BR) = €0 (°LR) o (BR) '
Therefore we deduce that A (5) € 9. Let now ¢ € 9t and let us calculate
20 (p) = (¢C) o (LRyp) o (LnR) = g o (eLR) o (LnR) = ¢.
Let now o € R and let us calculate
O=(a) = (R=(a)) o (nR) = (ReC) o (RLa) o (nR) (ReC) o (nRC) o @ = av.
Let now ¢ € 901 and let us calculate
AT (p) = (Ce) o (T (¢) R) = (Ce) o (pLR) o (LnR) = ¢ o (LRe) o (LnR) = .

Let now g € £ and let us calculate

TA(8) = (A () L) o (Ln) = (CeL) o (3RL) o (Ln) £ (CeL) o (CLy) 0 f = .
O
THEOREM 4.43 ([D, Theorem II.1.1] and [GT, Theorem 1.2]). Let (L, R) be an ad-
gunction where L : B — A and R : A — B and let C = (C, AC, ec) be a comonad

on a category A. There exists a bijective correspondence between the following col-
lections of data:

R Functors K : B— ©A such that “U o K = L,
M comonad morphisms ¢ : LR = (LR, LnR,e) — C = (C’, AC, Ec)
given by
U & — M where ¥ (K) = (Ce) o ([U (v“K)] R)
T+ M — R where T () (V) = (LY, (LY ) o (LnY)) and T (¢) (f) = L (f).
Proof. By Corollary 4.25, there exists a bijective correspondence between K and the

collection £ of functorial morphisms (3 : L — C'L such that (L, 3) is a left comodule
functor for the comonad C given by

® : & — £ where ®(K)="U(“K):L—CL
Q : £— &where Q(3)(Y) = (LY,3Y) and Q(B) (f) = L(f).

By Proposition 4.42; there exists a bijective correspondence between £ and the
collection 9 of comonad morphisms ¢ : LR = (LR, LnR,e) — C = (C’, Ac,ac)
given by

A £ — 9 where A () = (Ce) o (BR)

' @ 9 — £ where I' (p) = (pL) o (Ln).

We compute

(Ao @) (K) = (Ce) o ([*U (17K)] R) = ¥ (K)
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and

(2o T) (P)] (V) = (LY, (¢LY) o (LnY)) = T (¢) (V) and [(2oT) (p)] (f) = L.
O

REMARK 4.44. When C = LR = (LR,LnR,¢) and ¢ = Idig the functor K =
T (¢) : B — “®A such that "8U o K = L is called the Eilenberg-Moore comparison
functor.

COROLLARY 4.45. Let C = (C’, AC,EC) and D = (D,AD,ED) be comonads on a
category A. There exists a bijective correspondence between the following collections
of data:

KC Punctors K : ©A — P A such that PU o K = CU,
M comonad morphisms ¢ : C — D
given by
U K — M where U (K) = (Ce)o ([PU (vPK)] °F)
T : M— K where Y () (V) = (CUY, (¢°UY) o (CUAYY)) and Y () (f) = U (f).

Proof. Apply Theorem 4.43 to the case L =°U :“A - Aand R=C°F: A —CA
and note that (LR, LnR, ) = (CUF,“UA“CF,e%) = (C, A%, ). O

PROPOSITION 4.46. Let (L, R) be an adjunction where L : B — A and R : A —
B, let C = (C, AC,SC) be a comonad on the category A and let ¢ : LR =
(LR, LnR,e) — C = (C’, Ac,sc) be a comonad morphism. Let a = O (p) =
(Ryp) o (nR). Then the isomorphism axy : Hom4 (LY, X) — Homg (Y, RX) of the
adjunction (L, R) induces an isomorphism

@, : Homey (K,Y, (X, CpX)) — Equgs (Homg (Y, aX) , Homg (Y, RCpX)) .

Proof. Let

axy : Homy (LY, X) — Homg (Y, RX)
be the isomorphism of the adjunction (L, R) for every Y € B and for every X € A.
Recall that axy (€) = (RE) o (nY) and ayy (¢) = (eX) o (L() . Let us check that
we can apply Lemma 2.15 to the case Z - Homy (L—, X), Z' = Hompg (—, RX),
W = Homy (L—,CX) , W' = Homp (—, RCX), a = “px o —, b= C —ol'(p)Y,
a’ = Homg(—,aX), b = Homg (—,chx) and ¢ = ax_, ¥ = acx—, £ =
Equpy, (“px 0 —,C (=) oT (p)Y) and
E' = Equp,, (Homp (—, aX) ,Homg (—, RSpx))

ax._

Eunun (CpX c—, C (_) ol ((20) _) B Eunun (HOHlB (_a OéX) ,HOIHB (_7 RCPX))

Z =Homy (L—, X) : Z" = Homg (—, RX)

a=Cpxo— \u] b=C—ol'(p)— a’=Homp(—,aX) \u] b’:HomB(—,RCpx)

W = Homy (L—, CX) e W' = Homg (—, RCX)
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For every Y € B, X € A and for every £ € Hom 4 (LY, X), let us compute
Homg (Y, aX) oaxy (§) = aX oaxy (§) = (ReX) o (nRX) o axy (§)
" (RpX) o (nRX) o (RE) o (1Y)
L (RoX) 0 (RLRE) o (RLY) o (1Y) % acxcy [(2X) 0 (LRE) o (LnY)] £
= acxy [(C€) o (pLY) o (LnY')]
Since I" (¢) = (pL) o (Ln) we have obtained that
Homg (Y,aX)oaxy =acxy o [(C—)o(I'(¢)Y)].
Let us calculate
Hompg (Y, chx) oaxy (§) = (RCPX) oax,y (§) e (RCPX) o (R§) o (nY)
i acx)y (C,OX © 5)
Therefore we get that
Homgp (Y7 RCPX) Caxy = acx\y © (CPX o —)
Since K, (Y) =7 (¢) (Y) = (LY, (¢LY) o (LnY")), for every x € Homy (LY, X) we
have
[C (=)ol (9)Y](x) =T ()Y = (Cx) o (pLY) o (LY) = (Cx) © “pry
and
[“px o =](x) = “pxox
so that
[C (=)ol (¢)Y](x) = [“px o =] (x) if and only if
x € Home 4 (((LY), (pLY) o (LnY)), (X, px)) -
Thus we get

EquHomA(LY,X) (CPX o—,C(—)ol(p) Y)
= {f € Homy (LY, X) | “px o f=(Cf)o (T (p)Y)}
={f € Homu (LY, X) | “px o f = (Cf)o(pLY)o (LnY)}
= {f € Homy4 (CU(KWY) CU (X, Cpx)) | Cpxof= (Cf)o Cch(Kvy)}
= Home 4 (K, Y, (X,%px))
so that Equp,, (“px o —, C (=) o' (¢) —) = Home 4 (K,—, (X,%px)). O
Part of the following Proposition is already in [GT], Proposition 2.3.

PROPOSITION 4.47. Let (L, R) be an adjunction where L : B — A and R: A — B,
let C = (C, AC, 80) be a comonad on a category A and let p : LR = (LR, LnR, €) —
C = (C,A% %) be a comonad morphism. Let a = © (p) = (ch) o (nR). Then
the functor K, = Y (p) : B — A has a right adjoint D, : “A — B if and only if,
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for every (X,%px) € CA, there exists Equg (aX, RCpx). In this case there exists a
B
functorial morphism d, : D, — RU such that
(DSO7 d«p) = Eunun (aCU7 RCUVC) .
and thus
1D, ((X,%x)) +d (X.%x)] = Baug (02X, & (“px)).

Proof. Assume first that, for every (X, CpX) € CA, there exists Equg (aX, RCpX).
By Proposition 4.46, the isomorphism axy : Homy (LY, X) — Homg (Y, RX) of
the adjunction (L, R) induces an isomorphism

ax,y : Homey (KLY, (X, “px)) — Equge, (Homg (Y, aX),Homg (Y, Rpyx)) .
Let (DQD ((X, C,oX)) ,dy ((X, CpX))) denote the equalizer

RCpx

D, (X,%x) —%= RX RCX

aX

where d,, (X, CpX) : D, ((X, C,OX)) — RX is the canonical embedding. Then, by
Lemma 2.17 we have
(Homs (1. D, ((X.%px))) . Homs (¥, ((X. %))
= Equg, (Homg (Y, aX), Homg (Y, chx)) :
Thus, for every (X , CpX) € ©A and for every Y € B, ayy induces an isomorphism

axy : Homey (K@Y, (X, CpX)) — Hompg (Y, D, (X, CpX)) such that the following
diagram is commutative

(43) Home 4 (K, Y, (X,%px)) " = Homg (Y, D, (X,%px))
J{ \LHomB(Y,dw)
Homy (LY, X) ey Homg (Y, RX)
Cpxo— u (C—)o(BX) Homs (Y,R%px ) u Homp(Y,aX)
acx,y

Hom 4 (LY, CX) Homg (Y, RCX)

ie. (K, D,) is an adjunction.
Conversely, assume now that the functor K, = T () : B — A has a right adjoint
D,:%A— B. Let ¢: K,D, — Idc4 be the counit of the adjunction (K, D) and
let
dy = acy p, (“U€) = (RUE) o (nD,,) : D, — R°U.
We will prove that
(Dy, dy) = Equp,, (U, R°U~°) .

First of all let us compute

(a®U) o d, = (a®U) o (R°UE) o (nD,,)

— (Re°U) o (4FEU) o (REUD) o (D)

= (R¢"U) o (RLRZUE) o (RLnD,,) o (1Dy)
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£ (RC®UE) o (RpLD,) o (RLyD,) o (1D,,)

and also
(U)o, = (BEU) o (U)o 1D,
oA (RCCUE) o (RUACK,D,) o (D)
“Z* (RC®U?) o (RpLD,,) o (RLYD,,) o (nD,)
so that

(afU) o dy, = (R°UAC) o d,.
Now, we will prove that the following diagram is commutative

Ux.Cpx)Y

Home 4 (K,Y, (X,%px)) -0 > Homg (Y, D, (X,%px))
CUi lHomB(Y,dw(X,ch))
Hom (LY, X) ey Homg (Y, RX).

In fact, for every ¢ € Home 4 (K Y, (X, CpX)) , we have
[HOIDB (Y7 dy (X7 CPX)) oa, (X,Cpx } d—fa Homjp (Y> dy (X> CPX)) [(D¢C) o (MY)]
= (d, (X, px)) o (DyC) o (Y)
"= (REUR (X, %px)) o (nD, (X,%px)) © (DyC) o (7Y)
L (R°UZ(X,%x)) o (RLDyC) o (RLRY) o (nY)
REUE(X,%%x)) o (REUK,D,() o (REUK7Y) o (nY)
(R°UC) o (pY)

def:IQp (

(Kng)

£ (R°UC) o (RCUEK,Y) o (REUK,7Y) o (1Y)
and on the other hand
(axy 0 CU) (¢) = axy (CUC) <" (RCUC) o (nY)
so that, for every (X,%px) € ©A we have
Homgp (—,dy (X, “px)) 0 Gx.cpy)— = ax— o “U.

Since ax — and @y c,,)_ are isomorphisms, we deduce that Homg (—, dy (X7 CpX))
is mono. Applying the commutativity of this diagram in the particular case of
(X, CpX) = K.Y, we get that

(d,K,Y) o (nY) =Homg (Y,d,K,Y) (nY)
= Homp (Y, d, K,Y) (aK(pKY (Idey))
= [HOI’HB (Y, d,K,Y) oaKwy,y} (Idey)
= [UJCUKq,KY © CU] (IdK¢Y> = (aryy) (CUIdKWY)
= (aryy) (IdCUKV,Y) =aryy (Idey) =nY
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(44) (d@K@Y) o (nY) =nY.

Now, we have to prove the universal property of the equalizer. Let Z € B and let
¢:Z — RX be a morphism such that (aX)o (= (Rx) o(, ie.

(RpX) o (nRX)o (¢ = (Rx) (.
This means ¢ € Equg,, (Homg (Y, aX),Homg (Y, R°px)) ~ Home 4 (K,Y, (X,%x))
by Proposition 4.46. Then,
ax'y () = (eX) o (LC) € Homey ((LZ, (9LZ) 0 (LnZ)), (X, “px))
= Homey (K, Z, (X,%px)) -
We want to prove that there exists ¢’ : Z — D,, (X, px) such that d,, (X, px)o(’ =
(. By hypothesis the map

“(x.Cpx)Y

Homc 4 (ch}/a (X, CpX)) Homp (Y, D, (X, Cpx))

is bijective. Hence, given (eX) o (L() € Home 4 (KoZ, (X,“px)),
Q(x.cpy)z (eX) 0 (LC)) = (DpeX) o (D,LE) o (7Z) € Homg (Z, D, (X,%px)). We
want to prove that
(dy (X, “px)) o (DpeX) 0 (DyLC) 0 (72) = C.
We compute
-~ dap -~
(dy (X, “px)) © (Dye) 0 (DyLC) 0 (72) = (ReX) o (RLC) 0 (dp K, Z) o (72)
W (ReX) o (RLC) 0 (2) L (ReX) o (nRX) o ¢ "V ¢,
Let us denote by ¢’ = (DyeX)o(D,L¢)o(7Z) the morphism such that (d, (X,“px))o
(" = (. We have to prove that ¢’ is unique with respect to this property. Let

¢":Z — D, (X,%px) be another morphism in B such that (d, (X,“px))o¢” = (.
Then we have

Homg (Z,d, (X, “px)) (¢") = (dy (X, “px)) 0 (" =
= (dy (X.%px)) o ¢' = Homg (Z.d,, (X.%px)) (¢)
and since Homp (Z, d, (X, CpX)) is mono we deduce that

C// — C/.

¢

O

COROLLARY 4.48. Let (L, R) be an adjunction where L : B — A and R : A — B.
Let a = © (Idg) = nR. Then the functor K = Y (Idig) : B — “BA has a right
adjoint D : "BA — B if and only if, for every (X, ILRpx) € “RA, there exists
Equg (nRX, RLRpX). In this case there exists a functorial morphism d : D — R™8U
such that

(D,d) = Equg,, (nR-*U, R=U~A"T) .
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and thus
[D ((X> LRPX)) ) d (X7 LRPX):| = Etu (nRXa R (LR,OX)) .
Proof. We can apply Proposition 4.47 with ”¢” = Idpg. U

REMARK 4.49 ([GT]). In the setting of Proposition 4.47, for every Y € B, we note
that the unit of the adjunction (K, D) is given by

ﬁY = a[(wy’y (Idey) . Y — DsaKgo (Y) .
We will consider the diagram (43) in the particular case of (X , CpX) = K Y. Note
that since K,Y = (LY, (pLY) o (LnY)) = (LY, BY) we have
(D K, (Y),d,K,(Y)) = (D, ((LY,8Y)) ,d, K, (Y)) = Equg (aLY, R3Y)
ie.
(45) (D,K,(Y),d,K,(Y)) = Equg (LY, RGY)
where =1 (¢) = (¢L) o (Ln). We compute
(doKyY) o (Y) =Homp (Y,d,K,Y) (1Y) = Homg (Y, d,K,Y) (ak,vy (Idx,yv))

= [HOHIB (Y, dg,K@Y) 9 aKLPY,Y] (Idey) (g) aKSOY’y(CU (Idey)

= CLKw)/’y (Id‘CUKg,Y) = CLK¢Y7Y (IdRy) = 77Y
so that
(46) (dpKyY) o (YY) = nY.

On the other hand, for every (X, Cpx) € CA, the counit of the adjunction (K, D)
is given by

e(x, CPX) = a)_(,lDLP(X,CpX) (IdDw(X,Cpx)) : KDy ((X, CIOX)) — (X, CIOX) :

Then we have that
x.0,xpx) (€ (X, “px)) = Tdp, (x.cpx)-
By commutativity of the diagram (43), we deduce that
4 (X.%x) = 4, (X.%px) o (@x,0x00) (F(X.%x)))
= axp,xepm) (UE(X, %px)).-

Thus we obtain that
(47)  CUE(X,%x) = ay'p (xep (do (X, “px)) = (€X) o (Ld, (X, “px)) .
Observe that, for every X € A, we have that °F (X) = (C’X, ACX) € ©A. More-

over
(D,°F (X),d,“F (X)) = (D, (CX,A“X) ,d, (CX,A“X)) =
— Bqug (aCX, RACX) "2 (RX aX)
so that we get

(48) (D,°F,d,°F) = (R, ).
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In particular
(49) d, (CX,A“X) = aX.
COROLLARY 4.50. In the setting of Proposition 4.47, assume that, for every (X, CpX) €
CA, there exists Equy (aX, chx). Then for every X € A we have

“Ue(CX,AX) = pX
and hence

CUECF =

where € is the counit of the adjunction (K, D).

Proof. Let us calculate
cue(0x, A°X) D (e X) o (Ld, (CX,ACX))
D (X))o (LaxX)

E(o) (X) = pX.
O
COROLLARY 4.51. In the setting of Proposition 4.47, assume that, for every (X, CpX) €

CA, there exists Equy (aX, chx). Then, the functor D is full and faithful if and
only if € is a functorial isomorphism.

Proof. By Proposition 4.47, (K, D,,) is an adjunction with counit €: K,D, — “A.
Then we can apply Proposition 2.32. 0

LEMMA 4.52 ([GT, Lemma 2.5]). In the setting of Proposition 4.47, assume that, for
every (X, CpX) € CA, there exists Equg (aX, RCpX). Then, for every (X, CpX) S
CA the following diagram

C FUE(X.px) C C
LD, (X,%px) U (X, %px)
Ld, (X,Cpx)l lCUcv(X Cox)
CU X,C
LRSU (X, Spx) — 0 ey (x,2p)
La®U(X,px) u LRUSy(X,px) ACCU(X Fpx) u CCUCy(x,%px)
SDCCU(X7CPX)
LRCU (X, px) CCCU (X, py)

serially commutes. Therefore we get
(CUVC) o (CUE) = (ngU) o(Ld,) and (ACCU) o (apCU) = (apCCU) o (LaCU) :
Proof. Let us compute
€px 0 CUE(X,%px) @ Cpy o (eX) o (Ld, (X, %px))
PRI )y (X) 0 () (L (X))
£ (c90X) o (C%x) o (¢X) o (Ld, (X, “px))
£ (°CX) o (pCX) o (LR px) o (Ld, (X,%px))
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T (90X) 0 (90X) 0 (LaX) o (Ld, (X, %px))
defa

= (eCX) 0 (pCX) o (LRpX) o (LnRX) o (Ld, (X, px))
£ (e9CX) o (ppX) o (LnRX) o (Ld, (X, px))
o (1) 6 (ACX) o () o (L, (X, “px)
Ccon:mnad (goX) o (de (X, CPX))
so that we deduce that
“px o (UE(X,%px)) = (pX) o (Ld, (X, “px))
and thus
(CUWC) o (CUE) = (goCU) o Ld,.
Let us calculate
(ACCU) o (LU FOmN (L CU) o (LREU)
= (pCU) o (LRU) o (LnR°U) "= (¢CCU) o (LatU) .
O

THEOREM 4.53 ([GT] Theorem 2.6). Let (L, R) be an adjunction where L : B — A
and R: A — B, let C = (C, JANS SC) be a comonad on a category A and let p : LR =
(LR, LnR,e) - C = (C, Ac,ec) be a comonad morphism. Let o = O (¢) = (Ryp) o
(nR) and assume that, for every (X, CpX) € CA, there exists Equg (aX, RCpX).
Then we can consider the functor K, = T (¢) : B — A and its right adjoint
D, :“A— B. D, is full and faithful if and only if

1) L preserves the equalizer
(Dy, dy) = Equp,, (U, R°UA°) .
2) ¢ : LR — C is a comonad isomorphism.
Proof. Recall that, by Corollary 4.50,
(50) CUECF = ¢.

By Corollary 4.51, D,, is full and faithful if and only if €is a functorial isomorphism.
Let us assume that € is a functorial isomorphism, hence ¢ is an isomorphism too.
Recall that, by Lemma4.52, we have

(51) (CU~) o (‘UE) = (¢°U) o (Ld,,)
so that
(52) U~ = (¢°U) o (Ld,) o (‘UE).

Let us consider the diagram

LRCU~C

de
LD, — LRCU LRCCU

Lo
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We have to prove that (LD, Ld,) = Equg,, (La®U, LR*U~%). Since L is a functor,
we clearly have (La®U)o(Ld,) = (LR“U~%)o(Ld,). Let Z : Z — A be a functor
and let £ : Z — LR®U be a functorial morphism such that

(La®U) 0 & = (LRFUA) o €.
Recall that (e9CU) o (CU~Y) = U and (“Fe®) o (y¢CF) = “F. We compute
(¢CU) 0 € = ldgey 0 CU o & “OZ™ (CCCU) o (ACCU) o (¢SU) 0 € =
IS (%) o (pgU) o (LyRCU) o€ =
= (“C*U) o (pCCU) o (LR“U) o (LnR U) o £ =
= (e9C"U) o (¢C*U) o (La"U) 0 & = (°C°U) o (pC*U) o (LR°UA) 0 & =
£ (CC°U) 0 (CU7°) 0 (5°1) 0 €= (V1) 0 (7°V) 0 (V) 0 =
) (6°U) o (Ldy) o (CUE) 0 (e°°U) o (¢°U) o &.
Since ¢ is iso, we get
€= (Ldy) o [(CUT) 0 (°°V) o (¢°V) o).
Let now w : Z — LD, be a functorial morphism such that
¢ = (Ldy,)ow.
We compute
(CU’yc) o (CUg) o [((CU/?l) o (eCCU) o (ngU) o f} =
D (LU o (Ldy) o [(CUE™) 0 (€°°U) o (p°U) 0 €] =
= (6°U) o€ = (U)o (Ld,) ow 2 (CUAC) o (CUE) 0w

and since ©U~" is a monomorphism (since it is an equalizer) and € is an isomorphism
we obtain that

(CU?I) o (eccU) o (cpCU) o0& =w.
Conversely, assume that 1) and 2) hold. Then ¢ is a functorial isomorphism. Con-
sider the diagram

LD, (X,© VAXEN) ey,
50( ) PX) U(X7 pX)
Ld¢<X,CpX)i iCUcv(X,‘Cpx)
C C
LREU (X,Epx) — ) ey (x84

La®U(X,px) u LRCUSH(X,%px) ACCU(X,Cpx) u CCUSY (X Cpx)

C C
LRCEU (X, Spy) — v ex) CCU (X, Spy)

of Lemma 4.52 where the last row is always an equalizer (see Proposition 4.13) and
the first row is also an equalizer by the assumption 1). Then we can apply Lemma
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2.15 and hence we get that “U¥€ is a functorial isomorphism. Since,by Proposition
4.17, ®U reflects isomorphism we deduce that € is a functorial isomorphism. U

COROLLARY 4.54. Let (L, R) be an adjunction where L : B — A and R : A — B.
Let o = © (Idir) = nR and assume that, for every (X,"Fpy) € 'RA, there exists
Equg (nRX, R*py). Then we can consider the functor K = T (Idir) : B — A
and its right adjoint D : “®A — B. D is full and faithful if and only if L preserves
the equalizer

(D,d) = Equp,, (nR"*U, R"*U~"") .

Proof. We can apply Theorem 4.53 with ”¢” = Idpg. U

THEOREM 4.55 ([GT, Theorem 2.7]). Let (L, R) be an adjunction where L : B — A
and R: A — B, let C = (C, A, 50) be a comonad on a category A and let p : LR =
(LR,LnR,e) — C = (C,A%, &%) be a comonad morphism. Let o = © (¢) = (Ryp) o
(nR) and assume that, for every (X, CpX) € CA, there ezists Equg (aX, chx).
Then we can consider the functor K, = T (¢) : B — A and its right adjoint
D, :“A — B. The functor K, is an equivalence of categories if and only if

1) L preserves the equalizer
(D(P? d@) - Eunun (aCU7 R(CU’YC)

2) L reflects isomorphisms and
3) ¢ : LR — C is a comonad isomorphism.

Proof. 1t K, is an equivalence then, by Lemma 2.33, D,, is an equivalence of cate-
gories so that, by Theorem 4.53, 1) and 3) hold. By Proposition 4.17, the functor
CU reflects isomorphisms. Since L = “UK,, we get that 2) holds.

Conversely assume that 1),2) and 3) hold. By Theorem 4.53 , D,, is full and
faithful and hence by Corollary 4.51 € is a functorial isomorphism. Let us prove
that 7 is an isomorphism as well. Since L reflects isomorphisms, it is enough to
prove that L7 is an isomorphism. As observed in Remark 4.49, by (44), nY is the
unique morphism such that

(dpKpY) o (YY) =nY.
Hence we get
(Ld,K,Y)o (LRY) = LnY
so that
(eLY) o (Ld,K,Y)o (LnY) = (eLY)o (LnY) = LY.
We now want to prove that (eLY') o (Ld,K,Y") is also a right inverse for LY. We
compute

(44)

(Ld,K,Y)o (LY )o (eLY)o (Ld,K,Y) = (LnY)o (eLY)o (Ld,K,Y)
BB La kY.
Since L preserves the equalizer

(DSD7 dsﬁ) = Eunun (aCU? RCU’}/C)
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we have that Ld, K Y is mono and hence we obtain
(LY )o (eLY) o (Ld,K,Y)= LD, K.Y
so that L7 is a functorial isomorphism. O

DEFINITION 4.56. Let (L,CpL) be a left comodule functor for a comonad C =

(C, AC,&?C) such that L has a right adjoint R. Then we can consider a canonical
comonad morphism

can := (Ce)o (“pLR) : LR — C
where e denotes the counit of the adjunction (L, R). A left C-Galois functor is a

left C-comodule functor (L, CpL) with a right adjoint R such that can is a comonad
isomorphism.

COROLLARY 4.57. Let (L,CpL) be a left C-Galois comodule functor such that L
preserves equalizers, L reflects isomorphisms and let C = (C, JANSH gc) be a comonad

on A. Assume that, for every (X, CpX) € CA, there exists Equg (aX, chx) where
a = (Rcan) o (nR) where R is the right adjoint of L and n is the unit of the
adjunction. Then we can consider the functor Ke., : B — ©A. Then the functor
Kean s an equivalence of categories.

Proof. We can apply Theorem 4.55 to the case ¢ = can. 0

THEOREM 4.58 (Beck’s Theorem). Let (L, R) be an adjunction where L : B — A and
R:A— B. Let a = © (Id,r) = nR and assume that, for every (X, py) € 'FA,
there exists Equg (nRX, RLR/)X). Then we can consider the functor K =Y (Idpg) :
B — YA and its right adjoint D : “RA — B. The functor K is an equivalence of
categories if and only if

1) L preserves the equalizer
(D,d) = Equp,, (nR**U, R=U~A"T) .
2) L reflects isomorphisms.

Proof. Apply Theorem 4.55 taking ¢ = Id g and thus o = © (Idgr) = nR. O

DEFINITION 4.59. Let C = (C’, Ac,ac) be a comonad on the category A and let
L : B — A. The functor L is called p-comonadic if it has a right adjoint R : A — B
for which there exists ¢ : LR — C a comonad morphism such that the functor
K, =7(p): B— A is an equivalence of categories with D, : ©A — B which is
right adjoint.

DEFINITION 4.60. Let L : B — A be a functor. The functor L is called comonadic
if it has a right adjoint R : A — B such that the functor K = Y (Idyg) : B — X£A
is an equivalence of categories with right adjoint D : "® A — B.

LEMMA 4.61. Let L : B — A be a p-comonadic functor and let

do

(53) X' X

di
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be a L-contractible equalizer pair in B. Then (53) has an equalizer d : X" — X' in
B and

Ldo

Lx" 2 pxr LX

Ldy
is an equalizer in A.

Proof. Since L is a ¢-comonadic functor we know that K, = T (p) : B — €A is an
equivalence of categories. Then, instead of considering

do
X' X
dy
in the category B, we can consider
Kdo
K, X' K, X
Kyd

in © A which is a ©U-contractible equalizer pair. Let us denote by (Z ' CpZ/) =K, X'
and (Z , sz) = K,X so that we can rewrite the CU-contractible equalizer pair as

follows
Kdo

(Z/anZ’) (27 C:OZ)

Kdy

We want to prove that this pair has an equalizer in ©A. Since the pair (K,do, K,d;)
is a CU-contractible equalizer in €A, we have that

Ldp
_—

" *>d / t
7' =—=17 z
—_—

Ldq

is a contractible equalizer and thus, by Proposition 2.19, an equalizer in A. Let us
consider the following diagram

d Ldo

YA 7! A
Ld,
Cogn icpzf J/sz
y , Cd / CLdy
czZ czZ oL cZ
1
CCon u ACz" CCpyi u ACz! CCpz u ACZ
" ccd , CCLdy
cCcz cCcz 7 ccz
1

By Proposition 2.20, all the rows are contractible equalizers. Since Ldy = “UK oo
and Ld; = CUKwdl where K,dy and K,d; are morphisms in C A, we have that the
upper right square serially commutes. Moreover, since we also have that A% is a
functorial morphism, the lower right square serially commutes. We also have that
©pgrodis a fork for (C'Ldy, C'Ld,) and, since (CZ2",CZ',CZ,Cd,CLdy, CLd;,Cs, Ct)
is a contractible equalizer, in particular (CZ”,Cd) = Equy, (CLdy, CLd;); by the
universal property of the equalizer, there exists a unique morphism “pz» : 2" —
CZ" such that

(54) Cppod= (Cd) o Cpgm.
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Let us prove that (Z”,%pz+) € ©A and thus formula (54) will say that d is a
morphism in ©A. Since AY is a functorial morphism and by definition of ©p,~, the
lower left square serially commutes. We have

(CCd) o (CCpZH) 9 CpZ// (5:4) (CCpZ/) e} (Cd) @) CpZu

€picoass

D (CCpp)oCpzod " (ACZ) 0 Cppod
D (ACZ) o (Cd) 0 Cpyn 2 (CCd) o (ACZ") 0 Cpgm
and since C'C'd is a monomorphism we get
(CCpzn) 0 Cpgn = (AZ") 0 Cpyn

that is that “pyz» is coassociative. Moreover we have

eC

d @) (€CZ//) o CpZ// = (gCZ/) (@) (Cd) (@) CpZH
c couni
(5:4) (E:CZI) OCpZ/ Od pZ/: t d
and since d is mono we get that

(e’fCZ”) o CPZ” _ Z//

so that ©py» is also counital. Therefore (Z” , C,ozu) € ®A and d is a morphism in
CA. Now we want to prove that it is an equalizer in ©A. Let (E, CpE) € A and
[+ (E,pg) — (Z',%pz) be a morphism in “A such that (Kudo) o f = (Kydy) o f.
Then, by regarding f as a morphism in A we also have that

(Ldy) o f = (Ldy) o f.
Since (Z",d) = Equy (Ldo, Ld,) , there exists a unique morphism h : E — Z” such
that
doh = f.
Now we want to prove that h is a morphism in ©A. In fact, let us consider the

following diagram
h d

E Z" 7
CPE\L CPZ// i CPZ’ l
CE -z S o,

Since d € © A, the right square commutes. Since f € ©A we have
(Cd)o (Ch)o pr=(Cf)o pr="pgof="pzpodoh
so that we have
(Cd)oCpmmoh® Cpodoh = (Cd)o(Ch)oCpp
and since C'd is a monomorphism, we deduce that

Cpznoh=(Ch)o pp
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i.e. h € “A. Therefore (Z”,d) = Equc 4 (K,do, K,d1). Now, since K, : B — €A is
an equivalence of categories, there exist X” e € B such that
K X" = (2",“pgn) and Kge =d
and thus (X", e) = Equg (dy, dy). Moreover, since
Ldo
d —_—
g ——= 7/ t 7
’ Ld,

is a contractible coequalizer and (Z”,d) = (CUK¢X”,CUK¢6), we deduce that
(CUK,X",“UKe) is a contractible coequalizer of (Ldo, Ld;). Then (LX", Le) =
(CUK,X",“UKe) is a contractible coequalizer of (Ldy, Ldy) so that (LX", Le) =
Equ (Ldo, Ld; ). 0

The following is a slightly improved version of Theorem 3.14 p. 101 [BW] for the
dual case.

THEOREM 4.62 (Generalized Beck’s Precise Cotripleability Theorem). Let L : B —
A be a functor, let C = (C’, Ac,sc) be a comonad on a category A. Then L is
p-comonadic if and only if
1) L has a right adjoint R : A — B,
2) ¢ : LR — C is a comonads isomorphism where LR = (LR, LnR,€) with n
and € unit and counit of (L, R),
3) for every (X, CpX) € CA, there exist Equyg (aX, chx), where a = (Ry) o
(nR), and L preserves the equalizer

Eunun (aCUa RCU/VC) y
4) L reflects isomorphisms.

In this case in B there exist equalizers of reflexive L-contractible equalizer pairs
and L preserves them.

Proof. Assume first that L is ¢-comonadic. Then by definition L has a right adjoint
R : A — B and a comonad morphism ¢ : LR — C such that the functor K, =
T (¢) : B— ©Ais an equivalence of categories. Let K, be an inverse of K. Then
in particular K7 : €A — B is a right adjoint of K, so that by Proposition 4.47 for
every (X,%x) € CA, there exists Equg (aX, R%px) where a = O (¢) = (Ryp) o
(nR) and thus (Kfp, k’:o) = Equp,, (oz(CU, RCUVC). Then we can apply Theorem 4.55
to get that L preserves the equalizer (K </P’ k;) = Equp,, (aCU ,RCU 'yc) , L reflects
isomorphisms and ¢ : LR — C is a comonads isomorphism.

Conversely, by assumption 1) L has a right adjoint R : A — B so that (L, R)
is an adjunction and by assumption 2) there exist Equg (aX , RCpX), for every
(X , CpX) € ©A so that we can apply one direction of Proposition 4.47. Thus the
functor K, = T (p) : B — A has a right adjoint D, : ©4 — B. Now, by applying
Theorem 4.55 in the converse direction, we deduce that K, = T () : B — €A is an
equivalence of categories, i.e. L is p-comonadic.

In the case L is p-comonadic, by Lemma 4.61, in B there exist equalizers of
reflexive L-contractible equalizer pairs and L preserves them. 0
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COROLLARY 4.63 (Beck’s Precise Cotripleability Theorem). Let L : B — A be a
functor. Then L is comonadic if and only if

1) L has a right adjoint R : A — B,
2) for every (X, LRpX) € LR A, there exist Equg (nRX, RLRpX) and L preserves
the equalizer

Eunun ((WR) © (LRU) ’RLRU’YLR)
3) L reflects isomorphisms.
In this case in B there exist equalizers of reflexive L-contractible equalizer pairs
and L preserves them.
Proof. Apply Theorem 4.62 to the case ¢ = Idpg. U

LEMMA 4.64. Let (L, R) be an adjunction, where L : B — A and R : A — B, with
unit n and counit €. Then for every Y € B,

(LY, LRLY, LRLRLY,LnY, LnRLY, LRLnY,eLY,eLRLY) is a contractible equal-
1zer and in particular, for everyY € B

(LY, LnY) = Equ, (LyRLY, LRLyY) .

Proof. Consider the following diagram

Ly LnRLY

n - >

LY == LRLY _ ¢LRLY [ RLRLY
ey LRLyY

and let us compute
(eLRLY)o (LnRLY) = Idpgrry
(eLY)o (LnY) = Idpy
(eLRLY)o (LRLnY) = (LnY)o(eLY) =IdprLy
(LnRLY)o (LnY) = (LRLnY)o (LnY).
Thus (LY, LRLY, LRLRLY,LnY,LnRLY, LRLnY,eLY,eLRLY) is a contractible

equalizer for every Y € B and by Proposition 2.19 we get that (LY, LnY) =
Equ, (LnRLY, LRLnY'). O

LEMMA 4.65. Let (L, R) be an adjunction where L : B — A and R : A — B, let
C = (C,A%£%) be a comonad on a category A and let ¢ : LR = (LR, LnR,€) —
C = (C,AYeY) be a comonad morphism. Let K, =T (p) = (L, (¢L) o (Ln)) and
CUK, (f) = L(f) for every morphism f in B. For every Y € B we have

(55) (K,Y, K,nY) = Eque 4 (K,nRLY, K,RLyY) .

Proof. By Lemma 4.64 we have that (LY, LnY) = Equy (LnRLY, LRLnY). Let
h:Z — K,RLY = (LRLY, (pLRLY) o (LyRLY')) be a morphism in A such that

(K,RLnY)oh = (K,nRLY) o h.
Then
(56) (LRLnY)o (*UR) = (LyRLY ) o (“Uh)
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and hence there exists a ( : “UZ — LY = “UK,Y such that
(57) (CUh) = (InY) o ¢ = (UK mY) o (.
Let us prove that ¢ gives rise to a morphism in ©A. Since h is a morphism in €A
we have that
(58) (¢LRLY) o (LyRLY ) o (“Uh) = (C*UhR) o (*U~“Z) .
Let us compute

(CLnY) o (CC) o (CU~CZ) D (CCUR) o (CUACZ)

® (WLRLY) o (LnRLY) o (Uh)

) (WLRLY) o (LRL7Y) o (Uh)

D (QLRLY) o (LRLyY ) o (LnY) o ¢
£ (CLyY) o (pLY) o (LnY)o(

so that
(CLnY) o (C¢) o (*U~Z) = (CLpY) o (pLY) o (LnY) o (.
Since (CeLY) o (CLnY) = CLRLY, CLnY is mono and hence we get
(C¢) o ((U1“Z) = (pLY) o (LyY) o
ie. (:“UZ — LY = “UK,Y is a morphism of C-comodules. O

PROPOSITION 4.66. Let (L, R) be an adjunction where L : B — A and R : A — B,
let C = (C, A, 50) be a comonad on a category A and let p : LR = (LR, LnR, €) —
C = (C,AY %) be a comonad morphism. Let K, =Y (p) = (L, (¢L) o (Ln)) and
CUK, (f) = L(f) for every morphism f in B. If ¢X is a monomorphism for
every X € A, the assignment Ky gry : Homg (Y, RLY") — Homc 4 (K,Y, K,RLY")
defined by setting

Kyrry' (f) = K, (f)
is an isomorphism whose inverse is defined by

Kby () = (ReLY") o (REUR) o (nY).
Proof. Let f € Homg (Y, RLY"'). We compute
Kyl (Rymov (1)) = (ReLY") o (REUK,f) o (1) = (ReLY") o (RLJ) o (1Y)
L (ReLY')o (nRLY") o f = f.
Let h € Homey (K,Y, K,RLY'). This means that
(¢LRLY") o (LnRLY") o (*UR) = (C*UR) o (pLY) o (LnY)
£ (pLRLY") o (LRCUR) o (LnY).
Since ¢ X is a monomorphism for every X € A, we deduce that

(59) (LnRLY") o (*UR) = (LRUR) o (LnY).
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We compute

(LReLY') o (LR*UR) o (LnY') D (LReLY") o (LyRLY") o (“Un)
=CUhn

and since L = “UK, and “U reflects, we get
(K,ReLY') o (K,R°Uh) o (K,nY) = h.
Then we deduce that

Ky.reyr (Ky gryr (h) = Ky.poy ((ReLY') o (REUR) o (nY'))
= (KyReLY') o (K,R°Uh) o (K,nY) = h.

O

PROPOSITION 4.67. Let (L, R) be an adjunction where L : B — A and R : A — B,
let C = (C, AC, 50) be a comonad on a category A and let p : LR = (LR, LnR,¢) —
C = (C,A% &%) be a comonad morphism. Let K, =Y (¢) = (L, (¢L) o (Ln)) and
CUK, (f) = L(f) for every morphism f in B. If K, is full and faithful then, for
every Y € B, we have

(Y:nY) = Equg (RLnY,nRLY).
Proof. By Lemma 4.65 we have
(K.Y, K, nY) =Equcy (K,RLnY, K,nRLY') .

Then we can apply Lemma 2.16 and deduce that (Y,nY) = Equg (RLnY,nRLY).
U

THEOREM 4.68 (Generalized Beck’s Theorem for comonads). Let (L, R) be an ad-
junction where L : B — A and R : A — B, let C = (C, AC,EC) be a comonad
on a category A and let p : LR = (LR, LnR,e) — C = (C, Ac,ec) be a comon-
ads morphism such that ¢X is a monomorphism for every X € A. Let K, =
Y (¢) = (L, (pL) o (Ln)) and UK, (f) = L(f) for every morphism f in B. Then
K, : B — CA s full and faithful if and only if for every Y € B we have that
(Y,nY) = Equg (nRLY, RLnY').

Proof. If K, is full and faithful then we can apply Proposition 4.67 to get that for
every Y € B we have that (Y,nY) = Equg (RLnY,nRLY").

Conversely assume that for every Y € B we have that (Y, nY) = Equg (nRLY, RLnY) .
We want to prove that Ky~ is bijective for every Y,Y’ € B. Let us consider the
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following diagram

0 0
\L / Ky i ’
HOIIlzg(Y,Y) """"""""""""""" >HOIH(CA(K YK Y)
Homp(Y,nY”’) i iHom@A(KgoY,K(pnY’)
/ ICY,RLY/ /
Homy (Y, RLY") Home 4 (K,Y, K,RLY")
Homp(Y,RLnY") J/l Homp(Y,nRLY") Homc 4 (KypY,K,RLnY') \u Homg 4 (KoY, KpnRLY")
’CY,RLRLY/

Homg (Y, RLRLY") Home 4 (K,Y, K,RLRLY")

Since (Y',nY’) = Equg (nRLY', RLnY") the left column of the diagram is exact by
Lemma 2.17. By Lemma 4.65 we have (K,Y, K,nY) = Equc 4 (K,nRLY, K,RLnY')
so that also the right column is also exact by Lemma 2.17. Let f € Homg (Y,Y”)
and g € Homp (Y, RLY”). Since

K, (nY"o f) = (KenY’) o (K, f),
K, (nRLY' o g) = (K,nRLY") o (K,g) and K, (RLnY' o g) = (K,RLnY") o (K,9)

the diagram is serially commutative. By Proposition 4.66, Ky rry: and Ky rrrry’
are isomorphisms and so is Ky y+ by Lemma 2.15. L]

COROLLARY 4.69 (Beck’s Theorem for comonads). Let (L, R) be an adjunction
where L : B — A and R : A — B. Then K = Y (Idpg) : B — A is full and
faithful if and only if for every Y € B we have that (Y,nY) = Equg (nRLY, RLnY').

5. LIFTINGS AND DISTRIBUTIVE LAWS

5.1. Distributive laws.

DEFINITION 5.1. Let A = (A, m,u) be a monad and C' = (C,A,¢) be a comonad
on the same category A. A functorial morphism ® : AC' — CA is called a mized
distributive law (or in some papers an entwining) if

e o (mC)=(Cm)o(PA)o (AD) and  P®o(uC)=Cu

e (AA)o® = (CP)o (PC)o (AA) and (eA) 0o ® = Ae.

DEFINITION 5.2. Let A = (A, m,u) be a monad and C' = (C,A,¢) be a comonad
on the same category A. A functorial morphism ¥ : CA — AC' is called an opposite
mazed distributive law if

e Vo (Cm)=(mC)o(AV)o (VA) and Vo (Cu)=uC
o (AA)o ¥ = (UC)o (CV)o (AA) and (Ae) o U =cA.

LEMMA 5.3. Let A = (A, ma,ua) be a monad and let C = (C, A, 50) be a comonad

on the category A. Let Q) : B — A be a functor such that (Q,A,uQ) is left A-
module functor. Assume that ® : AC — CA is a mized distributive law. Then

(CQ,A/LCQ) = (C’Q, (C’A/LQ) o ((IDQ)) is a left A-module functor.
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Proof. First of all we prove that 4ucg = (CA[LQ) o (PQ) is associative. In fact we
have

defA,u,CQ

Yoo (Atueg) T =7 (CMug) 0 (2Q) 0 (AC 1g) o (ADQ)
2 () 0 (CAng) o (94Q) o (40)
Augass (CAHQ) o (CTTLAQ) o ((I)AQ) o (A(I)Q)

"2 (0%g) 0 (9Q) 0 (maCQ) “"L Acg o (maCQ).

Now we prove the unitality condition. We have

Ao 0 (1aCQ) “TE (Cpug) 0 (BQ) o (uACQ)

A uni
P2 (CAg) o (CuaQ) 2™ Cq.
0

PROPOSITION 5.4. Let A = (A,ma,us) be a monad and let C = (C’, Ac,ac) be a
comonad on the category A. Assume that ® : AC' — CA is a mized distributive law
between them. Let F,G be left A-module functors and o : F' — G be a functorial
morphism between them satisfying

Yo (Aa) = ao (Yur),
1.e. there exists a functorial morphism aa : 4 F — oG such that zU a0 = a. Then
also Cav is a functorial morphism between left A-module functors satisfying

e o (ACa) = (Ca) o e

i.e. there exists a functorial morphism 4 (Ca) : 4 (CF) — 4(CG) such that
AU a (Ca) = Ca. Moreover we have

4(Ca) = Caa
where C is the lifted comonad on the category A, i.e. WUC =C,U.

Proof. By Lemma 3.29 there exists s« : 4" — 4G such that 42U 4o = . Moreover,
by Lemma 5.3, we know that (CF, *ucr) = (CF, (C4up) o (PF)) and (CG,  pce) =
(CG, (CAuc) o (PG)) are left A-module functors. Then we have

e o (ACa) defeoe (C*ug) o (2G) o (ACa)
2 (CA,uG) o (CAa) o (PG)

mORAd (00 o (CApp) o (BG) LT (Ca) o Apcr
i.e. Cav is a functorial morphism between left A-module functors. Then there exists
a functorial morphism 4 (Ca) : 4 (CF) — 4 (CG) such that U 4 (Ca) = Ca. Since
we also have B
AUCAOé = CAUAOé = C'a
we deduce that _
AUA (COé) = AUCACV.
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Since o U is faithful, this implies that 4 (Ca) = C acu. O

LEMMA 5.5. Let A = (A, ma,ua) be a monad and let C = (C’, JANS ac) be a comonad

on the category A. Let Q : B — A be a functor such that (Q,CpQ) is a left C-
comodule functor. Assume that ® : AC — CA is a mized distributive law. Then

(AQ, CpAQ) = (AQ, (PQ) o (ACpQ)) is a left C-comodule functor.

Proof. First of all we prove that “pag = (®Q) o (ACpQ) is coassociative. In fact we
have

defc PAQ

(CCPAQ) ° CPAQ = (C2Q) o (CACPQ) o (®Q)o (ACPQ)
2 (CDQ) o (2CQ) 0 (ACpg) o (A%pg)
L (D) o (CQ) 0 (AATQ) o (A%p)
"2 (ACAQ) o (9Q) o (A%pg) ML (ACAQ) 0 paq.
Now we prove the counitality condition. We have
(e9AQ) o “paq el paa (e“AQ) o (2Q) o (A%pq)
" (4:Q) 0 (A%pg) "M AQ.
O

PROPOSITION 5.6. Let A = (A, ma,us) be a monad and let C = (C, Ac,sc) be a
comonad on the category A. Assume that ® : AC' — C'A is a mized distributive law
between them. Let F,G be left C-comodule functors and o : F'— G be a functorial
morphism between them satisfying

“paoa=(Ca)o(“pr),

i.e. there exists “a : “F — ©G such that “U%a = . Then also A« is a morphism
between left C-comodule functors satisfying

(CAa) o Cpar = “pag o (Aa)

i.e. there exists a functorial morphism ¢ (Aa) : ¢ (AF) — ©(AG) such that
CU% (Aa) = Aa. Moreover we have

¢ (Aa) = A%
where A is the lifted monad on the category CA, i.e. CUA = ACU.

Proof. Since F, G are left C-comodule functors, by Lemma 5.5 we know that
(AF,%pap) = (AF,(®F) o (Ar)) and (AG,%pac) = (AG, (®G) o (A)) are

left C-comodule functors. Then we have
(CAa) 0 Cpap "L (CAa) o (BF) o (ACpp)
2 (#G) o (ACq) o (Apr)

amor%Ccom ((I)G) o (ACPG) o (AO() defchG CPAG o (AO()
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i.,e. A« is a functorial morphism between left C-comodule functors. Then there
exists a functorial morphism ¢ (Aa) : © (AF) — ¢ (AG) such that CU° (Aa) = Aa.
Since we also have N

CUA = AU a = Aa
we deduce that N

CUY (Aa) = “UA%.

Since CU is faithful, this implies that ¢ (Aa) = ACq. O
5.2. Liftings of monads and comonads.

THEOREM 5.7 ([Be, Proposition p. 122] and [Mesa, Theorem 2.1]). Let A =
(A,ma,ua) be a monad and let C = (C’, Ac,ec) be a comonad on a category A.
There is a bijection between the following collections of data:

¢ liftings of C to a comonad C on the category pA, that is comonads
C= <5, AC, 8C> on a A such that

AU@ = CAU, AUAG = ACAU and AU€5 = €CAU

D mized distributive laws ® : AC — C'A
M liftings of A to a monad A on the category €A, that is monads

A= <,ZL m;,u;) on ©A such that
CUﬁ:ACU, CUmg:mACU and CUUEZUACU

given by

a:¢ — D wherea (6’) = <]BU)\35AF> o (gUpFCuy)
b: D — € where \Ub(P) = CpU and yUAAD (P) = (CpUN4) 0 P i.e.

b(®) (X, px)) = (CX, (Cux) o (2X)) and b(®) (f) = C (f)
d: M —D where d (A) = (CUCFA) o (U7 A°F)
m: D — M where “Um (@) = AU and “Ur“m (@) = @ o (A“U~) i.e.

m(®) ((X,“px)) = (AX, (®X) 0 (Ax)) and m () (f) = A(f).

Proof. In order to prove the bijection between € and ©, we apply Proposition 3.24,
to the case (A, ma,uq) = (B,mp,up) monad on A and Q = C. In particular we
will prove that the bijection a : F — M, b : M — F of Proposition 3.24 induces a
bijection between € and 2.

Let C € €. We have to prove that & = a ((E) = <AU>\A5AF) o (A\UpFCuy) €.
We have

(CP) o (®C) o (AAY) =
(CAUAAéAF> o) (CAUAFOUA) o <AU)\A5AFC> o) (AUAFCUAC) o) (AAC)

= (AU@)\AéAF) o (AUéAFCUA> o (AU)\ACVYAFC> 0 (WUpFCusCX)o (AAC)
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= U [<5>\A6AF> o <5AFCUA> o <)\A5AFC> o (aFCusC)o (AFAC)}
Mo [()\ Aé@p) o <AFAU6*A AéAF> o (AFAUéAFCuA) o (WFCusC) o (4 F AC)]

:()\Aé(jAF> 0 (AFOAU)\AéAF> o (WFCAULFCus) o (3WFCusC) o (uF AC)}
N [()\Aé’éAF> o <AFCAU)\A5AF> o (aFCuaCA) o (4FCCuy) o (AFAC)]

— U

()\AééAF> o <AFCAU)\A5AF) o (AFCUAAUéAF) o (aFCCuy)o (AFAC)}

()‘A auA)adj)AC

LU [(MCECAF) o (LFACA) 0 (FCuy)|

= U [(AAééAF) ° (AFAUA%F) i (AFCuA)]
MU [(A%F) o ()\AGAF) ° (AFCuA)]

- <AUA5AF> o (AU)\AéAF> o (WULFCuy) = (ACA) o (®)
so that
(C®) o (BC) 0 (AAY) = (A“A) o (D).
Moreover
(sCA) o (@) = (€A) o (AUAAéAF) o (WUnFChuy)
- (AUaéAF) 0 (AUAAGAF> o (WUnFCuy)
— U [(55AF> o (AAéAF> ° (AFCUA)}
MU [()\AAF) 0 <AFAU:55AF> 0 (AFCuA)}
= aU [(AanF) o (4Fe“4ULF) o (4FCus)]
LU [AanF) o (1Fua) o (4F<C)]

(Aa,u4)ad] AUAFs:C = AeC

>

so that
(6CA) o(P) = AeC.
Therefore ® is a mixed distributive law. _ _
Conversely let ® € ®. Then we know that b(®) = C is a functor C': 4 A — 4 A

that is a lifting of C' (i.e. JUC = CaU). We have to prove that such a C gives
rise to a comonad on the category 4. A. Let us prove that A¢ and ¢ are A-modules
morphisms. Indeed, for every (X , AMX) € oA, by Lemma 5.3 we have

Yox = (C'px) o (PX)
and also

Apcex = (CPucx) o (BCX) = (CCApux) o (CBX) o (BCX).
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Then we have
Aicox o (AACX) = (CCpux) o (CPX) o (PCX) o (AAYX)
Al (CCAx) o (ACAX) o (0X) X (ACX) o (CApy) o (0X)
and
(9X) o (Auex) = (e°X) o (Cpx) o (BX)
Ay o (CAX) o (@X) T Ay o (ACX)
Thus AC and € lift to functorial morphisms A and €€ uniquely defined by
WUAC =A% U and ,UeC =£C,U.

We comptte

(:0CA%) o (AT) = (CLUAT) o (A%4U) = (CA“LD) o (A1)

— [(CA®) 0 AC] LU T2 [(ACC) 0 AC] LU = (ACCLU) o (ACLU)

= (a%UC) o (,uA%) = (WAC) o (LUA%)
and since AU is faithful | we deduce
(CA%) 0 A% = (A%C) 0 A,
We compute
(U)o (LUAT) = (CU=T) o (A%4U) = (CC4U) o (AC4D)
— [(C&TC) o AC] AU Cconé)nad CAU _ AU&
and since ,U is faithful, we obtain
<5sé> o AC = C.

Similarly we compute

(aU=°C) 0 (LUAT) = (4UC) o (A°LU) = (£°C1U) o (A%4D)

— [(800) o AC:| AU Cconé)nad CAU _ AU&
and since ,U is faithful, we obtain
(:°C) ot =2

Therefore C = 5’, Aa, 5C> is a comonad on »A.

Similarly, in order to prove the bijection between © and 9, we apply Proposition
4.23, taking both (C, A% &%), (D,AP P) = (C, A% ) comonad on A and T' =
A. In particular we will prove that the bijection ¢ : F — M,b : M — F of
Proposition 4.23 induces a bijection between 9t and ®.



87

Let A € 9. We have to prove that & = a <ﬁ> = (CUCFASC) o (CchAVCF> €D.
We have

(Cma) o (PA) o (AP) =
(Cma) o (CUSFACA) o (U4 ACFA) o (ACUSFA) o (AUA“A°F)
A (CUSFmy) o (CUSFACA) o (U7 ACFA) o (CUACFA) o (CUAL“A°F)
= U [(Fma) o (CFAeCA) o (19 A°FA) o (A°FAC) o (A1 A°F )|
LU [(FFma) o (CFACA) o (SFEUACFAC) o (SFEUALCACF) o (1€ AACF))|
LU [(CFma) o ((FACA) o ((FACUSFAC) o (CFASULCACF) o (O AACF )]

)
= U [(FFma) o (FAAL) 0 (FFALCAC) o (SFAUL AR ) o (10 AAF )]

LY |(CFma) o ((FAA) o (CFA=“UACF) o (CFAUA“A°F) o (19 AA°F ) |

(ac 7vc')adj MA

=Y [(CFAC) o (CPmaC) o (y©AAF))|
ey [(CFAC) o (CFCUM;CF) o (yCAA°F )|
Ly [(CPAC) o (1€ A°F) o (ms°F)]
= (SUSFAC) o (CUACACF) o (CUmSF) A © o (maC)
so that we get

(Cma) o (PA)o (AD) = P o (maC).

Moreover we have
P o (usC) = (*UFAY) o (CUVC;{CF> o (uaC)
L (CUCFA) o (UCAF ) o ((Uuz°F)
=tU [(CFAec) e (fngCF) o (ug(CF)}
LU [(CFAC) o (CFCUUCF) o (vCF)]
A CH [(CFA) o (CFuaC) o (1OCF)]
2 Cy [(CFUA) o (CFec) o (7C(CF)]
€€ ~% adj
( Wz) @ (CU(CFUA = CUA
so that we get
® o (usC) = Cugy.
Therefore ® is a mixed distributive law.
Conversely let ® € ®. Then we know that A = b(®) (with notations of Proposition
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4.23) is a functor A : €A — €A that is a lifting of A (i.e. CUA = ACU). We have to

prove that such a A gives rise to a monad on the category ©A. Let us prove that m 4
and u4 are C-comodule morphisms. Indeed, for every (X , CpX) € A, by Lemma
5.5 we have

“pax = (2X) o (A%px)
and also

“pasx = (PAX) o (A%ax) = (PAX) o (ADPX) o (AA%px).
Then we have
(CmaX)o“pasx = (CmaX)o (PAX) o (ADX) o (AApx)
P (D X) 0 (maCX) o (AA%py)
™ (@X) 0 (4%x) 0 (maX) = ©pax o (maX)
and
“pax o (uaX) = o (A%x) o (uaX)
2 (®X)o (uACX) 0 Cpy Tt (CuaX)opx
Thus ma and uy lift to functorial morphisms my and vy uniquely defined by
“Umz=ma“U  and  “Uuz=u,"U.
We compute
(CUmz) o (“UmzA) A (mACU) o (ma"UA) U (ms°U) o (maAU)
A (0 €0 o (AmaSU) B (CUm ) o (AUmz) M (CUmy) o (U Am)
and since U is faithful , we deduce
mio (msd) = myo (Ams).
We compute
(CUmz) o (“Vuzd) & (ma®v) o (us®UA)
B (ma"U) o (uaA°U) =M AU E U A

and since ©U is faithful, we obtain

Similarly we compute
((CUmA~) o (CU;(U;) Allfe (mACU) (A(CU ) Allfe (mACU) o (AuACU)
Amgnad ACU Agft (CUA

and since ©U is faithful, we obtain

mz o (guA) = A.
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Therefore A = (Z, mz,u g) is a monad on CA. O

6. (CO)PRETORSORS AND (CO)HERDS

In this section we collect the material we need in the following or we want to
introduce in this thesis about them, starting from pretorsor and copretorsor, through
herds and coherds, concluding with the tame and cotame case. From time to time
we decide whether or not include the details of the results, proving at least one of
the two cases and having in mind that the other could also be obtained by dualizing
it. In general we give the proof only for the less-known case even if it is not the first
presented.

6.1. Pretorsors.

PROPOSITION 6.1 ([BM, Lemma 4.8]). Let A and B be categories with equalizers
and let P : A — B, Q : B — A and A : A — A be functors. Assume that
all the functors P,Q and A preserve equalizers. Let uy : A — A be a functorial
monomorphism and assume that (A,us) = Equp,, (uad, Aus). Let 7: Q — QPQ
be a functorial morphism such that

(QPT)oT = (TPQ)oT.

and let 04 : QP — A be a functorial morphism such that
(JAQ) oT = usQ).
Let W' = (QPUA) o (7P) and w" = QPua : QP — QPA. Set

(60) (C,1) = Equp,, («',w") .
There exists a functorial morphism pg : Q — CQ such that
(61) (iQ) 0 “po = .

There exist functorial morphisms A¢ : C — CC and ¢ : C — A such that
C = (C, Ac,ac) is a comonad over A and C preserves equalizers. The functor-
ial morphisms A® and €€ are uniquely determined by

(62) (CPQP) oi=(Ci)oAY and ot oi=uy0e’
or equivalently
(63) (tP)oi=(ii)o A°  and o*oi=wuy0c°.

Moreover (Q,pg) is a left C-comodule functor.

PROPOSITION 6.2 ([BM, Lemma 4.8]). Let A and B be categories with equalizers
and let P : A — B, Q : B — A, and B : B — B be functors. Assume that
all the functors P, and B preserve equalizers. Let ug : B — B be a functorial
monomorphism and assume that (B,up) = Equg,, (upB, Bug). Let 7 : Q — QPQ
be a functorial morphism such that

(QPT)oT = (TPQ)oT
Let 0B : PQ — B be a functorial morphism such that

(QUB) oT = Qupg.



90

Let 0' = (6B PQ) o (P7) and 0" = upPQ : PQ — BPQ. Set

(64) (va) = Eunun (el’ 97") :
There exists a functorial morphism pg :Q — QD such that
(65) (Qj)opg =T.

There exist functorial morphisms AP : D — DD and € : D — B such that
D= (D,AD,SD) 18 a comonad over B and D preserves equalizers. The functorial
morphisms AP and P are uniquely determined by

(66) (jD) o AP = (Ppg) o j and  oPoj=ugoel
or equivalently

7)o ={(79)0 an g 0)=upoe.
(67) (Pr)oj=(jj)oAP d oPoj b

Moreover (Q,pg) 1s a right D-comodule functor.

DEFINITION 6.3. Let A and B be categories. A preformal dual structure is a eightu-
ple 2= (A4,B,P,Q,0%,0% us,up) where A: A— A B:B— B, P: A— Band
Q : B — A are functors, 04 : QP — A,0% : PQ — B,us: A — A,ug : B— B are
functorial morphisms. A pretorsor T for = is a functorial morphism 7 : ) — QPQ
satisfying the following conditions.

1) Associativity, in the sense that

(68) (QPT)oT = (TPQ)oT
2) Unitality, in the sense that

(69) (02Q) o7 = usQ
and

(70) (Qo®) o1 = Qug.

DEFINITION 6.4. A preformal dual structure = = (P, Q, A, B, o4, JB,uA,uB,) will
be called regular whenever (A, us) = Equp,, (uad, Auy) and

(B,up) = Equy,, (ugB, Bug). In this case a pretorsor for = will be called a regular
pretorsor.

THEOREM 6.5 ([BM, Lemma 4.8]). Let A and B be categories with equalizers and let
T:Q — QPQ be a reqular pretorsor for = = (A,B, P,Q,JA,GB,UA,UB) . Assume
that the underlying functors P,Q, A and B preserve equalizers. Let w' = (QPJA) )
(TP) and w" = QPuy : QP — QPA. Set

(71) (07 Z) - Eunun (wl7 WT) .
Then there exists a functorial morphism pg : Q — CQ such that
(72) (1Q) o pg = .

There exist functorial morphisms AY : C — CC and ¢ : C — A such that
C = (C, Ao,sc) is a comonad over A and C preserves equalizers. The functor-
ial morphisms AC and €€ are uniquely determined by

(73) (TP)oi=(ii) o A and ot oi=wuy0e".
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Moreover (Q, € pg) is a left C-comodule functor.
Let ' = (JBPQ) o (P7) and 6" = ugpPQ : PQQ — BPQ. Set

(74) (Daj) = Eunun (el’ (97”) :
There exists a functorial morphism pg :Q — QD such that
(75) (Qi)opg =T

There exist functorial morphisms AP : D — DD and P : D — B such that
D= (D, AD,sD) 1s a comonad over B and D preserves equalizers. The functorial
morphisms AP and P are uniquely determined by

(76) (P1)oj = (jj)o AP and oPoj=ugoel.
Moreover (Q,pg) i1s a right D-comodule functor.
Finally (Q,CpQ,pg) s a C-D-bicomodule functor.

Proof. See the dual Theorem 6.29. O

THEOREM 6.6. Let = = (P,Q,A,B,O’A,OB,UA,UB,) be a reqular preformal dual
structure on categories A and B such that the functors P,Q, A, B preserve equal-
izers and let 7 : QQ — QPQ be a pretorsor for =. Assume that A and B are
monads, (P, B,up) s a left B-module functor and (P, ,ufé) is a right A-module func-
tor. Moreover assume that the functorial morphism o? is right A-linear, that is
o4 o (Q,u‘lf-‘,) =My o (UAA) and the functorial morphism o® is left B-linear that is
oBo (B,upQ) =mpo (BUB) and that they are compatible in the sense that

(77) Bupo (6PP) = o (Po?).

Then there exists a comonad C = (C, Ac,gc) on the category A together with a
functorial morphism ©pg : Q — CQ such that (Q, CpQ) is a left C-comodule functor
and a comonad D = (D, AP, 8D) together with a functorial morphism pg Q — QD

such that (Q, pg) 15 a right D-comodule functor. The underlying functors are defined
as follows

(C,i) = Equp,, ((QPc?) o (TP),QPu,)

and
(D, j) = Equpy, ((6°PQ) o (PT),upPQ) .
satisfying
(iQ) 0 Cpo = 7 and (Qj) o ph =T.
Furthermore

1) The morphism can; := (CUA) o (CpQP) QP — CA is an isomorphism.
2) The morphism Cany := (O'BD) o (Ppg) : PQ — BD is an isomorphisms.
3)

(QPo™) o (TP) = (iA) o can; and (oc”PQ) o (P7) = (Bj) o cam;

(78) i = canj’ o (Cuy)
(79) j = (cam) ' o (upD)
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5)
ol = (ECA) o (C’UA) o (CpQP)
6)
o = (Be") o (6P D) o (Ppg)
From the last equalities, we deduce that, c® is a reqular epimorphism if and only
if so is e A and o is a reqular epimorphism if and only if so is BeP.

Proof. See the dual Theorem 6.30. O

6.2. Herds. Following [BV], we recall some definition about herds.

DEFINITION 6.7. A formal dual structure on two categories A and B is a sextuple
M = (A, B, P,Q,0%,05) where A = (A, ma,ua) and B = (B, mp,up) are monads
on A and B respectively and (A, B,P,Q,0%, 0% uy, uB) is a preformal dual struc-
ture. Moreover (P: A — B,Pup: BP — P, : PA — P) and

(Q B — A, g AQ — Q, ,ug QB — Q) are bimodule functors; o4 : QP —
A, 0B : PQ — B are subject to the following conditions: o is A-bilinear and
0B is B-bilinear

(80) oo (YpgP) =mao (Ac?) and o o (Qupp) =mao (c*A)
(81) aBo (B,upQ) = mpo (BO'B) and o o (Pug) =mpgo (O'BB)
and the associative conditions hold

(82) g o (0'Q) = ﬂg o (Qo”) and Ppupo (6P P) = pp o (Po?).

DEFINITION 6.8. Consider a formal dual structure M = (A, B, P, Q, 04, 0”) in the
sense of the previous definition. A herd for M is a pretorsor 7 : Q) — QPQ i.e.

(83) (QPT)oT = (TPQ)oT,
(84) (02Q) o7 = usQ
and

(85) (QoP) o7 = Qusg.

DEFINITION 6.9. A formal dual structure M = (A, B, P,Q, 0%, 0?) will be called
reqular whenever (A, B,P,Q,0%, 0% us,u B) is a regular preformal dual structure.
In this case a herd for M will be called a regular herd.

LEMMA 6.10. Let M = (A, B, P,Q,0",0") be a formal dual structure and let T :
Q — QPQ be a herd for M. Assume that the underlying functors A and B reflect
equalizers. Then T is a regqular herd.

Proof. Since A and B are monads, we have mo(Au,) = Id4 and mpo(Bug) = Idg.
Thus, Auy and Bug are split monomorphisms and thus monomorphisms. Since A
and B reflect equalizers, we deduce that also us and ug are monomorphisms and
thus (A,us) = Equp,, (uaA, Aua) and (B,up) = Equp,, (upB, Bug), i.e. T is a
regular herd. U
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PROPOSITION 6.11. Let M = (A, B, P,Q, 0%, 0%) be a formal dual structure such
that the lifted functors 4Qp : gB — s A and P4 : 4 A — gB determine an equiva-
lence of categories. Then (4Q, Pa) and (pP,Qp) are adjunctions.

Proof. Since (4 F, pU) and (gF,pU) are adjunctions, (4QppF,sUpPa) = (4Q, Pa)
and (pPanF, AU aQp) = (5P, Qp) are also adjunctions. O

6.3. Herds and comonads.

THEOREM 6.12 ([Bo]). Let A and B be categories in both of which the equalizer of
any pair of parallel morphisms exists. Let Ml = (A, B, P,Q, 0", 0P) be a formal dual
structure on two categories A and B. Then we have
(1) IfC = (C, Ac,gc) is a comonad on the category A and (Q, “po:Q — CQ)
is a left C-comodule functor such that
(i) the functorial morphism cany := (Co?) o (“pgP) : QP — CA is an

1somorphism
(17) the functorial morphism cang := (C',ug) o (9pgB) : QB — CQ is an
1somorphism
then T := (Canle) o (Cua@) o CpQ : Q) — QPQ is a pretorsor and thus
a herd.

(2) IfD= (D,AD,ED) 18 a comonad on the category B and (Q,pg Q — QD)
s a right D-comodule functor such that
(i) the functorial morphism Can; := (UBD) o (Ppg) : PQQ — BD is an

1somorphism
(ii) the functorial morphism canz := (“ugD) o (Apg) : AQ — QD is an
1somorphism
then 7 := (Qcan; 1) o (QugD) opg : Q) — QPQ is a pretorsor and thus a
herd.
Proof. See the dual Theorem 6.36. O

THEOREM 6.13 ([Bo]). Let A and B be categories in both of which the equalizer
of any pair of parallel morphisms exists. Let M = (A, B, P,Q, 0", 0?) be a regular
formal dual structure such that the underlying functors A, B, P and @ preserve
equalizers, then the existence of the following structures are equivalent:

(a) A herd T:Q — QPQ in M;

(b) A comonad C = (C, Ac,gc) on the category A such that the functor C
preserves equalizers and (Q,CpQ Q — CQ) 1s a left C-comodule functor
subject to the following conditions

(i) the functorial morphism cany := (Co?) o (“pgP) : QP — CA is an
1somorphism

(i) the functorial morphism cany := (Cuf) o (“poB) : QB — CQ is an
1somorphism;

(¢c) A comonad D = (D,AD,ED) on the category B such that the functor D
preserves equalizers and (Q,pg Q- QD) 15 a right D-comodule functor
subject to the following conditions

(i) the functorial morphism cany = (O'BD) o (Ppg) : PQ — BD is an
1somorphism
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(ii) the functorial morphism cany := (“ugD) o (Apg) : AQ — QD is an
1somorphism.

Proof. See the dual Theorem 6.37. U
6.4. Herds and distributive laws.

PROPOSITION 6.14 ([Bo]). Let A and B be categories with equalizers and let T : Q) —
QPQ be a regular herd for M = (A, B, P,Q,c*, 0P) where the underlying functors
P:A—B Q:B—-A A: A— Aand B : B — B preserve equalizers. Let
C = (C, Ac,gc) and D = (D,AD,&?D) be the associated comonads constructed in
Proposition 6.1 and in Proposition 6.2. Then

1) There exists a mized distributive law between the comonad C and the monad
A, ®: AC — CA such that

(iA) o ® = ¢ = (QPo?) o (TP) o (*rugP) o (Ai).

2) There exists an opposite mized distributive law between the comonad D and
the monad B, ¥ : DB — BD such that

(Bj) oW =1 = (6"PQ) o (P1) o (Pug) o (jB).
Proof. See the dual Proposition 6.38. O
6.5. Herds and Galois functors.

LEMMA 6.15. Let M = (A,B,P,Q,O’A,O'B) be a formal dual structure where @ :
B— A P: A — Band A = (A;ma,us) is a monad on the category A and
B = (B, mp,ug) is a monad on BB. Assume that both A and B have coequalizers and
that A, QB preserve them. Then o : QP — A induces a morphism o4 : QPy — U
in aA and hence there exists a morphism Aoﬁ: AQPy — Id, 4 such that

(86) wUaohy = o,

Moreover aAf‘AF =04 QPspF = QP — \U\F = A.

Proof. Let us consider the following diagram with notations of Proposition 3.30

QuAsU
QPALU - QPU —— 2 QP4
QPpUXA 5
l"AAAU lO'AA\U foal
mapU AUla Y
AAU W AU AU
aUXa

Since by assumption @B preserves coequalizers, by Lemma 3.19 also () preserves
coequalizers. Since (,UM4) o (O'AAU) coequalizes the pair (QufﬁAU, QPAU/\A) and
(QPa, Qpp) = Coequp,, (QuipalU,QPyUN4), by the universal property of the co-
equalizer, there exists a unique morphism o4 : QP4 — AU such that

o4 0 (Qpp) = (8UX4) 0 (OAAU) .

We now want to prove that Jﬁ :QPy = AU QP4 — AU is a morphism between left
A-module functors which satisfies

(AUXA) © (Aaﬁ) = Jﬁ o (AMQPA) )
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We have

defo 1‘2

(aUXa) o (Ac) o (AQpp) =" (aUA4) 0 (AnUN4) 0 (Ac}iaU)

aUXacoequ (AU)\A) o (mAAU) o (AUAAU) (g) (AU)\A) o (O'AAU) o (A/LQPAU)

defo A

A
o
=" 040 (Qpp) o (*ugPrU) = o4 o ("gPa) o (AQpp)
and since A, () preserve coequalizers, AQpp is an epimorphism, so that we get
(aUXa) o (Acy) = oo (“gPa).

Hence, by Lemma 3.29, there exists a unique morphism 404: AQPs — Id, 4 such

that

A A
aUacy =o0y.

Now, note that, by definition of ¢4, we have
az‘ o (Qpp) = (WUAX4) 0 (O'AAU)
so that by applying it to o F we get
(046 F) o (QppaF) = (WUNanF) o (0 ULF) .
Hence, by Proposition 3.34, we obtain that

(80)
(UﬁAF) © (Quﬁ) =mapo (UAA) = oo (Qﬂﬁ) :
Since Qu4p is an epimorphism, we deduce that o4, F = 0. 0
PROPOSITION 6.16. Let A and B be categories with equalizers and let T : Q — QPQ
be a reqular herd for a formal dual structure M = (A,B, P,Q,c4,0%) where the

underlying functors P : A — B, Q : B — A and A : A — A preserve equalizers.
Let

e C= (C’, A°, 50) be the comonad on the category A constructed in Proposi-
tion 6.1;

° (Q, CpQ) be the left C-comodule functor constructed in Proposition 6.1;

e 4@ : B — oA be the functor defined in Lemma 3.29;

o &: AC — CA be the mized distributive law between the comonad C and the
monad A constructed in Proposition 6.14;

e C be the lifting of C on the category s A constructed in Theorem 5.7.

Then there exists a functorial morphism épAQ s a0 — 5,4@ such that
AUCPAQ = CpQ
Moreover, (AQ, épAQ) s a left C-comodule functor.

Proof. Since 7 : Q — QPQ is a regular herd for M = (A, B, P,Q,0%,0"), by
Proposition 6.14, the mixed distributive law ® : AC' — C'A is uniquely defined by

(1A) o & = (QPUA) o(TP)o (A,uQP) o (Ai).
Now we prove that ©pg yields a functorial morphism ép .o~ In fact we have

(iQ) o (C*g) © (2Q) o (A%pg) = (QP"1g) o (1AQ) o (2Q) o (A pg)
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diq) (

QP*ug) o (QPo?Q) o (TPQ) o (*11oPQ) o (AiQ) o (A%pg)
O (QPuB) o (QPQeP) o (rPQ) o (*uPQ) o (A7)
= (QPug) o (rB) o (Qo”) o (*poPQ) o (A7)
"9 (QPuB) o (rB) o (pgB) o (AQo®) o (Ar)
@ (QPuE) o (rB) o (“11gB) o (AQus)
"L (QPUE) o (7B) o (Qui) 0 Ao = (QPuE) o (QPQus) o7 0 g

61)

Qmodfun ( .
=" ot = (iQ) 0 “pg o g

and since by construction () is a monomorphism we get that

(C%uq) o (2Q) o (A%pq) = “pg o “1q-

By Lemma 5.3 we know that

(Chq) o (PQ) = “pcq

so that we get
Ypcq o (A%q) = (CUq) o (2Q) 0 (A%pq) = “pg © *hq-
Hence there exists a morphism 5p L0 aQ — C 4@ such that

AUCIOAQ = CpQ

By the coassociativity and counitality properties of “pg, we deduce that 5p AQ 18

also coassociative and counital so that ( AQ, ép AQ) is a left C-comodule functor. [

LEMMA 6.17. Let M = (A, B, P,Q,0%,0P) be a formal dual structure where the
underlying functors are A: A —- A, B: B —-B, P: A— Band Q : B — A
Assume that both categories A and B have coequalizers and the functors A, QB

preserve them. Assume that

o C = (C', AC,&?C) is a comonad on the category A such that C' preserves

coequalizers
o« C= (5, A5,65> is a lifting of the comonad of C to the category 5 A
° (AQ, épAQ) s a left C-comodule functor where AUépAQ = %pg.
Consider the functorial morphisms
cany := (Co?) o (“pgP) : QP — CA
and
Acany = (5’,402‘) o <5pAQPA> AQPy — C

Then cany is an isomorphism if and only if scana is an isomorphism.
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Proof. Note that, since (AQ, 6'pAQ) is a left C-comodule functor, then (Q, CpQ) is

a left C-comodule functor where CpQ = AUépAQ. Let (Pa,pp) be the coequalizer
defined in (6). Now, by Lemma 6.15, 0# induces a morphism o4 : QP4 — oU such
that

A _ A . .
o4 0 (Qpp) = (aUMa) o (6*4U). Then, we can consider the morphism

(87) cany := (Caﬁ) o (C,oQPA) QPy = U QPy — CyU = AU@.
Then, by using the naturality of “pg and the definition of 04, we obtain
(88) cany o (Qpp) = (CaUN4) o (canipU) .
Moreover, by Lemma 6.15,~ there exists a morphism 404 : 4QP4 — Id, 4 such
that oU 0% :gﬁ. Since C is a lifting of the comonad C, we know that Co4 =
CAUAUQ‘ = AUC’AUQ‘. Let us set
Acany = (dmﬁ) o <5PAQPA> AQPy — C
so that we get
(89) AU qcany = <AU5AUﬁ> o <AU6pAQPA> = (C’Jﬁ) o (CpQPA) = cany.
By using the naturality of “pg, we calculate
(canjpU) o (Q,uf_},AU) = (CUAAU) o (CpQPAU) o (Q,uﬁAU)
= (COAAU) o (CQ/L?)AU) o (CpQPAAU)
(89 (CmaalU) o (CUAAAU) o (CpQPAAU) = (CmapU) o (cany ApU)
so that we get
(90) (canjpU) o (Qu‘,ﬁAU) = (CmyaU) o (can; ApU) .

Let us consider the following diagram

A
Qupal Qpp

QPANU QP\U QPy 0
QP UNy
canlAAUl can1AU\L C&nA\L
CmapU CaUAa -
CAAU CA\U —=C\U = . UC =CA, —0.

ApUN 4

Now, since can; : QP — CA is a functorial morphism and by formula (90), the
left square serially commutes. By formula (88) also the right square commutes.
Moreover, by definition, pp and ,UM\4 are coequalizers. Since ) and C' preserve
coequalizers, both the rows are coequalizers .

Assume now that can; is a functorial isomorphism. Then both can; A, U and
canipU are isomorphism and we deduce that also cany is an isomorphism. Since
aUcany = cany and pU reflects isomorphisms, we get that also sqcan, is an iso-
morphism.

Conversely, assume that 4cany is an isomorphism. Then also cany = pU scany
is an isomorphism. Then, by using (89), (87), Lemma 6.15 and (15), we obtain
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aUacanp F' = cangp F = (CUQAF) o (CpQPAAF) = (CO’A> ) (CpQP) = can; So
that also can; is an isomorphism. O

6.6. The tame case.

DEFINITION 6.18. A formal dual structure M = (A, B, P,Q,0%,0%) is called a
Morita context on the categories A and B if it satisfies also the balanced conditions

(91) oo (,ugP) =00 (Q"up) and o o (P pug) = o” o (upQ).

LEMMA 6.19. Let M = (A, B, P,Q, 0", o) be a Morita context on the categories A
and B and assume that A, B, P, Q) preserve coequalizers. Hence, there exist functorial
morphisms

° AB(TﬁA : AQppPa — 1d, 4 such that
(92) wUABops = BOgA

where pof , is uniquely determined by poi 40 (Qpp,r) = (8UXa)o (pofal)
and

(93) 5o o (pgpP) = o
e 34055 pPaaQp — 1d 5 such that
(94) U0k = a0hp

where 4085 is uniquely determined by ac5y; 0 (Pap,o) = (8UAB) o (AUEBU)
and

(95) Aaf o (ppa@) = oB.
Moreover we have that
(96) posnF = gop and  g05peF = 408,

Proof. By definition, (QppP,pqpP) = Coequp,, (1P, QP pp) and by assumption
o4 is balanced, so that, by the universal property of the coequalizer, there exists a
unique functorial morphism pog : QP — A such that gog o (pgpP) = 0. Now,
let us consider the following diagram

QB/JAPAU
B QBPgP
QppPANU QppPpU QBBPa
QeBPAUMsy :
BOAANU poaaU BOH
maaU RN v
AAAU AAU AU
ApUN 4

Note that, by naturality of pg and definition of gog we have

(BagAU) © (QBMﬁpAU) o (pepPALU) = (BUgAU) o (pgePal) o (QIBUMQPAU)

= (O’AAU) o (QﬂéAU) (2) (mAAU) o (UAAAU) = (mAAU) o) (BUgAAU) o) (pQBPAAU)
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and since popPApU is an epimorphism, we get that (BagAU) o (QB;/B‘PAU) =
(mapU) o ( pog AU ) Moreover, by using naturality of pg, definition of B0y, nat-
urality of 04 we have

(BUgAU) © (QBBPAU)\A) % (pQBPAAU) = (BUQAU) © (pQBPAU) o (QIBUBPAU)\A)
= (04U) o (QeUpPyUMN4) = (AsUAs) 0 (04U 4FLU)
= (AyUN4) o (popAnU) o (pgsPALU)
and since popPAAU is an epimorphism, we get that (BO'BAU) (QppPyUMs) =

(ApUMy) 0 ( BO'BAAU ) so that the left square serially commutes. Since B, P, () pre-

serve coequalizers, by Corollary 2.12, also QppP = Coequp,, (/LQBUBP, QBUABBP)
preserves them so that both the rows are coequalizers. Hence, there exists a unique
functorial morphism Bag‘ 4t QpPa — AU such that

(97) 80540 (QBpyr) = (AUM) © (5o5al) .

Now, by using naturality of 41¢,,, definition of gog ,, definition of o4, coequalizing
property of ,UM\,4, we compute

5054 ° (MguPa) © (AQpp,p) © (AposPal)
— 5oia 0 (Qepyp) o (YropsPal) o (ApgPal)

@ (AUAA) 0 (BagAU) o (popPal) o (ANQBUBPAU)
= (aUX4) 0 (O'AAU) ° (AMQJBUBPAU)
= (8UN4) 0 (mapl) o (Ac?,U) = (WUA4) 0 (AuUXa) 0 (Ao, U)
(aUXa) 0 (ApUA) 0 (Apogal) o (ApopPal)
= (aUX4) 0 (ABUSA) o (AQBpypr) o (AporPaU)

and since (AQpp,p) o (ApgpPaU) is an epimorphism, we get BO@ 4O (AuQBBPA) =

(WUX4)o (ABJJQ‘A) SO that BaéA induces a functorial morphism ABUéA caQBBPA —

Id, 4 such that ,U spop A= = poa 4. Similarly, one can prove that there exists a unique

functorial morphism 40% : P44Q — B such that 405 o (pp4Q) = o and it induces

a unique functorial morphism pacfy : pP4aQp — Id,5 such that gUpgachy = achy

where 405 is uniquely determined by 4055 o (Pap,q) = (8UAp) © (a05sU).
Finally we compute

(305anF) © (QppypaF) o (pQBPA)
= TmMA © (BO'EA) (pQBPA)

II“D

(AU)\AAF) o (BUQAUAF) o (pgrPA)
"mao ( “A) o o (Qup)

II“D

(93) 11)
= pop o (poP) o (Qup o (PeBP) o (QsUpip)
PQ (13)_ 4)
= pogo (Qpip) o (pgePA) "= " pogo (QppyraF) o (pgsPA).

Since B and () preserve coequalizers, by Corollary 2.12, also (g preserves them so
that (Qpuilp) o (pgpPA) is epi and we deduce that

A A
BO—BAAF = BUB‘
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Similarly, one can prove the statement for 40555 F = 40%. O

DEFINITIONS 6.20. Let M = (A, B, P,Q, 0", 0”) be a Morita context. We will say
that M is tame if the lifted functorial morphisms AgaéA : AQppPa — 1d, 4 and
BAUEB : pPaa@p — 1d,p are isomorphisms so that the lifted functors 4Qp : gB —
aA and Py : A — B yield a category equivalence. In this case, if 7: Q — QPQ
is a herd for M, we will say that 7 is a tame herd.

PROPOSITION 6.21. Let M = (A,]B%,P, Q,O’A,UB) be a tame Morita context. Then
unit and counit of the adjunction (4Qp, pPa) are given by
-1 -1

N(aQp.5Pa) = (BAUEBBPAAQB)O<BPA (4B05A) AQB)O(BAUEB) and €(,Qp.pPa) =
ABO B4 50 that

~1
N(4Q,Pa) = (BUBAUABBPAAQB]BF)O<]BUBPA (4BoBa) AQB]BF> (]BU (Bacfp) IEBF>O
up and €,Q.p,) = ABUBA (4aQBABBPA).
Proof. 1t is a well-known fact that, given the two functorial isomorphisms o : Id —
RL and € : LR — 1d associated to an equivalence of categories, the unit of an adjunc-
tion is given by n = (07! RL) o (Re ' L) o o and the counit is €. Hence, since the iso-
morphisms are € = ABJQA 1 AQppPa — 1d, 4 and ol = BAO'EB : BPaaQp — 1d;5

o -1 -1

the unit is 1,0z, 5P = (BAO'EBBPAAQB> © <BPA (ABaéA) AQB) © (BAUEB)
and the counit is €(,q,.,p.) = aB084. Note that, by Proposition 6.11, (4Q, P4) =
(aQpeF,sUpP4) and (pP,Qp) = (sPanF, aU aQp) are adjunctions. Hence, the
unit of the adjunction (4@, Pa) is 1(,0,ry) = (8Un( AQB »roBF) ©ngr 0y and thus

~1
N(4Q,Ps) = (IBUBAUEBBPAAQBBF>O<BUBPA (aBopas) AQBIB%F>O<IB%U( 405p) ]BF>O
up. The counit of the adjunction (4@ psF, 8UpPa) = (4Q, Pa) is given by €(,¢0.p,) =
€(4Qp,5Pa) © (AQBG(]BF,BU)BPA) = ABO—gA o (AQB)\BBPA)~ A similar result holds for
the other adjunction. O

COROLLARY 6.22. Let M = (A, B, P,Q, 0%, 07) be a tame Morita context. Assume
that the functors A, B, P, preserve coequalizers. Then the counits of the adjunc-

tions (4Q, Pa) and (pP,Qg) are given by €,0.p,) = 404 and €,p.0y) = BOH-

Proof. By Proposition 6.11 (4@, P4) and (5P, Qp) are adjunctions. Let us consider
the functorial morphism Aaﬁ : AQP4 — Id, 4 constructed in Lemma 6.15 satisfying
AU 04, F = 044 F = 0. By using naturality of ,ug , definition of o4, the balanced
property of JA, we compute
4 o (uGPa) o (@Bpp) = o4 o (Qpp) o (uGPal)
= (AU)\A)O (O'AAU)O ( PAU) = (AU)\A)O (0' AU)O (QBMPAU)
=0/t o (Qpp) o (QBNPAU) = o4 0 (QPup,) o (@Bpp)

and since () Bpp is an epimorphism, we get that

o0 (nGPa) = 040 (Q%nr,)
ie.

(Uacd) o (UngPa) = (:Uacd) © (WWaQr,)
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Since o U reflects and (4QppPa, p,oPa) = Coequp,, (,ugPA, AQB,upA), there exists
a unique functorial morphism 4 Bﬁg 4 AQppPa — 1d, 4 such that

A8 54 0 (paopPa) = a0,

Using definition of 04, goa and goa 4, naturality of Az we compute
(8UaB734) © (8Up,qaPa) © (Qpp) = aU [asT54 © (aqBPa)] © (Qpp)
= (aUa0%) o (Qpp) = (8UXa) 0 (674U) = (8UA4) © (ogal) o (pouPal)

(14)

=" (aUXa) o (gopal) o (QpApsPaU)
= BaéA % (QBPBP) © (QB)\BBPAU) = BO'gA o (QB)\BBPA) © (QBBFBUPBP)
= pops 0 (QeAsPA) 0 (Qpp) = (8Uapoa) © (WUaQpA55Pa) o (Qpp)
and since Qpp is an epimorphism and U reflects and by definition of 4po4 , we get
48054 ° (AQBAEBPA) = 4504 © (Ds05Pa) = a0

so that €(,0,p,) = 48054 0 (4QBABBPA) = 404, O
LEMMA 6.23. Let M = (A,B, P,Q,04,05) be a formal dual structure where the
underlying functors are A: A — A, B:B —- B, P: A— Band Q : B — A.

Assume that both categories A and B have coequalizers and the functors A, QB
preserve them. Assume that

o C = (C', Ac,ao) is a comonad on the category A such that C preserves
coequalizers

o« C= (5, Aé, 55> is a lifting of the comonad C to the category , A

° (AQ,apAQ) 15 a left C-comodule functor
e M is a tame Morita context.

Then cany is an tsomorphism if and only if scany is an isomorphism if and only

if 4Q is a left C-Galois functor.

Proof. Assume that M is a tame Morita context. Then, by Corollary 6.22, (4Q, Pé)
is an adjunction with counit € := 404 : 4QP4 — Id, 4. Then, 4Q is a left C-
Galois functor if and only if the morphism <5Aoj> o (épAQPA) = 4cany is an
isomorphism. By using Lemma 6.17 we deduce that can; is an isomorphism if and
only if 4can, is an isomorphism if and only if 4@ is a left C-Galois functor. 0J

The following Theorem is a formulation, in pure categorical terms, of [BV, The-
orem 2.18|.

THEOREM 6.24. Let M = (A, B, P,Q,0%,0%) be a regular tame Morita context.
Assume that

e both categories A and B have equalizers and coequalizers,
e the functors A and B preserve equalizers,
e the functors A, B, P, Q) preserve coequalizers.

Then the existence of the following structures are equivalent:

(a) A herd T: Q — QPQ for M
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(b) A comonad C = (C’, AC,EC) on the category A such that the functor C
preserves equalizers and a mizved distributive law ® : AC — CA such that
4Q is a Galois comodule functor over C (where C is the lifting of C)

(¢) A comonad D = (D,AD,eD) on the category B such that the functor D
preserves equalizers and an opposite mized distributive law V : DB — BD

such that gP is a Galois comodule functor over D (where D is the lifting of
D).

Proof. By Proposition 6.11 the pairs (4@, Pa) and (P, Qp) are adjunctions and
hence P4 and Qg preserve equalizers. Since A = U, F and B = gUg[F preserve
equalizers, by Lemma 3.22 also ,F' and gF' preserve them so that, in view of (15),
we get that P = Py I and Q = Qg F preserve equalizers.

(a) = (b) Assume that 7 : @ — QPQ is a herd for M = (A, B, P,Q,0*,"). By
Proposition 6.14 there exists a mixed distributive law ® : AC' — C'A such that

(1A) o & = (QPUA) o(TP)o (A/LQP) o (Ai).
Then, by Theorem 5.7, there exists a lifting comonad C= <5, Aé, 55> on the cate-

gory . A. By Proposition 6.16, there exists a functorial morphism 5p L0 AQ — C A0
such that ,U%p,0 = “pg and (AQ, CpAQ> is a left C-comodule functor. Since by

assumption we have a regular formal dual structure, by Theorem 6.6, the functorial
morphism can; = (CO‘A) o (CpQP) : QP — (CA is an isomorphism and so, by
Lemma 6.23, 4@ is a left C-Galois functor.

(b) = (a) Follows by [BM, Theorem 4.4 (1)] where
(77 (NAJ RA)? (NBv RB); C? 5) - (AA7 (AFv AU)a (AQ: PA)7 C? AUAC&IIA) noting that a

pretorsor for a formal dual structure is a herd. O
6.7. Copretorsors.

PROPOSITION 6.25. Let A and B be categories with coequalizers and let P : A —
B,Q:B— A, and C : A — A be functors. Assume that all the functors P,Q and
C preserve coequalizers. Let €€ : C' — A be a functorial morphism and assume that
(.A, 80) = Coequpy, (CaC, 600). Let x : QPQ — Q be a functorial morphism such
that

(98) x o (@Px) = x o (xPQ)

and let 6¢ : C' — QP be a functorial morphism such that
(99) X0 (00Q) =£°Q.

Let w' = (xP) o (QPd¢) and w" = QPe® : QPC — QP. Set
(100) (A, z) = Coequp,, (w',w").

There exists a functorial morphism 4pg : AQ — Q such that

(101) g o (2Q) = x.
There exist functorial morphisms my : AA — A and uy : A — A such that A =
(A,ma,ua) is a monad over A that preserves coequalizers. Moreover my and u,
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are uniquely determined by

(102) xo(xP)=myo (zx)
and
(103) ug 0’ =1z 0d¢.

Finally (Q,AMQ) 15 a left A-module functor.
Proof. We have

o (0'Q) = x o (xPQ) 0 (QP6:Q) = x o (QPY) 0 (QP5:Q)
2\ 0 (QPEQ) = x o (W' Q).
Hence
xo (w'Q) =xo(wQ).
By Lemma 2.9, we have that
(AQ7 .TQ) - Coeunun (lea wrQ)

and hence there exists a unique functorial morphism “4ug : AQ — @Q which fulfils
(101). We compute

z 0 (AugP) o (Aw') o (xQPC) = z o (“ugP) o (rQP) o (QPwl)

oy (xP) o (prl) =z 0 (xP) o (QPxP) o (QPQPé:)

= 2o (xP) o (xPQP) 0 (QPQPSC)
X 20 (xP) o (QPdc) o (xPC) =z ow' o (xPC)
TEM row" o (yPC) =10 (QPY) o (xPC)
X 20 (xP) o (QPQPC) "L z o (YugP) o (xQP) o (QPQPEC)
Z 20 ("ugP) o (AQPeY) o (xQPC) = z o (*pgP) o (Aw") o (xQPC)

so that we get

z o (YlgP) o (Aw') o (rQPC) =z o (*1ugP) o (Aw") o (xQPC)
and since Q) PC' is an epimorphism we deduce that

z 0 (YugP) o (Aw') = v o (*pgP) o (Aw").
By Corollary 2.12, A preserves coequalizers so that we get
(AA, Az) = Coequp,, (Auw', Aw").

Hence there exists a unique functorial morphism my : AA — A such that
(104) my o (Az) =z o (“ugP)

or equivalently

mao (zx) =mao (Az) o (zQP) =z o (*ugP) o (eQP) "= z o (xP) .
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We calculate
z0dco (CeY) o (QP£) 0 (6cC) = zow” o (6cC)

"= row' 0 (60C) = x 0 (xP) 0 (QP¢) © (5cC)

% 20 (xP) o (6cQP) o (Coc) 2 20 (°QP) o (C¢)

£

< zo 5c o (9C)
so that we get
z06c0(CeY) =1z0dc0(cC).

Since (A, 60) = Coequpy, (Csc,ecC) there exists a unique functorial morphism
uas 1 A — Asuch that (103) is fulfilled. Now we want to show that A = (A, ma,ua)
is a monad over A that is

mao(maA) = myo(Amy)
mao (Auy) = A=mao (usA).
We calculate

my o (maA) o (zxx) =myo(maA)o (xxA)o (QPQPr)
" mao (24) o (\PA) o (QPQPa)

X mao (zA) o (QPz) o (YPQP) = my o (zx) o (xPQP)

(102) (98)
="z0(xP)o (xPQP) = x0(xP)o(QPxP)
(102)

="muo (xzx)o (QPxP)=mao(xA)o (QPx)o (QPxP)
1) a0 (2A) 0 (QPmA) o (QPzx) £ mu o (Amy) o (xAA) o (QPzx)
=my o (Amy) o (zzx).
Thus we get that
ma o (myA)o (xxz) =mao(Ama) o (xxx)
and since zxx is an epimorphism, we deduce that m, is associative. We compute

ma o (Auy) o (Ae%) o (2C) (1) ma o (Ax) o (Adc) o (xC')

=my o (Az) o (rQP) o (QPdc) = ma o (xx) o (QPdc)
"2 a0 (xP) o (QPoc) =z 0w
=zouw" =x0(QP%) = (Ac) o (z0).
Thus we get that
ma o (Auy) o (4e9) o (2C) = (AeY) o (2C).
and since (Agc) o (zC) is epimorphism we deduce that

ma o (Auy) = A.
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We compute

ma o (uad)o (°4) o (Cz) "L my o (zA) 0 (5cA) o (Cx)

% 1y o (zA) 0 (QPz) o (6cQP) = my o (22) o (cQP)
"B o (xP) o (5cQP) E w0 (°QP) = (:9A) o (C)
so that we get
ma o (ugA) o (e“A) o (Cx) = (e“A) o (Cu)
and since (¢“A) o (Cz) is an epimorphism we deduce that
ma o (usA) = A.

Therefore we obtain that m,4 is unital. We compute

Aig o (A%g) o (AzQ) o (zQPQ)

"2 g 0 (Ax) 0 (2QPQ) £ g 0 (2Q) 0 (QPY)

2 xo@P) E xo (xPQ) " Mg o (¢Q) 0 (xPQ)
Mg 0 (maQ) o (x2Q) = “pg o (MaQ) o (AzQ) 0 (zQPQ).
Since (AzQ) o (xQPQ) is an epimorphism we get

g o (A%q) =g o (maQ).

(102)

We calculate

g o (uaQ) o (£°Q) "= g 0 (2Q) 0 (60Q)

(101 (99)

)
=" xo(6cQ) = (£°Q).
Since (5CQ) is an epimorphism we obtain

g o (uaQ) = Q.
O

PROPOSITION 6.26. Let A and B be categories with coequalizers and let P : A — B,
Q:B— A, and D : B — B be functors. Assume that all the functors P,Q and D
preserve coequalizers. Let e : D — B be a functorial morphism and assume that
(B, €D) = Coequpy, (DeD, EDD). Let x : QPQ — Q be a functorial morphism such
that

x o (QPx) =xo(xPQ).
Let op : D — PQ be a functorial morphism such that

(105) Y0 (Qbp) = Q="
Let 2t = (Px) o (6pPQ) and 2" = ePPQ : DPQ — PQ. Set
(106) (B,y) = Coequp,, (2, 2").

There exists a functorial morphism ug QB — @ such that
(107) 16 0 (Qy) = x.
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There exist functorial morphisms mg : BB — B and ug : B — B such that
B = (B,mp,up) is a monad over B that preserves coequalizers. Moreover mp and
up are uniquely determined by

(108) mp o (yB) =y o (Pug)
or equivalently

(109) mp o (yy) =y o (Px)
and

(110) yodp =upoc”.

Moreover (Q,ug) 15 a right B-module functor.

Proof. By left-right symmetric argument of those used in proof of Proposition 6.25,
one can prove this Proposition. ([l

DEFINITION 6.27. Let A and B be categories. A preformal codual structure is a
eightuple © = (C’,D,P, Q,dg,dD,gc,eD) whereC: A— A D:B—B,P: A—B
and Q : B — A are functors, 6¢c : C — QP,6p : D — PQ,c¢ : C — A,e? D — B
are functorial morphisms. A copretorsor x for © is a functorial morphism yx :
QPR — Q satisfying the following conditions:

1) Coassociativity, in the sense that

(111) x o (xPQ) = x o (QPx)
2) Counitality, in the sense that

(112) X0 (0cQ) =<°Q
and

(113) Yo (Qop) = Q<.

DEFINITION 6.28. A preformal codual structure © = (C, D, P,Q,6¢,dp,e, P

will be called regular whenever (.A, <€C) = Coequpy, (C&tc,aCC) and (B,é?D) =
Coequpy, (DsD ,eP D). In this case a copretorsor for © will be called a regular
copretorsor.

THEOREM 6.29. Let A and B be categories with coequalizers and let x : QPQ —
Q be a reqular copretorsor for © = (C’,D,P,Q,ég,ép,éc,a‘[)). Assume that the

underlying functors P,Q,C and D preserve coequalizers. Let w' = (xP) o (QPd¢)
and w" = QPe® : QPC — QP. Set

(114) (A, z) = Coequy,, (w',w").
There exists a functorial morphism 4ug : AQ — Q such that

(115) g 0 (3Q) = x.

There exist functorial morphisms my : AA — A and uy : A — A such that A =
(A, ma,uys) is a monad over A that preserves coequalizers. Moreover ma and ua
are uniquely determined by

xo (xP)=myo (vr) and T 000 =mwuyo0ce”.
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Moreover (Q,AMQ) 1s a left A-module functor.
Let 2! = (Px) o (0pPQ) and z" =P PQ : DPQ — PQ. Set

(116) (Bv y) = Coeunun (Zla ZT) :
There exists a functorial morphism ug QB — @ such that
(117) 1o 0 (Qy) = x.

There exist functorial morphisms mg : BB — B and ug : B — B such that
B = (B, mp,up) is a monad over B that preserves coequalizers. Moreover mp and
upg are uniquely determined by

mpo(yy) =yo(Px)  and  yodp=upoc”.
Moreover (Q,,ug) 1s a right B-module functor.
Finally (Q,A/LQ,Mg)iS an A-B-module functor.

Proof. Within these assumption, we can apply Proposition 6.25 to get the monad A
and the functorial morphism AMQ : AQ — @ satisfying 115 such that (Q, A,uQ) is a
left A-module functor and Proposition 6.26 to get the monad B and the functorial
morphism ,ug . QB — @ satisfying 117 such that (Q,,ug) is a right B-module
functor. Let us check the compatibility condition. We calculate

Yo (Aug) o (AQy) o (zQPQ) = “1ig o (2Q) o (QPug) o (QPQy)

(115),(117) (98)
= " xo(QPx) = xo(xPQ)

(117),(115)
= ng o (Qy) o (uPQ) o (rQPQ)
A
= ug o (“nB) © (AQy) 0 (2QPQ).
Since (AQy) o (xQPQ) is an epimorphism we get that
g o (Ang) = ng o ("neB) .
Therefore (Q, g, 115) is an A-B-bimodule functor. O

THEOREM 6.30. Let x : QPQ — Q be a reqular copretorsor for a preformal codual
structure © = (C,D7P, Q,§C,§D,€C,€D) on categories A and B such that the un-
derlying functors P,Q,C and D preserve coequalizers. Assume that C' and D are
comonads, (P, Dpp) s a left D-comodule functor and (P, pg) is a right C-comodule
functor. Moreover assume that the functorial morphism d¢ is right C-colinear, that
is (Qp%) o éc = (6cC) o A and the functorial morphism 6p is left D-colinear that
18 (Dpr) 0dp = (Ddp) o AP and that they are compatible in the sense that

(118) (6pP) o Ppp = (Péc) o ps.

Then there ezists a monad A = (A,ma,us) on the category A together with a
functorial morphism *ug : AQ — Q such that (Q,A,uQ) is a left A-module functor
and a monad B = (B, mp,ug) together with a functorial morphism ,ug QB — Q
such that (Q, ,ug) is a right B-module functor. The underlying functors are defined
as follows

(A,z) = Coequyy, ((xP) o (QPdc),QPe") .
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and
(B,y) = Coequg,, ((Px) o (0pPQ) ,e”PQ) .
satisfying
Mg o (2Q) = x and g o (Qy) = x.
Furthermore

1) The morphisms cocany := (*pgP) o (Adc) : AC — QP is an isomorphism.
2) The morphism cocany := (Pug) o (6pB) : DB — PQ is an isomorphisms.
3)

(xP) o (QPd¢) = cocany o (zC) and (Px) o (6pPQ) = ¢ocany o (Dy)
4)

z = (A% o (cocan)™
y = (¢"B)o (cocany) ™"
5)
5 = (MugP) o (Adc) o (uaC)
6)

op = (Pug) o (6pB) o (Dug) .

From the last equalities, we deduce that if €€ A is a reqular epimorphism, so is o

and if BeP is a regqular epimorphism, so is o®.

A

Proof. Note that we are in the setting of Theorem 6.29.
1) Let us check that cocan, is an isomorphism.
The inverse of the functorial morphism cocan, is given by cocan;' = (xC) o

(Qp%) : QP — AC. Indeed we compute
(xC) o (Qp§) o cocany o (zC) = (zC) o (Qp%) o (*1gP) o (Adc) o (zC)
— (2C) 0 (QpS) o (*ugP) o (+QP) 0 (QPoC)
(2C) o (Qpf) o (XP) 0 (QPéc) = (C) o (xPC) o (QPQpE) o (QPdc)
PrElCel (1) o (xPC) 0 (QP6cC) o (QPAC) = (2C) o (w'C) o (QPA)
TEY (20) o (w'C) 0 (QPAC) = (2C) 0 (QPeCC) o (QPAC) © =™ (1),
Since xC' is an epimorphism, we obtain that
(2C) o (Qp%) o cocany, = AC.
On the other hand, we have
cocany o (2C) o (Qp%) = (“ugP) o (Adc) o (2C) o (Qp%)
— (“1gP) © (xQP) o (QPbc) o (Q0F) "X (xP) o (QP3c) o (Qpf)
L (xP) o (QpP) o (QPpp)
(1;3) (QeDP) o (QDpp) Dop counital OP

(115)
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so we obtain that
cocany! = (zC) o (Qp%) .
2) Similarly we prove that we prove that cocan; := (Pug) o (6pB) : DB — PQ is
an isomorphism with (Dy) o (PppQ) its inverse. In fact we have
(Dy) o (PppQ) o cocany o (Dy) = (Dy) o (°ppQ) o (P,ug) o (0pB) o (Dy)
iy (Dy) o (DP,ug) o (DprB) o (0pB) o (Dy)
5D1eféDcol (Dy) o (DP,ug) o (D5DB) o (ADB) o (Dy)
= (Dy) o (DPu8) o (DépB) o (DDy) o (APPQ)
2 (Dy) o (DPuB) o (DPQy) o (D5pPQ) o (AP PQ)
17
" (Dy) o (DPy) o (D3pPQ) o (A”PQ)
ycoequ (Dy) (DSDPQ) o (ADPQ) Dcor;onad Dy

and since D preserves coequalizers, Dy is an epimorphism, so that we get

(Dy) o (DpPQ) o cocan; = DB.

On the other hand we have
cocan; o (Dy) o (Ppr@Q) = (P
L (Pu) o (PQy) o (6pPQ) o (PprQ)
L (Py) o (P3cQ) o (05Q) &

B) o (5DB) o (Dy) o (DpPQ)
U (Px) 0 (5nPQ) o (PppQ)

" (PCQ) o (p5Q)

Pczom PQ
so that we get
cocany o (Dy) o (PppQ) = PQ.
3) We have
P)o (QPsc) "= (*ugP) o (+QP) o (QPéc)

(x
= ( HQP) (Adc) o (xC) defeocam, cocany o (xC)

so that
(119)

Similarly we have

(P (5pPQ)
2 (Puf) o (5pB) o (Dy)

(xP) o (QPdc) = cocany o (zC) .

117
" (Pug) o (PQy) o (5pPQ)
X Coeam o (Dy)

so that
(120) (Px) o (8 PQ) = cocamy o (Dy).
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4) With notations of Theorem 6.29, we have

x o cocany o (xC') o (xP) o (QPdc)
—zow "E"zow =zxo (QP=Y) = (Ac%) o (2C).
Since xzC' is an epimorphism, we deduce that
x o cocan; = Ae®

and hence
x = (A9 o (cocany) ™.
Similarly, we have

Yy o cocarny o (Dy) (120) yo (PX) o ((SDPQ)

=yo "IN Yo = yo (PPQ) = (PB) o (Dy).
Since Dy is an epimorphism, we deduce that
y o cocan; = e’ B
and hence
y = (¢”B) o (cocany) " .
5) We have that
6c = (“1gP) o (uaQP) o dc 2 (*rgP) o (Adc) o (uaC)
so that
(121) 5c = (*ugP) o (Adc) o (uaC).

Since (AMQP) o (Ad¢) = cocan, is an isomorphism, we will prove that if usC is
a regular monomorphism, so is d¢. In fact, let (C,usC) = Equp,, (v,w) where
v,@ : AC — T. We know that (*ugP) o (Adc) = cocany is an isomorphism with
inverse (zC) o (Qp%) so that we have

v o (cocany) " o 8¢ 200 (cocany) ™' o (“1gP) o (Adc) o (uaC)

cocaniso (uaC) uadequ (uaC)

cocamiso (cocanl)fl o (A,uQP) o (Adc) o (uaC)

2 5o (cocany) ™" o d¢

so that
v o (cocany) ™" 0 6¢ = w o (cocany) " o b¢
le.
vo (zC) o (Qpf) 0dc =wo (zC) o (Qp%) o dc.
Moreover, for every £ : X — QP such that

vo (zC) o (Qpp) 0§ = wo (xC) o (Qpf) o &,
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since (C,usC) = Equgp,, (v, @), there exists a unique functorial morphism & : X —
C such that B
(uaC) 0 & = (2C) o (QpF) 0 €.

Then, by composing to the left with the isomorphism cocan, := (A,uQP) o (Adc) we
get 3

(“pqP) o (Adc) o (uaC) o & = (“pqP) o (Adc) o (zC) o (Qpf) o €
i.e. by (121) we have
(122) Sco€=¢.
Then € : X — C is the unique morphism satisfying condition (122) so that

(C,00) = Equpy, (vo (2C) o (QpF) @ o (zC) o (Qpf))
i.e. also d¢ is a regular monomorphism.

6) We have that

op = (P,ug) o (PQug)odp £ (Pug) o (6pB) o (Dug)
so that
(123) op = (Pug) o (6pB) o (Dug) .

Since (Pug) o (0pB) = cocany is an isomorphism, we will prove that if Dup is
a regular monomorphism, so is dp. In fact, let (D, Dug) = Equp,, (¢,0) where
¢,0 : DB — L. We know that (Pp§) o (6pB) = cocany is an isomorphism with
inverse (Dy) o (PppQ) so that we have

¢ o (cocany) " o 0p (129 ¢ o (cocany) " o (Pug) o (6pB) o (Dup)

UL o (Dug) TE™ 0 o (Dug)
L o (cocamy) " o (Pub) o (5pB) o (Dug)

2, (cocany) " o dp
so that
¢ o (cocamy) ™ 0 dp = 0 o (cocany) " 0 dp
ie.
¢o(Dy)o (PppQ)odp =00 (Dy)o (PppQ)cdp.
Moreover, for every v : Y — P() such that
(o (Dy)o (PppQ) ov=">00(Dy)o (PppQ) o,
since (D, Dug) = Equg,, ((,0), there exists a unique functorial morphism 7: Y —
D such that
(Dup) ov = (Dy) o (DPPQ) ov.
Then, by composing to the left with the isomorphism cocan; := we get
(Pug) o(6pB) o (Dup)ov = (P,ug) o (0pB) o (Dy) o (PprQ) ov
i.e. by (123) we have
(124) 5D oV =v.
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Then 7 : Y — D is the unique morphism satisfying condition (124) so that
(D7 (SD) = Eunun (C © (Dy) © (DpPQ) 79 o (Dy) o (DPPQ)>

i.e. also dp is a regular monomorphism. 0

6.8. Coherds. Following [BV], by formally dualizing definitions of formal dual
structure and herd, the notions of formal codual structure and of coherd are in-
troduced.

DEFINITION 6.31. A formal codual structure on two categories A and B is a sex-
tuple X = (C,D, P,Q,dc,p) where C = (C,A%e%) and D = (D,AP,eP) are
comonads on on A and B respectively and (C’,D,P, Q,éc,éD,ac,aD) is a pref-
ormal codual structure. Moreover (P A — B,Ppp: P— DP,p%: P — PC’) and
(Q B — A% :Q — CQ, ,08 Q- QD) are bicomodule functors; 6¢ : C —
QP,0p : D — PQ are subject to the following conditions: d¢c is C-bicolinear and
dp i1s D-bicolinear

(125) (CpaP) o dc = (Coc) o A and (Qpf) o de = (3cC) o A°

(126) (Ppg) odp = (dpD) o AP and (Dpr) odp = (Ddp) o AP
and the coassociative conditions hold

(127) (0cQ) 0 “pg = (Qdp) 0 pg and (5pP) o Ppp = (Pdc) o p.

DEFINITION 6.32. Consider a formal codual structure X = (C,D, P,Q,d¢,dp) in
the sense of the previous definition. A coherd for X is a copretorsor x : QPQ — Q
ie.

(128) x o (xPQ) = x o (QP)
(129) x o (0cQ) =£°Q
and

(130) X © (Q3p) = Q.

DEFINITION 6.33. A formal codual structure X = (C, D, P, @, 6¢, dp) will be called
reqular whenever (C, D,P,Q,6c,0p,e%, P ) is a regular preformal codual structure.
In this case a coherd for X will be called a regular coherd.

LEMMA 6.34. Let X = (C,D, P,Q,0¢,0p) be a formal codual structure and let x :
QPQ — QQ be a coherd for X. Assume that the underlying functors C' and D reflect
coequalizers. Then x is a reqular coherd.

Proof. Since C and D are comonads, we have (C’ec) o AY = Id¢ and (D€D ) o AP =
Idp. Thus, Ce® and DeP are split epimorphisms and thus epimorphisms. Since C
and D reflect coequalizers, we deduce that also ¢ and P are epimorphisms and
thus (A,e%) = Coequp,, (¢9C, Ce?) and (B,e”) = Coequy,, (D, D), ie. y is
a regular coherd. ([l

PRrOPOSITION 6.35. Let X = (C,D, P,Q,6¢c,6p) be a formal codual structure such
that the lifted functors QP : PB — A and PPC : © A — PB determine an equiva-
lence of categories. Then (QD,D P) and (PC,C Q) are adjunctions.
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Proof. Since (“U,) and (PU,PF) are adjunctions, (*U°QP,” PY“F) = (Q",” P)
and (DUDPC,C QDDF) = (PC,C Q) are also adjunctions. 0

6.9. Coherds and Monads. In this subsection we prove that in the case when
there exist coequalizers in the base categories and all functors occurring in a formal
codual structure preserve them, we establish an equivalence between coherds on
one hand, and monads on the other hand, together with two natural isomorphism
generating a Galois map.

THEOREM 6.36. Let A and B be categories in both of which the coequalizer of any
pair of parallel morphisms exists. Let X = (C,D, P,Q,dc,dp) be a formal codual
structure on A and B. Then we have
(1) If A = (A,ma,uq) is a monad on the category A and (Q,A,uQ CAQ — Q)
is a left A-module functor such that
(i) the functorial morphism cocany := (*pgP) o (Adc) : AC — QP is an
1somorphism
(17) the functorial morphism cocansy := (A[LQD) o (Apg) : AQ — QD is an
1somorphism
then x := “pq o (Ac€Q) o (cocan'Q) : QPQ — Q is a copretorsor and
thus a coherd.
(2) If B = (B,mp,up) is a monad on the category B and (Q7M55 QB — Q) is
a right B-module functor such that
(i) the functorial morphism cocany := (Pug) o (6pB) : DB — PQ is an
isomorphism
(13) the functorial morphism cocang 1= (C,ug) o (CpQB> QB — CQ is an
1somorphism
then x = ug o (QSDB) o (Qcocan; 1) : QPQ — Q is a copretorsor and
thus a coherd.

Proof. Let us prove 1), the other is similar. We have to prove that
X = A,uQ o (AaCQ) o (cocanle)
satisfies (111),(112),(113). We compute
cocany o (maC) = (*ugP) o (Adc) o (maC)
= (*ugP) o (maQP) o (AAdc)

(A,LLQ ass)

= ' (“ugP) o (A'ugP) o (AAsc) = (“pgP) o (Acocan,)
so we obtain
cocany o (maC) = (*pgP) o (Acocan,)

ie.

(131) (maC) o Acocani" = (cocani") o (A,uQP) .
We compute

X © (QPx)
=4ugo (AaCQ) o (cocanle) o (QP%ug)o (QPA&CQ) o (QPcocanle)
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'Q) o (cocan'QPQ)
) o (cocani ' QPQ)
( ) o (cocanlePQ)
(ACcocan;'Q) o (cocani'QPQ)
o (cocan;'QPQ)

o (coccml_lQPQ)

ACcocany lQ

ACcocan;?

o (cocanl_lQ) o(4 poPQ)o (AsCQPQ)

= xo (xPQ).
Note that we have

(cocany) o (uaC) = (*1gP) o (Adc) o (uaC)

= ("uqP) o (uAQP) 0 dc o il oc
so we have
(132) (cocany) o (uaC) = d¢.
Now we compute

Y0 (80Q) = *ug o (A=Q) o (cocan;Q) o (6cQ)
(122 Aug o (A€Q) o (cocani'Q) o (cocaniQ) o (uaCQ)

=450 (AECQ) o (usCQ) = A,UQ o (uaQ) o (5062) (A,U«Q:llnital) (ECQ)

and so we get

x o (6cQ) = (e°Q)..
We have

(A&tCQ) o (cocani' Q) o (Qdp) o cocans

~ (4) o (cooaniQ) o (@) o (D) o (45)
(A Q) o (cocan;'Q) o (AMQPQ) o (AQdp) o (Apg)

= ( e9Q) o (cocani' Q) o (*1oPQ) o (A5cQ) o (A%pg)
= (AQ) o (cocan;'Q) o (cocaniQ) o (A%pg)
— (A=°Q) o (4%q) =" 4Q
Since cocans is an isomorphism, we have that

(133) cocans o (A°Q) o (cocani'Q) o (Qdp) = QD.

Finally we compute

X © (Qdp) = g o (Ac°Q)

D .
PG counital A

o (cocanl_lQ) o (Qdp)
po © (AQ&D) o (Apg) o (AsCQ) o (cocanle) o (Qdp)
— (QP) o (“ugD) o (ApB) o (A=°Q) o (cocan;'Q) o (Qdp)
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— (QgD) o cocan., o (AgCQ) o (cocani'Q) o (QéD) = (Qg )
so that we obtain
0 (Qdp) = (Q€ )
O

THEOREM 6.37. Let A and B be categories in both of which the coequalizer of any
pair of parallel morphisms ezist. Let X = (C,D, P,Q, 0¢,0p) be a reqular formal co-
dual structure on A and B such that the underlying functors C, D, P and (Q preserve
coequalizers, then the existence of the following structures are equivalent:

(a) A coherd x : QPQ — @ in X.

(b) A monad A=(A: A— Ama: AA — Ajuys: A— A), such that the func-
tor A preserves coequalizers, together with a left action A,uQ D AQ — Q,
subject to the following conditions:

(i) The natural transformation cocan, = (*puqP) o (Ad¢c) : AC — QP is
an 1somorphism.

(12) The natural transformation cocany := (AMQD) o (Apg) AQ — QD is
an 1somorphism.

(¢) A monadB = (B:B— B,mp: BB — B,ug: B— B), such that the func-
tor B preserves coequalizers, together wzth a right action ug QB — Q,
subject to the following conditions:

(i) The natural transformation cocan; = (P,ug) o (0pB) : DB — PQ is
an isomorphism.

(13) The natural transformation cocany := (C’ug) o (CpQB) QB — CQ is
an 1somorphism.

Proof. (a) = (b) Under weaker assumptions, the monad A = (A, ma,us) and the
action “/1g have been constructed in Proposition 6.25. Moreover, by Theorem 6.30
1) we already proved that cocan, is an isomorphism with (zC) o (Qp%) its inverse.
Now we prove that (ASCQ) o (cocanle) o(Qdp) is the inverse of cocany. We compute

cocany o (A€ Q) o (cocan; ' Q) o (Qdp)
= ("ugD) o (Apg) o (Ae€Q) o (cocani'Q) o (Qp)
(*naD) o (Apg) © (A°Q) o (2CQ) o (QrHQ) © ()
= ("uaD) o (4pg) o (zQ) o (QPQ) o (QpEQ) © (Qdp)
L (4gD) o (49) 0 (+Q) © (QFn) = (D) o (xQD) o (QPB) o (Qbp)
"2 (xD) o (QPpB)  (Qop) "’ (xD) 0 (QinD) o (QAP)
(113) (QsDD) (QAP) (D comonad) oD

so we obtain
cocany o (Ae€Q) o (cocan;'Q) o (Qdp) = QD
On the other hand, we have

(A9Q) o (cocani'Q) o (Qdp) o cocany
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= (4e°Q) o (cocan; Q) o (Qdp) o (*1gD) o (Apg)
= (A2°Q) o (cocan;' Q) o (*uPQ) o (AQSp) o (Aph)

"2 (4=°Q) o (cocan; Q) o (*noPQ) © (A5cQ) © (4%p0)
= (A°Q) o (cocan;'Q) o (cocaniQ) o (A%pg)

CpQ counital

= (A&?CQ) o (ACpQ) = AQ
so we obtain
cocany ™t = (Ae°Q) o (cocan; Q) o (Qdp).
(b) = (a) Follows from Theorem 6.36. (a) < (c) follows by similar computations.
U

6.10. Coherds and distributive laws. The following result is a reformulation of
Theorem 2.16 in [BV] in our categorical setting.

PROPOSITION 6.38. Let A and B be categories with equalizers and let x : QPQ —
Q be a regular coherd for X = (C,D, P,Q,c,0p) where the underlying functors
P:A—-B Q:B—- A C:A— Aand D : B — B preserve coequalizers.
Let A = (A,ma,us) and B = (B, mp,up) be the associated monads constructed in
Proposition 6.25 and in Proposition 6.26. Then

1) There exists a mized distributive law between the monad A and the comonad

C, A: AC — CA such that
Ao (zC)=X=(Cx)o (CpQP) o (xP) o (QPdc) .

2) There exists an opposite mized distributive law between the monad B and the
comonad D, I' : DB — BD such that

['o(Dy)=~=(yD)o (Ppg) o (Px)o (0pPQ).
Proof. 1) Consider the functorial morphism given by
C
orc ¢ opopr X op % cop % oA

A= (Czx)o (CpQP) o (xP)o (QPéc)
Recall that w! = (xP) o (QPdc) and w™ = QPe® : QPC — QP and let us prove
that

Ao (w'C) ZXo (w"C)
that is
(Cx) o (“poP) o (xP) o (QPdc) o (xPC) 0 (QP5cC)
= (Cz) o (°poP) o (xP) 0 (QPéo) o (QPCC) .
Let us compute
(Cz) o (“pgP) o (xP) o (QPdc) o (xPC) o (QPIC)
X (Cx)o (CpQP) o (xP)o (xPQP) o (QPQPdic) o (QPcC)

AW () o (CpoP) o (xP) 0 (QPXP) o (QP5-QP) o (QPCS¢)
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<0x> (“paP) o (xP) o (QP°QP) o (QPC5c)
= (C2) 0 (“pgP) © (XP) 0 (QPdc) o (QPECC)

Since (AC, xC') = Coequy,, (wlC’, w”C’) ,by the universal property of coequalizers,
there exists a unique functorial morphism A : AC' — C'A such that

Ao (zC)=X=(Cx)o (CpQP) o (xP)o (QPdc).
We want to prove that A is a mixed distributive law. We compute
(Cmy) o (AA) o (AA) o (z2C) = (Cmy) o (AA) o (AN) o (zAC) o (QPxC)
2 (Cma) o (AA) o (C4) 0 (QPA) o (QPC)
aer (Cma)o (CzA)o (CpQPA) o (xPA)o (QPécA)o (QPCx)
o (QP%puP) o (QPXP) o (QPQPdc)
% (Cma) o (CxA) o (poPA) o (xPA) o (QPQPx) o (QPScQP)
o (QPpgP) o (QPxP) o (QPQPI:)
X (Cmy) o (CzA) o (“poPA) o (QPz) o (YPQP) o (QPScQP)
o (QP%puP) o (QPXP) o (QPQPdc)
22 (Cma) o (CxA) o (CQPz) o (CpgPQP) o (xPQP) o (QP3cQP)
o (QPpgP) o (QPxP) o (QPQPS:)
" (Cma) o (Cax)o (“pePQP) o (xPQP) o (QPQIpP)
(QPPSP) (QPxP) o (QPQPdc)
) (Ca) o (CxP) o (CpoPQP) o (xPQP) o (QPQSpP)

x(l

o (QPpgP) o (QPxP) o (QPQPc)
£ (Cz) o (CxP) o (“poPQP) o (Q5pP) o (xDP) o (QPp5P) o (QPxP)
0 (QPQPic)
£ (Cx) o (CxP) 0 (CQIpP) o (“pgDP) o (xDP) o (QPpLP) o (QPxP)
o (QPQPdc)
2 (Cx) 0 (CQEPP) o (CpoDP) o (xDP) o (QPpLP) o (QPP)
o (QPQPi¢)

£ (Cx) o (“pgP) o (QePP) o (xDP) o (QPp5P) o (QPXP) o (QPQPSc)
% (Cx) o (“pgP) o (XP) o (QPQ="P) o (QPpgP) o (QPXP) o (QPQPdc)
@E (O) o (CpgP) o (XP) © (QPXP) o (QPQPdC)
"= (Cx) o (“pgP) o (XP) o (xPQP) o (QPQPS)
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= (Cx) o (“pgP) o (xP) o (QPdc) o (xPC)
defr A o (xC) o (xPC) Ao (maC) o (zxC)
so that we get
(Cmay) o (AA) o (AA) o (z2C) = Ao (muC) o (zzC)
and since zx(C' is an epimorphism we obtain
(Cma) o (AA)o (AN) = Ao (maC).
Let now compute
(CA) o (AC) o (AA) o (zC) = (CA) o (AC) o (zCC) o (QPAC)
B (ON) o (C2C) 0 (CpoPC) o (xPC) 0 (QPS:C) o (QPAC)
X (CCx) 0 (CCpgP) o (CxP) o (CQP) o (poPC) o (xPC) o (QP:C)
o (QPAC)
(CCx)o (C'CpQP) o (CxP)o (CpQPQP) o (QPic) o (xPC)
° (QPQp%) © (QPdc)
= (CCx) o (C%poP) o (CxP) o (“poPQP) o (QPdc) o (Qpp) © (xP) o (RPdc)
£ (CCx) 0 (CCpyP) o (CXP) 0 (CQPSG) o (CQpE) o (CpoP) o (xP) o (QPdc)
(120 (CCx)o (CchP) o (CxP)o(CQIpP)o (CQDpp) o (CpQP) o (xP)
o (QPdc)
" (CCm) 0 (COpP) o (CQ=PP) o (CQPpp) o (CpP) o (XP) o (QPbC)
Qe (CCx) o (C%poP) o (CpoP) o (xP) o (QPSc)
GBI (CCa) 0 (AQP) o (CpgP) © (XP) 0 (QPc)
25 (ACA) 0 (Cx) 0 (CpoP) o (xP) 0 (QPdc) L (ACA) 0 Ao (2C)
so that we get
(CA)o (AC) o (AAC) o(xC) = (ACA) oAo (zC)
and since zC' is an epimorphism we deduce that
(CA) o (AC) o (AA) = (A“A) o A.

%po ,(125)

Now we compute
Ao (uaC) o (°C) " Ao (2C) 0 (50C)
= (Cx) o (“pgP) o (xP) o (QPéc) o (6cC)
X (Cz)o (“pgP) o (xP) 0 (6cQP) o (Cdc)
"2 (Cx) 0 (CpoP) o (°QP) o (Cic) = (Cx) o (CpoP) 0 b¢: o (£°C)
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"2 (Cw) 0 (Cde) 0 A0 (£90) "2 (Cua) 0 (C=°) 0 A% 0 (6C)

Ceomonad (Cua) o ( aCC)
and since €“C' is an epimorphism we get that
Ao (uaC) = (Cug) .
Finally we compute
(e€A) o Ao (2C) “L (CA) o (C) o (pgP) o (xP) o (QPc)
< 20 (£°QP) o (°poP) o (xP) o (QPdc)

(102)

e 1 o (xP) 0 (QPc) E miy o (xx) 0 (QPSC)
Z a0 (zA) o (QPz) o (QP3c) "L ma o (zA) o (QPus) o (QPEC)
Z mao (Aug) oz o (QPeC) *UMMT (49 o (20)
and since zC' is an epimorphism we get that
(e9A) o A = Ac”.
2) Consider the functorial morphism given by
DPQ 2" PoPQ X PQ 4 POD Y2 BD
7= (D)o (Ppg) o (Px) o (5pPQ).
Recall that 2! = (P) o (5pPQ) and 2" = ePPQ : DPQ — PQ and let us compute
vo (Dz) £ 50 (D2")
that is
(yD) o (Ppg) o (PX) o (6pPQ) o (DPx) o (DpPQ)
< (yD) o (PpB) o (Px) o (6pPQ) o (DeP PQ) .
Let us compute
(yD) o (Ppg) o (Px) o (6pPQ) o (DPx) o (DépPQ)
2 (yD) o (PpB) o (PX) o (PQPX) o (3pPQPQ) o (DipPQ)
LY (yD) o (Ppg) o (PX) o (PXPQ) o (PQIpPQ) o (5pDPQ)
"L (yD) o (PpB) o (Px) o (PQePPQ) o (55 DPQ)
2 (yD) o (PpB) o (PX) o (6pPQ) o (DP PQ) .

Since (DB, Dy) = Coequp,, (Dzl7Dz7"), there exists a functorial morphism I :
DB — BD such that

['o(Dy) =~ =(yD)o (Ppg) o (Px)o (6pPQ).
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We want to prove that I' is an opposite mixed distributive law. We compute

(mpD) o (BT) o (I'B) o (Dyy) £ (mpD) o (BI') o (I'B) o (DyB) o (DPQy)
L (mpD) o (BT) o (yDB) o (PpSB) o (PxB) o (55 PQB) o (DPQy)
2 (mpD) o (BT) o (yDB) o (PphB) o (PxB) o (PQPQy) o (5pPQPQ)
X (mpD) o (BT) o (yDB) o (Pp5B) o (PQy) o (PXxPQ) o (3pPQPQ)

(mpD) o (BT) o (yDB) o (PQDy) o (PpoPQ) o (PxPQ) o (0pPQPQ)
(mpD) o (BI) o (BDy) o (yDPQ) o (PpoPQ) o (PxPQ) o (0pPQPQ)
(mpD) o (ByD) o (BPpg) o (BPx)o (BépPQ)o (yDPQ) o (PpgpQ)
o (PxPQ)o (5pPQPQ)
£ (mgD) o (yDPQ) o (PQyD) o (PQP,OS) o (PQPx) o (PQipPQ) o (Ppé)PQ)
o (PxPQ)o (5pPQPQ)
= (mpD) o (yyD) o (PQPpg) o (PQPX) o (PQ3pPQ) o (PpgPQ)
o (PxPQ)o (6pPQPQ)
(yD) o (PxD) o (PQPpg) o (PQPX) o (PQipPQ) o (PpgPQ)
o (PxPQ) o (6pPQPQ)
(yD) o (PxD) o (PQPpg) o (PQPx) o (P6cQPQ) o (P°poPQ)
o (PxPQ) o (0pPQPQ)
% (yD) o (PxD) o (P5cQD) o (PCpg) o (PCX) o (P°puPQ)
o (PxPQ) o (6pPQPQ)
"2 (yD) o (PQD) o (PCpR) o (PCx) o (P poPQ)
o (PxPQ) o (6pPQPQ)
< (yD) o (PpB) o (Px) o (Pe“QPQ) o (P€poPQ) o (PXPQ) o (6pPQPQ)
©emt (D) o (PpB) o (Px) o (PxPQ) o (3pPQPQ)
(111) (yD) o (Ppg) o (Px) o (PQPx)o (6pPQPQ)
2 (yD) o (Pp8) © (Px) o (0pPQ) o (DPX)

Do (Dy)o (DPX) "L T o (Dmp) o (Dyy)

A}
= ot

[oW
@
f

~

(109)

(127)

and since Dyy is an epimorphism we deduce that
(mpD) o (BI')o(I'B) =T o (Dmg).

Let us compute
(D) o (D) o (APB) o (Dy) & (I'D) o (DT') o (DDy) o (AP PQ)
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L (I'D) o (DyD) o (DPpB) o (DPX) o (D5, PQ) o (AP PQ)
< (yDD) o (PpBD) o (PXD) o (55 PQD) o (DPpB) o (DPX)
o (DépPQ) o (AP PQ)
2 (yDD) o (PpBD) o (PxD) o (PQPpg) o (PQPx) © (PQipPQ)
o (6pDPQ) o (AP PQ)
(yDD) o (PpgD) o (PxD) o (PQPpg) o (PQPX) o (PQIpPQ)
o (PpoPQ) o (6pPQ)
") (yDD) o (PpBD) o (PXD) o (PQPpY) o (PQPY) o (PicQPQ)
o (P°poPQ) o (6pPQ)
% (yDD) o (Pp5D) o (PxD) o (P6cQD) o (PCpB) o (PCx) o (P°poPQ)
o (6pPQ)
" (yDD) o (Pp3D) o (PCQD) o (PCpB) o (PC) o (PCpoPQ)
o (6pPQ)
< (yDD) o (PpiD) o (Pp) o (Px) o (PECQPQ) o (PCpuPQ) o (55PQ)
Qeomti (o, DD) o (PpED) o (PpB) o (PX) o (6pPQ)
“EM (yDD) o (PQAP) o (PpB) o (Px) o (6pPQ)
L (BAP) o (yD) o (PpB) o (PX) 0 (0pPQ) ‘= (BAP) oT o (Dy)

(126)

and since Dy is an epimorphism we get that
(D)o (D)o (APB) = (BAP)oT
Now we compute

I'o (Dug) o (DP) "2 o (Dy) o (Ddp)
"= (yD) o (Ppg) o (Px) o (5pPQ) o (Ddp)
2 (yD) o (Ppg) o (PX) © (PQdp) o (6pD)

"2 (yD) o (Ppg) o (PQ=") o (3 D)
pé)(yD)o(PQDs) o (PpgD) o (6pD)
9 (yD) o (PQDEP) o (5pDD) o (AP D)

% (yD) o (6pD) o (DD=P) o (APD) & (yD) o (5pD) 0 AP o (DP)

(L10) (upD) o (e”D) o AP o (De") Dconzlonad (upD) o (De®)
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and since De? is an epimorphism we deduce that
['o (Dug) =ugD.

Finally we compute
defry

(BeP) oT o (Dy) =" (Be") o (yD) o (Ppg) o (Px) o (6pPQ)
L yo (PQeP) o (PpB) o (Px) o (5pPQ) “=""y o (Py) o (5pPQ)
(1) y o (eDPQ) = (EDB) o (Dy)
and since Dy is an epimorphism we get that
(BeP?) o' =£”B.
OJ

6.11. Coherds and coGalois functors. We keep the details of this subsection
because the coGalois case is not as common as the Galois notion in the literature.

LEMMA 6.39. Let X = (C,D, P,Q, ¢, 0p) be a formal codual structure where @Q :
B— A P:A— Band C = (C, Ac,é?c) is a comonad on the category A, D =
(D, AP, gD) is a comonad on B. Assume that both A and B have equalizers and that
C,QD preserve them. Then, dc : C — QP induces a morphism 6¢ : U — QP in
CA so that there exists a morphism ©65 : CA — CQPC such that

(134) CUCSE = o6
Moreover 65°F = §¢ : “UCF = C — QPCCF = QP.
Proof. Let us consider the following diagram with notations of Proposition 4.29

CU’YC ACCU

Cu CtU CCtU
CCUVC
58 \LzScCU lécCCU
e Q. c QU C
QP QP-U T QPC-U

Since () D preserves equalizers, by Lemma 4.18, also the functor () preserves equaliz-
ers. Since (65U )o(“U~7) equalizes the pair <ngCU, QP(CUVC) and (QPY, Q) =
Equgp,, <ngCU ,QPtU 'yC> , by the universal property of the equalizer, there exists
a unique morphism 0% : ©U — QP such that

(135) (Q7) o 66 = (6c°U) o (CUAC) .

We now want to prove that 6§ : U — QP = CUYQPY is a morphism between
left C-comodule functors which satisfies
(€og) o (FUNT) = (“paP) o dc.
We have
(CQiF) o (C88) o (FUA°) "2 (Co°U) o (C°UAC) o (FUA°)

VL (©065U) 0 (APCU) o ((UAC) ) (CpgPEU) o (3°U) o (CUAC)
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(135) ¢ pC Py _ sc e P\ _(C . pCy\ . sC
=" (“poP U)o (Q") 0 dg = (CQL") o (“pgP") o dg

and since C, Q) preserve equalizers, CQ:F is a monomorphism, so that we get
(Co8) o (CUAY) = (CpgPC) o 6¢.

Hence, by Lemma 4.28, there exists a unique morphism there exists a unique mor-
phism “6& : €A — QP such that

CUss = oS,
Moreover, note that by definition of 6§ we have

(Q7) 006 = (6c°U) o (CUA°)
so that by applying it to ©F we get
(QUPCF) o (6¢°F) = (0c“UCF) o (“UA““F).

Hence, by Proposition 4.32, we obtain that

(QpB) o (85°F) = (6:C) 0 A° "2 (Qp) o b¢c.
Since ng is a monomorphism, we deduce that §§CF = §c. O

PROPOSITION 6.40. Let A and B be categories with coequalizers and let x : QPQ) —
Q be a regular coherd for a formal codual structure X = (C, D, P,Q, é¢,dp) where the
underlying functors P: A — B, Q : B— A and C : A — A preserve coequalizers.
Let

o A= (A ,mu,ua) be the monad on the category A constructed in Proposition
6.25;

. (Q,AMQ) be the left A-module functor constructed in Proposition 6.25;

e “Q: B — CA be the functor defined in Lemma 4.28;

o A: AC — CA be the mized distributive law between the comonad C and the
monad A constructed in Proposition 6.38;

o A be the lifting of A on the category ©A constructed in Theorem 5.7.

Then there exists a functorial morphism Z,ucQ : ECQ — €Q such that
CUKMCQ = AMQ.
Moreover, (CQ, g,ucQ) 15 a left A-module functor.

Proof. Since x : QPQ — (@ is a regular coherd for X = (C,D, P,Q,dc,dp), by
Proposition 6.38 the mixed distributive law A : AC' — C'A is uniquely defined by

Ao (zC) = (Cz) o (“puP) o (xP) o (QPdc).
Now we prove that 4/ yields a functorial morphism 4c. In fact we have
(C%1g) © (AQ) 0 (A%pq) o (2Q) = (C™pg) © (AQ) © (zCQ) o (QPC pg)
E(CMg) 0 (C2Q) o (PpgPQ) © (XPQ) 0 (QPcQ) o (P pg)

(101),(127)

EH(0x) 0 (CpgPQ) 0 (XPQ) 0 (QPQID) © (QPpY)
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X (Cx) o (“poPQ) o (Qdp) o (XD) o (QPpY)

re (Cx) o (CQip) o (C,OQD) o (xD)o (Qppg)
(120) (C’Q&D) o (CPQD) o (XD) o (Qppg)
L2 %40 (QP) 0 (xD) 0 (QPPB) £ Cpg o x 0 (QPQEP) o (QPE)

Qcomfun (101)
=" C%oox = “pgotugo (2Q)

and since by construction x() is an epimorphism we get that
(CANQ) o (AQ) o (ACPQ) =“pgo ANQ-
By Lemma 5.5 we know that
(AQ) o (A%pq) =“paq
so that
(Cug) © “pag = (Cg) o (AQ) 0 (A%pq) = “pg o “1uq.
Hence there exists a morphism AucQ : ECQ — @ such that

(CUA/JJCQ = A/JJQ.

By the associativity and unitality properties of 4uq, we deduce that gucQ is also

associative and unital so that (CQ, A,ucQ) is a left A-module functor. O

LEMMA 6.41. Let X = (C,D, P,Q,6¢c,dp) be a formal codual structure with under-
lying functors P: A—B,Q:B—- A, C: A— Aand D : B — B. Assume that A
and B are categories with equalizers and C, QD preserves them. Assume that

o A= (A ,ma,ua) is a monad on the category A such that A preserves equal-
12ers
. (Q,AMQ) s a left A-module functor

o A= <Z, m;,u;) is a lifting of the monad of A to the category €A
. (CQ, AMCQ> s a left A-module functor where CU’ZucQ =pg.
Consider the functorial morphisms
cocan; = (AMQP) o (Adc) : AC — QP
and
“cocan® = <A,ucQPC> o (Z%g) c A “QPC.

Then cocan, is an isomorphism if and only if ©cocan®

Proof. Let us consider cocany := (4ugP) o (Adc) : AC — QP. Let (QP,:9) be
the equalizer described in Proposition 4.29. Since A,LLQ is a functorial morphism, we
have that

1 an isomorphism.

(@) o ("uoP?) = ("noPU) o (AQLY).
Now, by Lemma 6.39, §¢ induces a morphism §§ : ©U — QP such that
(QLP) 008 = (5CCU) o (CU”yC) .
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Then, we can consider the morphism
(136) cocan® = ("ugP) o (AsE) + AU = CUA — QPC =CUucQpe.
Then we have

(QuF) o cocan® = (QuF) o (YugPC) o (ASE) 9 (ApgPCU) o (AQL) o (A6S)

(135) (Yo PCU) o (A0c°U) o (A°UAC) = (cocan,“U) o (A°U~)
le.
(137) (Qi”) o cocan® = (cocan,“U) o (AU~ .
Now, by assumption we have B
CrrA jieg = Ag
so that B
CUA,ucQPC = Ao PC.
Moreover, by Lemma 6.39, there exists a morphism “6c: €4 — “QPC such that
“UCSE = o6
Since A is a lifting of the monad A, by Theorem 5.7 we have a mixed distributive
law ® : AC' — C'A so that we can apply Proposition 5.6 and we get that
ASS = ACUCSE = CUACSS

where 2050: A— AVCQPC is a functorial morphism. Then we can consider the
morphism

“cocan® = (’Z,ucQPC> o (Av058> CA o “QPC
and we get that
CUCcocan® = (CU‘K/LCQPC> o (CUXC(Sg)
= (AMQPC) o (AUCSE) = (AMQPC) o (AS§) = cocan®.
We compute
(cocanlCCU) e (AACCU) = (AuQPCCU) e (A(SCC’CU) o (AACCU)
(125) (A,LLQPCCU) o (AngCU) o (AéCCU)
L (QPEEU) o ("uePCU) o (A6c"U) = (QpEEU) o (cocan,“U)
so that we get
(138) (cocan;CCU) o (AA°CU) = (QpSEU) o (cocan:“U) .

Let us consider the following commutative diagram

ACU~C AACCY
0—— AU — ACU ACCU
J/ J{ ACCU~“ i
cocan® cocany Cu cocani cCu
QLP ngCU
0—> QPC > QPCU QPCCU

QPCUA
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Now, since cocany : AC' — QP is a functorial morphism and by formula (138), the
right square serially commutes. By formula (137) also the left square commutes.
Moreover, by definition, ¢© and ©U~% are monomorphisms. Since QD preserves
equalizers, by Lemma 4.18 also () preserves equalizers. Since C, () preserve equaliz-
ers, Qu”” and AU~ are also monomorphisms. Then, if cocan, U is an isomorphism,
also cocan® is an isomorphism. Since CU%cocan® = cocan®, by 4.17, also ©cocan®
is an isomorphism.
Conversely, assume that “cocan® is an isomorphism. Then also

cocan® = “U%cocan® is an isomorphism. Then we have

CUCcocan”CF = cocan®“F = (A,LLQPCCF> o (A(SgCF)
Pro4.32,:Lem6.39 (

C

ApgP) o (Adc) = cocany
so that also cocan; is an isomorphism. O
6.12. The cotame case. The following subsection is presented without proofs,

which can be obtained as the dual versions of results of the tame case (see Subsection
6.6).

DEFINITION 6.42. A formal codual structure X = (C,D, P,Q,d¢,6dp) is called a
coMorita context on the categories A and B if it satisfies also the balanced conditions

(139) (PG P) o 6c = (Q"pp) 0 6c and (pEQ) 0 dp = (P pg) o op.

LEMMA 6.43. Let X = (C,D, P,Q,0¢,6p) be a coMorita context on the categories A
and B and assume that C, D, P, () preserve equalizers. Hence, there exist functorial
morphisms

e OP50C : 1de 4y — “QPPPC such that

(140) (CUCD(SgC — Dagc

where PSEC is uniquely determined by (QDLDP) oP68% = (P6ECU) o (CUA7)

and
(141) (:9PP) o PSE =4,
o DCSED  Tdog — PPCECQP such that
(142) D{yDCGED — CCD

where 5GP is uniquely determined by (PCLCQ) 0@6GP = (Co5PU) o (PUAP)
and
(143) (LFCQ) 0965 =46,

DEFINITIONS 6.44. Let X = (C,D, P, @, dc,0p) be a coMorita context. We will say
that X is cotame if the lifted functorial morphisms “P62¢ : Ide 4 — “QPPPY and
PESED  Idog — PPYCQP are isomorphisms so that the lifted functors QP : B —
€A and PP : €A — PB yield a category equivalence. In this case, if y : QPQ — @
is a coherd for X, we will say that x is a cotame coherd.
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PROPOSITION 6.45. Let X = (C,D, P,Q,dc,0p) be a cotame coMorita context.
Then unit and counit of the adjunction (DPC, CQD) are given by

nopecgry = “P6EC and e¢ppecgpy = (DC(;gD)*l ° (Dpc (CD(SgC)*l CQD> .
(PCoGPPPCCQP) so that
Npcce = (CQnyDDPC> o CD(;gC and €pecg) = 6D o <ID>U (DC5gD)_1 DF) o

(]D)UDPC (CD5CDC) -1 COPPR) o (DUDC(;gDDPCCQDDF) '

COROLLARY 6.46. Let X = (C,D, P,Q,dc,p) be a cotame coMorita context. As-
sume that the functors A, B, P, Q) preserve equalizers. Then the units of the adjunc-
tions (PC,CQ) and (QD,DP) are gwen by €pc cg) = “s& and €(QP,pp) = bsb.

LEMMA 6.47. Let X = (C,D, P,Q,d¢,0p) be a formal codual structure where the
underlying functors are C : A — A, D : B —- B, P: A — Band Q : B —
A. Assume that both categories A and B have equalizers and the functors C, QD
preserve them. Assume that

o A= (A my,ua) is a monad on the category A such that A preserves equal-
izers
o A= (A,mg,Ug) is a lifting of the monad A to the category ©A

° (CQ,KMCQ) 15 a left A-module functor
o X is a cotame coMorita context.

C

Then cocan; is an isomorphism if and only if ©cocan® is an isomorphism if and

only if Q is a left A-coGalois functor.

The following Theorem is a formulation, in pure categorical terms, for the coherd
version of [BV, Theorem 2.18].

THEOREM 6.48. Let X = (C,D, P,Q,0¢,0p) be a regular cotame coMorita context.
Assume that

e both categories A and B have equalizers and coequalizers,
e the functors C' and D preserve coequalizers,
e the functors C, D, P, () preserve equalizers.

Then the existence of the following structures are equivalent:

(a) A coherd x : QPQ — Q for X

(b) A monad A = (A,ma,us) on the category A such that the functor A pre-
serves coequalizers and a mized distributive law A : AC' — C'A such that “Q
is a coGalois module functor over A (where A is the lifting of A)

(¢) A monad B = (B, mp,up) on the category B such that the functor B pre-
serves coequalizers and an opposite mized distributive law I' : DB — BD
such that PP is a coGalois module functor over B (where B is the lifting of
B).
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7. HERDS AND COHERDS

7.1. Constructing the functor Q. Our next task is to construct a D-C-bicomodule

functor (). Such a functor appears in [BM, Section 5|, but we give here new nota-
tions. For the details of the proofs, see the dual results in the following.

PROPOSITION 7.1. In the setting of Theorem 6.5, we define functors Q : A — B via
the equalizer

(61 P)o(Pi)

0—=pC BPQP

(67 P)o(Pi)
Then there ezists a unique functorial morphism Ky : Q — DP such that
(144) (Pi)ogq = (jP) oy
Moreover
(@.r0) = Edqup,, ((Pw') o (jP), (Pu") o (jP)).
The functor Q can be equipped with the structure of a D-C-bicomodule functor
(@, Dp@ p%) where ,0% and Dpa are uniquely determined by

(145) 4C) o = (PA%) o
and
(146) (Dry) o Dpé = (APP) o ky.

PROPOSITION 7.2. In the setting of Theorem 6.5 and Proposition 7.1, there exist
two functorial morphisms ¢ : C'— QQ and dp : D — QQ where ¢ is C-bicolinear
and dp is D-bicolinear and they fulfill

(147) (Qq) 0 b = (iC) 0 A©
and
(148) (kpQ) 0 6p = (Dj) o AP,

Moreover the coassociative conditions hold, that is
(6cQ) 0 “pg = (Qdp) o ,08 and (0pQ) o Dp@ = (Qdc) o p%
7.2. From herds to coherds.

7.3. Given an herd 7 : Q — QPQ in a formal dual structure M = (A, B, P, Q, o4, 0B,
our purpose is to build the formal codual structure X = (C, D, Q, @, ¢, dp) and then

a coherd y : QQQ — Q in X.

THEOREM 7.4. Let A and B be categories with equalizers and let P : A — B,
Q:B—> A A: A— Aand B : B — B be functors. Assume that all the
functors P,QQ,A and B preserve equalizers. Let uy : A — A and ug : B — B
be functorial monomorphisms and assume that (A, us) = Equp,, (uaA, Aua) and
(B,up) = Equg,, (upB, Bug).

Let 7 : QQ — QPQ be a functorial morphism such that

(QPT)oT = (TPQ)oT
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Let 0B : PQ — B be a functorial morphism such that
(Qo") o1 =Qup
and let 04 : QP — A be a functorial morphism such that
(01Q) o T = u4Q.
Then there is a formal codual structure X = (C, D, Q, Q, d¢, 6p).

Proof. In view of Theorem 6.5 and Propositions 7.1, 7.2 a formal codual structure
X=(C,D,Q,Q,0c,dp) has been constructed. O

THEOREM 7.5. Let A and B be categories with equalizers and let

M = (A,B,P,Q,0%, 0P) be a reqular formal dual structure where P : A — B,
Q:B—- A A: A— Aand B : B — B are functors that preserve equalizers.
Let 7 : Q — QPQ be a pretorsor. Then there is a formal codual structure X =

(C,D,Q,Q,5¢,0p). Define x : QQQ — Q by setting
X = g o (*roB) o (AQa®) o (' QPQ) o (QPiQ) o (QqQ) .
Then x is a coherd in X.

Proof. By Theorem 7.4 X = (C,DD,Q,Q,6¢c,dp) is a formal codual structure. To
show that y is a coherd in X, we have to prove that it satisfies the following condi-

tions.
1) Coassociativity, in the sense that y o (xQQ) = x o (QQx) . Let us compute

x o (QQx)
= g o (*ugB) o (AQo") o (c*QPQ) o (QPiQ) o (Q4Q) © (QQx)
L 5o (*1gB) o (AQc®) o (¢4QPQ) o (QPIQ) o (QPCX) © (QqQQQ)
- 1B o (MugB) o (AQa") o (7QPQ) o (QPQPY) o (QPIQQQ) o (Q4QQQ)

9 15 (QoF) o (QPY) o (*uePQAQ) o (¢4QPQRQ) o (QPIGRQ) o (QaQTQ)
2 g0 (0°Q) 0 (QPx) o ("1oPQQQ) o (0" QPQQAQ) © (RPIQQQ) o (QQQQ)

g o (Ax) o (07QQQ) o ("1 PRAQ)
=g o (Auf) o (A%1gB) o (AAQc®) o (As*QPQ) o (AQPiIQ) o (AQqQ)
o (*QQQ) © ("1 PRAQ)
W g o (A4q) o (AAB) o (A7 QB) o (AQPQa”) o (AQPIQ) 0 (AQqQ)
o (*QQQ) © ("1 PRAQ)
ML g 0 (maQ) o (AAuB) o (AT'QB) o (AQPQ0”) o (AQPIQ) o (AQqQ)
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mAA

0 (7'QQQ) © ("1 PQQQ)

U Aug o (ApB) o (maQB) o [(AcAQB) o (AQPQo") o (AQPiIQ) o (AQqQ)]
0 (07QQQ) © (*1PQQQ)
YL 4G o (ngB) o (maQB) o [(Ar"QB) o (AQPQ0”) o (AQPIQ) © (AQQ)]
o (e"QQQ) o ("1ePQQQ)
L 1o (YgB) o [(AMgB) o (A'QB) o (AQPQG”) o (AQPIQ) o (AQeQ)
0 (07QQQ) ° (*1ePQQQ)
8o (MuoB) o [(A4ugB) o (AcQB) o (AQPQ0”) o (AQPIQ) o (AQqQ)]
o (maQQQ) o (4"QQQ)
g o (MuB) 0 (maQB) o [(AA%ugB) o (AAT"QB) o (AAQPQ0”) o (AAQPIQ)
(A4QqQ)] o (40" QQQ)
LB o (40B) o (AdugB) o [((AAYoB) o (AAGAQB) o (AAQPQa®)
o (AAQPIQ) o (AAQqQ)] o (As*QQQ)
Qis a bim Ag o (AuB) o (A%pgB) o (AA g B) o (AAGAQB) o (AAQPQo®)
(AAQPIQ) o (AAQqQ) o (Ac*QQQ)
WE g o (A'g) o (Adug) o (AAYuGB) o (AA0'QB) o (AAQPQo”)
0 (AAQPIQ) o (AAQqQ) o (Ao*QQQ)
g 0 (AMg) o (AAuE) o (AAUEB) o (AAQo® B) o (AAQPQa®)
o (AAQPIQ) o (AAQqQ) o (Ao*QQQ)

z g o (AAMQ

) o (40Q) o (AQPug) o (AQPugB) o (AQPQo”B)
(AQPQPQo") o (AQPQPiQ) o (AQPQqQ)
B (@]

(Augd) o (AQa®) o (AQPuG) o (AQPuGB) o (AQPQo”B)
o (AQPQPQo") o (AQPQPIQ) o (AQPQqQ)

OELMM L Bo (YugB) o (AQ0®) o (AQPuE) o (AQPuEB) o (AQPQo”B)

o (AQPQPQo") o (AQPQPIQ) o (AQPQqQ)

H@SS ,ugo (A,uQB) o (AQO’B) o (AQP,LLS) )
(81)

[(AQPQmp) o (AQPQos"B)]
(AQPQPQ0?) o (AQPQPIQ) o (AQPQqQ)
pgo (“rgB) o (AQo”) o (AQPuG) o (AQPQa”) o (AQPQPuS)

o (AQPQPQo") o (AQPQPIQ) o (AQPQqQ)



pg o [(Qo7) o (QPug)] © (QPQo”) o (QPQPpg)
o (QPQPiQ) o (QPQqQ) o (*11qPQQQ)
18 o (Qmp) o (QoPB) o (QPQs”) o (QPQPUE) o (QPQPQs”)
o (QPQPiQ) o (QPQqQ) o ("11qPQQQ)
= ug o (Qmp)o (QBo”) o (QBPug) o

o (QPQPQI")

(QBPQo") o (QBPIQ) o (QBgQ)

0 (QoQQ) © (*1ePQAQ)
"L o (uEB) o (QBs") o (QBPuE) o (QBPQo”) o (QBPIQ) o (QB4Q)
0 (Qo7QQ) o (*1ePQAQ)

2 180 (QoP) o (QPuB) o (QPQ0®) o (QPIQ) o (Q4Q) o (15QQ)
0 (Q0"QQ) o (*1ePQTQ)
9B o (Q0P) 0 (QPUE) o (QPQ”) o (QPIQ) o (Q4Q) o (uEQQ)

o ("1gBQQ) © (AQr"QQ)
450 (67Q) o (QPuE) o (QPQ0P) 0 (QPIQ) 0 (Q4Q) o (1EQQ)
o ("1eBQQ) © (AQr"QQ)
= g0 (Auf) © (4Q0”) o (- QPQ) © (QPIQ) © (QaQ) © (n5QQ)
o ("1eBQQ) © (AQr"QQ)
CREM B o (YugB) o (AQo”) o (04QPQ) o (QPIQ) o (Q4Q) © (15QQ)
o ("1eBQQ) © (4Q0"QQ)
and thus we get
xo (QQx) =
e © (Ax) 0 (1QQQ) © (*1PQAQ) © (r*QPQQQ) ° (QPIQAQ)
0 (Q9QQQ)

— 45 o (“1gB) o (AQo®) o (" QPQ) o (QPiQ) o (QqQ) o (u5AQ)
o (*1eBQQ) 0 (AQ0”QQ) o (¢1QPQQQ) © (QPIQQQ) o (QuQQQ)
=x° (xQQ)
) Counitality, in the sense that y o (Qdp) = QP and y o (6cQ) = £“Q. We have
X © (Qdp) =
=g ("1gB) o (AQa") o (+1QPQ
(144)

Q) © (QPiQ) o (QqQ) © (Qdp)
= g ("ueB) 0 (AQo") o ("QPQ)
)

0 (QiPQ) o (QKyQ) o (Qdp)
AQPQ) o (QiPQ) o (QDj) o (QAP)

"L 8o (pgB) o (AQ0®) o (o

131
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= 15 o (YugB) o (AQ0®) o (e QPQ) o (Qjj) o (QAP)
1B o (AugB) o (AQa®) o (6*QPQ) o (QP7) o (Q))
o (AgB) o (67QB) o (QPQ0?) o (QPT) o (Qj))
D B o (AugB) o (' QB) o (QPQus) o (Qj)
Z 18 o (1gB) o (AQug) o (07Q) o (Qj)
WM A0 (AuB) o (AQuB) (c?Q) o (QJ)
@A o (07Q) 0 (Qh) 2 1B o (QoP) 0 (@)
D 18 o (Qup) o (Q=7) L Qe”,

67
oA

B

Q°
1o
(7

We compute

xo (0cQ) =
18 o (*1gB) o (AQ0”) o (6 QPQ) o (QPIQ) o (QQ) © (5:Q)
"D 8o (MugB) o (AQa®) o (67QPQ) 0 (QPIQ) o (iCQ) o (A°Q)
— 15 o (*1gB) o (AQs") o (6*QPQ) o (iiQ) o (A°Q)
D 1B o (FugB) o (AQo®) o (6*QPQ) o (TPQ) o (iQ)
DB o (MuoB) o (AQr”) o (uAQPQ) o (iQ)
2 pBo (YugB) o (uaQB) o (Qo?) o (iQ)
I Ago (Auf) o (uaQB) o Qo) o (iQ)
2 Apgo (uaQ) o ug © Qo) o (iQ)
Qis a mod /‘5 o (QJB) o (iQ) (82) AMQO (O_AQ) o (iQ)
D 410 (uaQ) o (°Q) P 0
U

7.3. Constructing the functor @ Our next task is to construct a B-A-bimodule
functor Q.

PROPOSITION 7.6. Within the assumptions and notations of Theorem 6.29, define
a functor Q) via the coequalizer

(Pz)o(2!P)

DPQP PA—-0

(Pz)o(z"P)

Then there exists a unique functorial morphism v : BP — (:j such that

(149) vyo (yP) =1o (Px).
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Moreover
(@, Vé) = Coequyy, ((yP) o (Pw'), (yP) o (Pw"))

The functor @ can be equipped with the structure of a B-A-bimodule functor
(@, ug, B,u@) where '“S and P g are uniquely defined by

(150) ph o (14) = Lo (Pmy)
and
(151) Pug o (Byy) = vy o (mpP).

Proof. By construction we have
lo(Pz)o (2'P)=1lo(Pzx)o(z'P).
By Lemma 2.9, we have
(BP,yP) = Coequpy,, (zlP, Z"P) .
By the Eniversality of coequalizers, there exists a unique functorial morphism 1) :
BP — @ which fulfils (149). Let us prove that
(@, 1/6) = Coequyy, ((yP) o (Pu'), (yP) o (Pw")). We have

vy o (yP) o (Puw') W (Pz) o (Puw')

(129 vy o (yP)o (Pw'").

Let now £ : BP — X be a morphism such that £o (yP) o (Puw') = o (yP)o (Puw").
Since P preserves coequalizers, we have

(PA, Pz) = Coequp,, (Pu', Puw") .

defx

= lo(Px)o (Puw")

By universality of coequalizers there exists a unique functorial morphism vy : PA —
X such that
(152) vy o (Pr)=¢&o (yP).
We compute
152

vyo (Px)o (zlP) (122 Eo(yP)o (zlP)
(152)

=&o(yP)o(z"P) = wo(Pr)o(z"P).

By the universality of the coequalizer (@, l), there exists a unique functorial mor-
phism v : Q — X such that

vol=u.
We compute

voryo(yP) = volo(Pr)=wo (Pr) ' Z o (yP).

Since yP is epi, we get
E=vouy,.
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Assume now that there is another morphism ¢ : @ — X such that £ =tov|. Then
we have

tolo (Px) (lig)tou(’)o(yP) =¢o(yP)=vovo (yP) = yolo(Px).
Since [ o (Pz) is an epimorphism, we deduce that ¢ = v.
(2) We want to equip () with the structure of a B-A-bimodule functor. To begin
with, let us prove a number of equalities. Let us calculate

x o (@) = x 0 (QPX) © (Q5pPQ) = x o (xPQ) 0 (Q3»PQ)
0 (Qe"PQ) = x 0 (Q2")

so that
(153) X o (Qzl) =xo(Qz").
Let
(154) b=muo(zA).
Then

zo (xP) (1 ma o (zx) =myo (xA)o (QPx)
so that
(155) zo(xP)=bo(QPx).
We have

(Px) o (ZIPQ) = (Px) o (PxPQ) o (pPQPQ)

L (Py) o (PQPX) © (5pPQPQ)
2 (PX) © (6pPQ) o (DPy) = 2 o (DPy)
and hence
yo(Px)o (2PQ)=yoz'o(DPx)"="yoz"o(DPx)=yo (e"PQ) o (DPX)

= yo (Px)o (PPQPQ) = yo (PX)o (2" PQ)
so that we get
(156) yo (Px)o (:'PQ) =yo (Px)o (:"PQ).
From previous equalities, it follows that
Lo (Pb)o (2'PA) o (DPQPx) Zlo (Pb) o (PQPz) o (' PQP)
"o (Pr) o (PXP) o (+PQP) "2 v} o (yP) o (PXP) o (' PQP)

9 o (yP) o (PXP) o (" PQP)

5 16 (Pb) o (PQPx) o (2" PQP) Z [ o (Pb) o (" PA) o (DPQPx).
Since DPQPx is an epimorphism, we obtain

(157) lo(Pb)o (2'PA) =10 (Pb)o(z"PA)

216 (Pa) o (PYP) o (2" PQP)



135

that is
lo(Pmy)o (PrA)o (2'PA) =10 (Pmy)o (PzA)o (z"PA).
From 2.9 we have that

(@A, lA) = Coequp,, ((PzA) o (2'PA), (PzA)o (:"PA)).

Hence there exists a unique functorial morphism ,ug : @A — @ which satisfies (150).

Now we want to prove that (@, “S) is a right A-module functor. First let us prove

that “S is associative that is
e (154) = e (Qma).

(150)

We compute

i o (,u%A) (1AA)
r o (Pmy) o (PmyA) "E% Lo (Pmy) o (PAmy)

@0) i o (14) o (PAm) £ i o (@mA) o (1AA).

Since [AA is an epimorphism, we get that ,ug is associative. Let us prove that p,g

u o (14) o (PmA)

150

is unital that is
5 © (QUA> =0
in fact

(150)

S0 (Qua) ot Lo (14) 0 (PAus) "2 Lo (Pma) o (PAus) ™2™ |

and since [ is an epimorphism we conclude. We want to prove a series of equalities.
First of all, let us prove that

(158) (xP)o (QPu') = u'o(xPC)
(159) (xP)o (QPuw") = w" o (xPC)
In fact, we have

(xP) o (QPuw') = (xP) o (QPxP) o (QPQPc)

%) (\P) o (xPQP) o (QPQP5)

= (xP) o (QPdo) o (xPC) = w' o (xPC)
and
(XP) o (QPuw") = (xP) o (QPQPe?) £ (QPe) o (xP) = w" o (xPC).
From (158) we deduce that

ro (xP)o (QPu') "= zou' o (xPC)

rcoequ

zow o (xPC) "2 xo (xP) o (QPu")
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and hence we get
(160) z o (xP)o (QPuw') =z o (xP)o (QPuw").
We observe that
vy o (mpP) o (ByP) o (BPw') o (yPQPC)
=10 (mpP) o (ByP) o (yPQP) o (PQPw")
=)o (mpP) o (yyP) o (PQPw')
W o (yP) o (PxP) o (PQP)
"D o (Px)o (PXP) o (PQPW)
1 (Pz) o (PyP) o (PQPw")
= 1o (yP)o (PxP)o (PQP")
=" vyo (mpP)o (yyP) o (PQPwW")
=10 (mpP) o (ByP) o (yPQP) o (PQPW")
= v, o (mpP) o (ByP) o (BPw") o (yPQPC)
since yPQPC' is an epimorphism, we obtain that
vy o (mpP) o (ByP) o (BPuw') = vgo (mpP) o (ByP)o (BPw").

Since B preserves coequalizers, we have that (B@, By6> = Coequp,,((ByP) o
(BPw') , (ByP)o (BPw")) so that there exists a unique functorial morphism “1 :
BQ — ( which satisfies (151). Now we want to show that (@,Bu@> is a left

B-module functor. First let us prove that ? [15 1s associative that is
Pug o (BBM@> =Pugo (m3@> :
We have
B,u@ o (BB,u@> o (BBY}) (12 B,u@ o (Byy) o (BmpP)
(12 v o (mpP) o (BmgP) "£% v} o (mpP) o (mpBP)

(151)

2 B0 (Bry) o (mpBP) ™ Bpugo (m3@> o (BBY)).

Since BBy, is an epimorphism, we get that g is associative. Let us prove that
Plug is unital that is

BM@ o (UBQ> =Q.
We calculate

g (153) i g 5y s5P) 2

vy o (mpP) o (ugBP) = 1.
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Since 1 is an epimorphism, we get that pig is unital. Finally we have to prove the
compatibility condition

Pugo (Bud) = uho (PugA) .
We have
"ugo (Bud) o (BlA) o (BPx) o (yPQPQP)
=" Bl15 0 (Bl) o (BPma) o (BPaz) o (yPQPQP)
= g o (Bl)o (BPx)o (BPxP) o (yPQPQP)
=" g o (Byg) o (ByP) o (BPxP) o (yPQPQP)
L Bys 0 (Bj) o (ByP) o (yPQP) o (PQPXP)
= Pug o (Byg) o (yyP) o (PQPXP)
=" 1y o (mpP) o (yyP) o (PQPXP)
=" 1y 0 (yP) o (PxP) o (PQPXP)
o (yP)o (PxP)o (PxPQP)
lo (Px) o (PyP)o (PxPQP)

(149

2, (Pmy) o (Pxx) o (PYPQP)

=lo(Pmy)o (PzA)o (PQPx)o (PxPQP)
X o (Pmy) o (PzA)o (PyPA)o (PQPQPx)

(150) o (lA)o (PzxA)o (PxPA)o (PQPQPx)

A
Q
"2 1A o (hA) o (yPA) o (PxPA) o (PQPQPx)
A
Q

W 140 (4 A) o (mpPA) o (yyPA) o (PQPQPx)
o(mpPA)o (ByPA)o (yPQPA) o (PQPQPx)
(

= g © (1pA)
14 0 (VA) o (mpPA) o (ByPA) o (BPQPx) o (yPQPQP)
Q

/

(@] VO
Y !
(151)

i o (PngA) o (BrjA) o (ByPA) o (BPQPx) o (yPQPQP)

"D do (BMQA) (BIA) o (BPzA) o (BPQPx) o (yPQPQP)
= 4o ( e A) o (BIA) o (BPxz) o (yPQPQP)

Since (BlA) o (BPzx) o (yPQPQP) is an epimorphism, we conclude. Then
@, B 1 u%) is a B-A-bimodule functor. O
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PROPOSITION 7.7. In the setting of Theorem 6.29 and Proposition 7.6, there exist

two functorial morphisms o : Q@ — A and 0P : @Q — B where o is A-bilinear
and o is B-bilinear and they fulfill

(161) oo (Ql) =myo (zA)
and
(162) 0% o (1) = mp o (By).

Moreover the associative conditions hold, that is
g o ('Q) = o (Q0) and Pz o (°Q) = uho (Qot).
Proof. First we want to prove that
ma o (zA) o (QPz) o (Qz'P) =my o (zA) o (QPz) 0 (Qz"P).
In fact we have
ma o (zA) o (QPz) o (Q2'P) "L 20 (xP) o (Q2'P)
= 20 (xP) o (QPXP) 0 (Q5pPQP) "= w0 (xP) o (xPQP) o (Qbp PQP)
" 4o (xP) o (QePPQP) = x0 (xP) o (Q="P)
() o (z2) 0 (Q2"P) = ma o (zA) o (QPx) 0 (Q2"P).
Since @ preserves coequalizers we have
(QQ, Q) = Coequg,, ((QPx) o (Q='P) , (QPx) o (Q="P))

so that there exists a functorlal morphism o QQ — A which satisfies (161). Now
we want to show that o is A-bilinear that is the following equalities hold

oA o <AMQQ> — mao (Ac?)
oo (Qu%) = mguo (UAA) .

We compute

(161)

mao (Aoct) o (AQZ) = on(AmA) (AzA)

"m0 (myA) o (AQZA) %) 4 o (zA) o (“ugPA)

(161)

A ~
=" 00 (Ql) o ("ugPA) L2540 (AMQQ> o (AQI).
Since AQ! is an epimorphism, we get that o4 o (A/LQ@> =m0 (AUA). We compute

mao (c"A) o (QIA) 1oy ma o (myA)o (xAA)
=mao (Amy)o (xAA) =myo (zA)o (QPmy)

)2
ote Qo (@Pma) " oo (Qup) ° QL)
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Since QIA is an epimorphism, we obtain that o4 o <Q,u$> =myo0 (O‘AA) . Symmet-
rically,we want to define 0. We prove that
mp o (By) o (yPQ) o (Pw'Q) = mp o (By) o (yPQ) o (Pw'Q).
In fact, we have
mp o (By) o (yPQ) o (Pw'Q) = mg o (yy) o (Pw'Q)
"2 yo (Px) o (Pw'Q) =yo (PX) o (PxPQ) o (PQPIQ)
"2y (Px) o (PQPX) o (PQPQ)
2y o (Py) o (PQPECQ) =y o (Py) o (Pu'Q)

"m0 (yy) o (PurQ) = my o (By) e (yPQ) o (PurQ).

By Lemma 2.9, we have

(0@,4Q) = Cocany, ((¥PQ) o (Pu'Q) , (yPQ) o (Pu'Q))

so that there exists a functorial morphism o? : @Q — B which satisfies (162). Now
we want to show that o” is B-bicolinear that is the following equalities hold

oPo (B/L@Q) = mpo (BUB)
mpg o (O'BB) = oBo (@MS)

We calculate

mp o (Bo®) o (BrQ) = i o (Brs) o (B39)

"B mp o (mpB) o (BBy) = mp o (By) o (mpPQ)
(162)
=" 0% o (14Q) o (mBPQ) 2D 5B o (BH@Q o (BryQ) .
Since B)Q is an epimorphism, we deduce that o o (B,u@Q) = mpo (BUB). We
compute

mp o (6°B) o (4QB) "E mp o (mpB) o (ByB)

"B mp o (Bmg) o (ByB) (1) mp o (By) o (BPug)
(162) v, A~
2 580 (4Q) o (BPuB) L 0" o (ng) o (1QB).
Since v)@B is an epimorphism, we get that mpo (6¥B) =P o (Quf}) . Finally we
have to prove the associative conditions

g o (74Q) = 4 o (o)
ige (o7Q) = nge ().
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We calculate

g o (w“cz) 0 (QIQ) 0 (QPxQ) &) Mg 0 (maQ) 0 (£AQ) 0 (QP2Q)
<mA@> (22Q) "= g 0 (2Q) 0 (xPQ)

< PQ)"E x 0 (QPy) £ 18 0 (Qy) 0 (QPY)

o (Qmp) o (ny)* 116 © (@mg) © (QBy) o (QuPQ)

"2 18 0 (Q0”) 0 (QUQ) © (QuPQ)

= ugo@o— ) 0 (QIQ) © (QPzQ).

Since (QIQ)o(QPzQ) is an epimorphism, we deduce that 4pgo(64Q) = T (QoB).
We compute

(101)

(109

i o (@f‘) o (ng@> o <yPQ@) o (PQPQI) o (PQPQPx)
“49) uo (Qo) o (10Q) o (P2QQ) o (PQPQI) o (PQPQPx)
L o (14) o (PAc™) o (m@@) o (PQPQI) o (PQPQPx)
1o (Pma) o (PAs*) o (PrQQ) o (PQPQI) o (PQPQP)
Z 1o (Pma) o (PzA) o (PQPs™) o (PQPQI) o (PQPQPx)

B 16 (Pmy) o (PzA) o (PQPma) o (PQPzA) o (PQPQP)
=lo (Pmy)o (PxA)o (PQPmy,)o (PQPxx)

) 1o (Pma) o (PzA) o (PQPx) o (PQPXP)
=10 (Pmy) o (Pxx)o (PQPxP)
(102)

lo(Px)o(PxP)o (PQPxP)

(128)

lo(Pz)o (PxP)o (PxPQP)

W) o (yP) o (PxP) o (PYPQP)

"2 sy (msP) o (yyP) o (PYPQP)
"2 Blug 0 (Bry) o (yBP) o (PQyP) o (PXPQP)
L g0 (4Q) o (PQu;)  (PQyP) o (PXPQP)
2B (y@) o (PQI) o (PQPx) o (PxPQP)

X Bpso (;,@) o (PX@) o (PQPQI) o (PQPQPx)

(109) B

0 (mBQ) (yy@) o (PQPQI) o (PQPQPx)
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—Bpso (m3@> ° (By@> o <pr@) o (PQPQI) o (PQPQPx)
(162)

LR T (03@) o (%Q@) o (yPQ@) o (PQPQI) o (PQPQPx)

Since (ué@@) o (yPQ@) o (PQPQI) o (PQPQPx) is an epimorphism, we get that
Bﬂ@ o <03@> = ug o (@JA> . U
7.4. From coherds to herds.

7.8. Given a coherd x : QPQ — @ in a formal codual structure
X = (C,D,P,Q,0c,6p), our purpose is to build the formal dual structure M =

(A, B, Q,Q, 4, oB) and then an herd 7: Q — QQQ in M.

THEOREM 7.9. Let A and B be categories with coequalizers and let P : A — B,
Q:B— A C: A— Aand D : B — B be functors. Assume that all the
functors P,Q,C and D preserve coequalizers. Let ¢ : C — A and P : D — B
be functorial epimorphisms and assume that (A, €C> = Coequp,, (C’sc,gCC’) and
(B, €D) = Coequp,, (DeD, &TDD). Let x : QPQ — Q be a functorial morphism such
that

x o (QPx)=xo(xPQ).
Let ¢ : C'— QP be a functorial morphism such that
x o (6cQ) = (£°Q)
and let 6p : D — PQ be a functorial morphism such that
X0 (Qdp) = (Q").
Then there is a formal dual structure M = (A, B, @, Q,04,0P).

Proof. In view of Theorem 6.29 and Propositions 7.6, 7.7 a formal dual structure
M = (A, B,Q,Q, 0", 0P) has been constructed. O

THEOREM 7.10. Let A and B be categories with coequalizers and let

X = (C,D, P,Q,dc,0p) be a regular formal codual structure where P : A — B,
Q:B—-A C:A— Aand D : B — B are functors that preserve coequalizers.
Let x :AQPQ — @ be a copretorsor. Then there is a formal dual structure M =

(A,B,Q,Q,04,0P). Define t:Q — Q@Q by setting
T:=(QlQ) o (QPxQ) o (cQPQ) o (CQJp) o (CpQD) o pg,
Then T is an herd in M.

Proof. By Theorem 7.9, M = (A, B, @, Q, 04, 0P) is a formal dual structure. To show
that 7 is an herd in M, we have to prove that it satisfies the following conditions.

1) Associativity, in the sense that <Q@T> oT = (T@Q) o 7. We have
(Q@r) o
= (QQ7) °(QI1Q) © (QPrQ) © (5cQPQ)  (CQ3p) o (“pgD) o pf
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+ (QIQQQ) ° (QPAT) 0 (QPrQ) © (50QPQ) ° (CQp) o (“paD) o
2 (QIQQQ) o (QPrQQQ) © (QPQPT) o (3cQPQ) @ (CQdp) o (“pgD)  p
“ (QIQAQ) o (QP2QQQ) © (5:QPQAR) o (CQPT) o (CQdp)
o (“peD) ° pg
2 (Q100Q) - (@PrQQ) o (5:0PQAQ) o (“0oPQGQ) o (QPT)
o (Qdp) o 03
2 (€10dQ) o (QPrQQQ) o (30@PRAQ) o (“rePRAQ) o (QP7)
o (6cQ) © “pg
“ (QIQQQ) o (QPrQQQ) o (5:QPQAQ) o (“pPRAR) © (5:00Q)
o(CT)o ch
and
(°roPQAQ) o (6:QQQ) o (CT) 0 “py
= (“PePQAQ) o (5:QQQ) © (CQIQ) © (CQPQ) o (CO:QPQ) o (CCQIY)
°(C%qD) o (Crg) ° “rg
% (“0oPQAQ) © (3cQQQ) ° (CQIQ) ° (CQPrQ) o (CQPQID) o (C3cQD)
°(CD) o (Crg) ° “rg
" (€00QQQ) » (A°QQQ) © (CQIQ) ° (CQPrQ) o (CQPQID) © (C3cQD)
°(C%qD) o (Crg) ° “rg
Since
(CCpaD) o (Crg) ©“po
B (0B o () 0 “pg T (COPB) o (A°Q) o g
25 (ACQD) o (CpB) 0 Cpg ¥* L™ (ACQD) o (CpoD) o p3
WL (0%paD) o (“paD) o v
we obtain
(€5:QQQ) » (A°QQQ) ° (CQIQ) ° (CQPxQ) o (CQPQSY) o (CocQD)
o (C%paD) o (CoB) o “pq
= (€9:QQQ) © (A°QQQ)  (CQIQ) = (CQPrQ)  (CQPQIy) o (COcQD)
0 (C%aD) o (“paD) © pg
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2 (05:0QQ) © (A°QQQ) © (CQIQ) o (CQPQ) o (CQPQS)
o (CQdpD) o (CpyD) o (“pgD) o p
= (CcQQQ) © (CCQIQ) o (CCQPQ) 0 (CCQPQEP) o (CCQERD)
o (CCPBD) o (A°QD) o (CpaD) © p§
Qis a com (OC%QQQ 0 (CCQIQ) o (CCQPzQ) o (CCQPQSp) o (CCQSpD)
o (CCpgD) o (CpaD) o (“peD) © po
Qis a bicom ( oo QQQ) (CCQIQ) o (CCQPzQ) o (CCQPQSP) o (CCQIpD)
0 (C%pqDD) o (CppD) o (“poD) o v
2 (€5:00Q) o (CpaQQ) © (CQIQ) 0 (CQPQ) o (CQPQIP) o (CQIpD)
o (CpgD) o (“paD) o pg
Qis a bicom ( 6,00 Q) (Cc p Q@Q) 0 (CQIQ) o (CQPzQ) o (CQPQIp)
°(CQIpD) o (“poDD) o (pD) o p
2 (C3cQQQ) o (C“paQQ) o (“paQQ) © (QIQ) o (QPQ) o (QPQp)
°(QopD) o (pgD) © pg
"2 (cQipQQ) o (CrBAQ) o (“paQR) © (QIQ) © (QP2Q) © (QPQSp)
°(QdpD) o (pgD) © pg
2 (0@nQQ) © (CrBAQ) o (“p0QQ) © (QIQ) © (QP2Q)  (QPQdD)
o (6cQD) o (“paD) o g
Qis a bicom (ccz 5DQQ) ( po D@Q> o <pg@Q> 0 (QLQ) o (QPzQ) o (QPQSp)
0 (6¢@D) o (“pgD) o pg
* (C@inQQ) o (“raDQR) © (p8QQ)  (QIQ) © (QP2Q) ° (:QPQ)
o (CQdp) o (“pgD) o pg

Hence we obtain
(00r)e-

(Q10QQ) o (QP2QQQ) o (5:QPRQQ) © (“pePRAQ) o (4:QQQ)
0 (Cr) 0 “nq

(Q10QQ) o (QP2QQQ) © (5:QPRAQ) © (CQIHAQ) o (“peDAQ)



144

o (p5AQ) © (QIQ) 0 (QP2Q) © (3cQPQ) o (CQbp) o (“paD) © pf
= (T@Q) oT
) Counitality, in the sense that (QUB) o7 = Qup and (UAQ) oT = usQ. Let us
prove that
(QJB) oT = Qup.

In fact, we have

(Qo”) ot

(Q0”) 0 (QIQ) © (QP2Q) © (5cQPQ) o (CQSp) o (“paD) o py

) 0 (QUQ) © (QuPQ) o (6QPQ) o (CQSp) o (CpeD) o pl

(72QPQ) (CQ3p) o (“paD) o 1§
oD) o o8

(149) (QUB
2 (Qmp) 0 (QBy) o (QyPQ) o
= (Qms) o (Quy) 0 (6cQPQ) © (CQop) o (Cp

"2 (Qy) 0 (QPX) 0 (5cQPQ) o (CQp) o
2 (Qy) o (QPX) © (QPQdp) o (6cQD) o (“pgD) o p5
"2 (Qy) 0 (QPQEP) 0 (5cQD) o (“peD) o v}

% (Qy) 0 (5cQ) © (CQEP) o (pD) o ph
DD Q) 0 (60Q) © (CQEP) o (CpB) © € pg

@™ (Qy) 0 (6cQ) 0 “pg "Z (Qy) 0 (Q0D) 0 p5
D le a com
Qus.

(110) (Qup) o (Qs ) ° pg

(“peD) o pg

Let us prove that
(UAQ) oT = (usQ).

We calculate
(c"Q) o7

= ("Q) © (QIQ) 0 (QPzQ) © (3cQPQ) © (CQIp) o (CpeD) © p
" (maQ) 0 (£AQ) 0 (QPQ) 0 (5cQPQ) o (CQ3p) o (CpeD) © p

= (maQ) o (z2Q) o (cQPQ) o (CQbp) o ( D) © pQ

"2 (2Q) o (xPQ) © (36QPQ) © (CQ3p) o (CpaD) © p

2 20) o (e°QPQ) o (CQbp) o (“poD) © pg
= (2Q) © (Qdp) © (°QD) o (“pgD) o p§

p (127)

IO (1Q) 0 (Q8p) 0 p = (2Q) 0 (50Q) © “pg

(o

(103) (UAQ) o (é‘CQ) ° pQ Qis a com UAQ.
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7.5. Herd - Coherd - Herd.

711. Let 7 : Q@ — QPQ be a herd for a regular formal dual structure M =
(AJB,P,Q,04,08 ) where P: A —-B,Q:B—- A A: A— Aand B:B — B
are functors that preserve equalizers. Then, by Propositions 6.1 and 6.2, we can
construct comonads C = (C, Ac,sc) and D = (D,AD ,eP ) and functorial mor-
phisms “pg : Q@ — CQ and pg : Q — @D such that (Q,CpQ,pg) is a C-DD-
bicomodule functor (see Theorem 6.5). Let @ as defined in Proposition 7.1. Then
(@, b Po; p%) is a D-C-bicomodule functor. By Theorem 7.5, we construct a coherd
X = (C,D,Q,Q,dc,0p, x) where x := g0 (*ruoB)o(AQo?) o (c4QPQ) o (QPIQ)o
(QqQ). Then we can construct monads A" = (A, ma,us) and B = (B, mp/, up)
following respectively Proposition 6.25 and Proposition 6.26 as the coequalizers

(@o(QQ°)
——=QQ——A
QQ<C

_ (@x)e(PQQ)
DQQ———=
U QQ

This means that the following hold

SO ——~ B’

ma o (2'2) = 2’ o (xQ) and uy 0’ =20 ¢

(163) mp o (yy) =y o (Qx) and up oc” =y o dp.

NOTATION 7.12. With notations of Theorem 6.5 and Proposition 7.1, let h : Q — P
be defined by setting
h="pupo (c”P)o(Pi)oq.

The following theorem reformulates Theorem 3.5 in [BV] in our categorical setting.

THEOREM 7.13. Let M = (A,B, P,Q,0",05) be a tame Morita context and let
T:Q — QPQ be a herd for M such that A and B reflect equalizers and coequalizers.
We denote by A" and B’ the monads constructed in Claim 7.11. Then

1) There are functorial morphisms vy : A" — A and vg : B' — B such that v,
and vg are morphisms of monads.

2) If the functorial morphism hQ : QQ — PQ, where h = Bupo (UBP) o(P1i)oq,
1s an isomorphism, then v, and vg are isomorphisms.

3) If PC = Q ~ @/ = DP then hQ is an isomorphism and hence v4 and vg
are isomorphisms of monads.

Proof. Note that, since A and B reflect equalizers, by Lemma 6.10, we have a
regular herd, i.e. the assumptions (A,us) = Equp,, (uaA, Aua) and (B,ug) =
Equp,, (upB, Bug) are fulfilled. We will prove only the statement for the monad
B’, for A’ the proof is similar.

1) Consider the functorial morphism

EB:@QHB
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given by
7% =mpo (O'BO'B) o (PiQ) o (¢Q)
(144) mpg o (O’BO'B) o (jPQ) o (kyQ) -
We compute
(07PQ) o (PiQ) © (4Q)  (Qx) © (60QQ)
= (67PQ) o (PiQ) o (PCx) © (¢QQQ) © (pQQ)
(c7PQ) o (PQPX) o (PiQQQ) © (4QQQ) ° (6pQQ)
"= (o7 PQ) o (PQPX) © (1PQQQ) © (1QQQ) © (5pQQ)
(c7PQ) o (PQPX) o (1PQQQ) © (DjQQ) © (A”QQ)
D (07PQ) o (PQPY) © (PrQQ) © (jQQ)
= (0P PQ) o (PQPuy) o (PQP*ugB) o (PQPAQc"”) o (PQPo"QPQ)
(PQPQPIQ) o (PQPQqQ) o (PTQQ) o (jQQ)
Z (6”PQ) o (PQPuG) o (PQP*ugB) o (PQPo*QB) o (PQPQPQ")
o (PQPQPIQ) o (PQPQqQ) o (PTQQ) o (jQQ)
= (67 PQ) o (PQPUE) o (PQPUEB) o (PQPQ® B)
o (PQPQPQo”) o (PQPQPIQ) o (PQPQqQ) o (PTQQ) ° (jQQ)
= (BPub) o (BPuBB) o (BPQo"B) o (BPQPQc") o (BPQPIQ)
o (BPQqQ) o (¢"PQQQ) o (PTQQ) o (jQQ)
= (BPub) o (BPuSB) o (BPQo® B) o (BPQPQ0®) o (BPQPIQ)
° (BPQqQ) o (usPQQQ) ° (jQQ)

o

and thus we obtain
(164) (07 PQ) o (PiQ) o (4Q) © (Qx) © (6pQQ)

= (BPug) o (BPusB) o (BPQo”B) o (BPQPQo") o (BPQPiQ)

o (BPQqQ) o (upPQQQ) o (jQQ) .
Let us compute
7”0 (Qx) o (6pQQ)
=mpo (O'BO'B) o (PiQQ) o (¢qQ) o (@X) (5D@Q)
=m0 (Bo¥) o (¢¥PQ) o (PiQ) o (4Q) © (Qx) © (50QQ)
" g o (Bo?) o (BPuE) o (BPuEB) o (BPQa”B)

o (BPQPQo") o (BPQPIQ) o (BPQqQ) o (usPQAQ) o (jQQ)
2 mpo(ugB)oo®Po (Pug) o (PMSB) o (PQJBB) o (PQPQJB)
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o (PQPiQ) o (QQ)

Pmened 6B o (Pub) o (Pu8B) o (PQaPB) o (PQPQs®) o (PQPIQ)

° (jQQ)

2 586 (Pu) o (PAugB) o (PeQB) o (PQPQo®) o (PQPIQ)
0 (PQQ) © (jQQ)

= 0% 0 (Pug) o (PugB) o (PAQo”) o (PoQPQ) o (PQPIQ)
° (PQqQ) © (7QQ)

g o (6PB) o (PAugB) o (PAQs”) o (Pe*QPQ) o (PQPIQ)
0 (PQqQ) o (jQQ)

2 mpo (6P B) o (PQa®) o (PAugPQ) o (Pe*QPQ) o (PQPIQ)
0 (PQqQ) o (jQQ)

= s o (6PB) o (PQo”) o (PuBPQ) o (PQs"PQ) o (PQPIQ)
° (PQqQ) ° (jQQ)

= mpo (Bo®) o (6P PQ) o (PuEPQ) o (PQrPPQ) o (PQPIQ)
° (PQqQ) ° (jQQ)

g o (Bo®) o (mpPQ) o (¢°BPQ) o (PQs"PQ) o (PQPIQ)
o (PQqQ) o (jQQ)

Z mp o (Bo®) o (mpPQ) o (Ba? PQ) o (BPiQ) o (BqQ) o (¢°QQ) o (jQQ)
D g o (Bo?) o (mpPQ) o (Ba”PQ) o (BPiIQ) o (BqQ) o (u5QQ)
o(aD@Q)
= mpo (Bo®) o (mpPQ) o (upBPQ) o (67 PQ) o (PiQ) o (4Q) o (¢7QQ)
2 mp o (BoP) o (o BPQ) o (PiQ) o (4Q) © ("QQ)

=5" 0 (7QQ)

b

so that we get

(165) 7P o (@X) o (5D§Q) =350 (éD@Q)

and since (B',y’) = Coequp,, ((Gx) (6 D@Q) ,aD@Q) there exists a unique func-
torial morphism vg : B’ — B such that

(166) vpoy =5o” =mpo (c7c") o (PiQ) o (¢Q).

Now we want to prove that vg is a morphism of monads. Let us compute

mpo (vgrg)o (¥'y') =mpo (vgB) o (B'vg)o (y'B')o (@Qy’)
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Lmyo (vsB) o (yB) o (QQus) ° (QQY)
(156) mp o (mpB) o (6%d”B) o (PiQB) o (¢QB) o (QQmg) o (QQs ")
° (QQPIQ) © (QQqQ)
" g o (mpB) o (670" B) o (jPQB) o (k)QB) o (QQmz) o (QQo"s”)
0 (QQIPQ) © (QQKHQ)
=mpo (mpgB)o (BO'BB) o (JBPQB) o (jPQB) o (kyQB) o (QQmp)
o (QQBo") 0 (QQo"PQ) o (QQIPQ) o (QQKQ)
@ mp o (mpB) o (Bo®B) o (upPQB) o (" PQB) o (kyQB) o (QQmp)
0 (QQBo") o (QQupPQ) o (QQe"PQ) o (QQKQ)
2 mpo (mpB) o (upBB) o (65B) o (e"PQB) o (kQB) o (QQmp)
° (QQugB) o (QQo") o (QR"PQ) o (QQKHQ)
Bmobad o (6”B) o (P PQB) o (kyQB) o (QQc") o (QQe"PQ) o (QQKHQ)

and

vgomp o (y'y) (163) vpoy o (@X) =mpgo (O'BO'B) o (PiQ) o (¢qQ) o (@X)
(144)

=" mp o (Ba®) o (6" PQ) o (jPQ) o (k)Q) o (Qx)
D mp o (Bo”) o (usPQ) o (°PQ) o (k@) o (Qx)
L mpo (upB) oo’ o (P PQ) o (kQ) o (Qx)
Bmonad B (DPQ) (KOQ)O( )
L oo (PPQ) 0 (s1Q) o (@uf) o (Q'haB) 0 (Q4Q0") o (G0 QPQ)
o (QQPIQ) o (QQqQ)
L9686 (PPQ) o (kyQ) o (Qu) © (AQ0”) o (@ 1oPQ) © (A*QPQ)
o (QQPIQ) o (QQqQ)
D 67 0 (P PQ) o (k)Q) o (Qu) © (QQ0") o (QuEPQ)
0 (QQa"PQ) o (QQPIQ) o (QQqQ)
207 o (PPQ) o (1)Q) © (Qub) © (QQ0™) o (QuEPQ)
0 (QQo”PQ) o (QQIPQ) o (QQKHQ)
D o0 (P PQ) o (m)Q) o (Qub) © (QQ0™) o (QuEPQ) o (QQusPQ)
o (QQePPQ) o (QQKQ)
GRITERIT 5B o (P PQ) o (k4Q) o (Quf) © (QQ0T) © (QQ="PQ) © (QQKHQ)
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!
ko

2 6P 0 (ePPQ) o (DPub) o (k4@QB) o (QQc") o (QQPPQ) o (QQKHQ)
= 0P o (Pub) o (ePPQB) o (k(QB) o (QQo") o (QQ="PQ) o (QQKHQ)
2 mpg o (O'BB) o (5DPQB) o (HBQB) o (@QJB) o (@QsDPQ) o (@Q;{{)Q)

so that we obtain

>}

mp o (vavp) o (y'y') =vpomp o (Y'y)
and since 1/ is an epimorphism we deduce that
mp o (vgrg) = vgomp.
Now, let us calculate
163)

( (166
vgoug oe? "= vgoy odp

D mp o (6%0%) o (PiQ) o (4Q) o 61
=mpo (BoP) o (6P PQ) o (PiQ) o (¢Q) 0 dp

"2 im0 (Ba®) o (07 PQ) o (JPQ) o (54Q) © dp

(60,049) mpg o (Ba”) o (upPQ) o (" PQ) o (Dj) o AP

u ED .
= mpo(ugB)ocPojo(eP?D)o AP

BmonadDcomonad g . (67) D
= oc°0j = ugoge.

Since the tame condition is assumed, pa0%y; is a functorial isomorphism and thus

p ) B (94) B
A0, = a0 gl = gUpao,pal’

is also an isomorphism. By (95) we have that
AUE o (ppa®) = o®

and Lemma 2.6, since pp(@ is a regular epimorphism by construction, we deduce
that o? is also a regular epimorphism. Thus, by Theorem 6.6, so is Be”. Since B
reflects coequalizers we get that €” is an epimorphism and therefore we obtain

VB OUuUp = Up.

Hence vp is a morphism of monads.
2) Consider the following diagram

(@x)0(67QQ)

— — y'
DQQ ———— Q"9
(ePQQ)
Dth th vz
(Pu)o(jS)o(Dos) ry
DPQ PQ % g
(P PQ)

where (Z,77) = Coequp,, ((P,ug) o (jB) o (Do®),ePPQ) . Note that

(P PQ) o (DhQ) = (hQ) o (£°QQ) .
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Now we compute
(hQ) © (Qx) o (5pQQ) = (Pug) © (iB) o (Do”) o (DhQ)

(hQ) o (Qx) © (0pQQ)
= (PupQ) o (67 PQ) o (PiQ) o (4Q) © (Qx) o (5pQQ)
" (PupQ) o (BPuf) o (BPuB) o (BPQo"B)

o (BPQPQ0"”) o (BPQPIQ) o (BPQqQ) o (upPRQQ) © (jQQ)
Qe (B10Q) o (BPub) o (BPQmy) o (BPQo®B) o (BPQPQ0®)
o (BPQPiQ) o (BPQqQ) o (upPQQQ) o (jQQ)

“ (%upQ) o (upPQ) o (PuB) o (PQmy) o (PQo"B) o (PQPQo”)

o (PQPIQ) o (PQqQ) o (jQQ)

Qmodneter (pBY o (PQmy) o (PQa”B) o (PQPQ0") o (PQPIQ)

o (PQqQ) o (jQQ)

Z (PuB) o (PQmy) o (PQBA®) o (PQa”PQ) o (PQPIQ)
o (PQqQ) ° (1QQ)

W (PuB) o (PQa®) o (PQPupQ) o (PQa”PQ) o (PQPIQ)
o (PQqQ) © (1QQ)

L (PuB) o (jB) o (Da?) o (DP1pQ) o (Da® PQ) o (DPiQ) o (DgQ)
- (Pug) o(jB)o (DO’B) o (DhQ)
Then the diagram above serially commute and hence in particular
7z 0 (hQ) o (@X) o (5D@Q) =7 0 (Pug) o(jB)o (DO'B) o (DhQ)
Z 0 (EDPQ) o (DhQ) =770 (hQ)o (eD@Q)
so that B B B
Tz 0 (hQ)o (QX) o (5DQQ) =7z 0 (hQ)o (5DQQ) .

Since (B',y') = Coequp,, ((@X) o (5D@Q) ,5D@Q) , by the universal property of
coequalizers, there exists a unique functorial morphism vz : B — Z such that

(167) vzoy =mzo (hQ).

We want to prove that vz is an isomorphism. Since h() is an isomorphism, there

exists (hQ) ™" : PQ — QQ. Note that from
(hQ) o (Qx) © (0pQQ) = (Pug) o (jB) o (Da”) o (DhQ)
we deduce that
(h@)™" o (hQ) o (@) © (6pQQ) © (D (hQ) ™) =
= (hQ) "o (Pug) o (jB) o (Do”) o (DhQ) o (D (hQ)_l)
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that is
(168) (@X) o (5D@Q) o (D (hQ)fl) = (hQ)fl o (P,ug) o(jB)o (DUB) .
Similarly, from

(e PQ) o (DhQ) = (hQ) o (s QQ)

we deduce that

(169) (hQ)™" o (e"PQ) = (£"QQ) o (D (hQ)™").

Thus we have
y o (hQ)™ o (Pug) o (jB) o (Do®)
Lo ("QQ) o (D(hQ) )

(168)

y' o (Qx) © (6pQQ) o (D (hQ) ™)
Yo (hQ) e (PPQ)
so that

y' o (hQ)_l o (P,ug) o(jB)o (DO’B) =y o (hQ)_l o (8DPQ) .

Since (Z,mz) = Coequpy, ((Pu§) o (jB) o (Do®) ,ePPQ) , by the universal prop-
erty of coequalizers, there exists a unique functorial morphism v}, : Z — B’such
that

(170) vyoms =y o(hQ)™".
Now we want to prove that 1/}, is the two-sided inverse of vz. Let us compute

(180 vyomyo (hQ)
(170

Dy o (hQ) Vo (hQ) = o

and since g’ is an epimorphism we get

vyovgoy

vyovy =Idp.

Moreover

vzovgoms = vzoy o (hQ) " "L 1z0 (hQ) o (hQ)! =7y

and since my is an epimorphism we deduce that
vzovy, =Idy.

Thus vz is a functorial isomorphism between B’and Z with inverse v/,. Now we want
to construct an isomorphism between B and Z. Consider the parallel pair

(Py$)o(iS)o(Das)
DPQ PQ
(PPQ)

and compute
P o (P,ug) o(jB)o (DO’B) (50 mpg o (O’BB) o (PQJB) o (jPQ)
pa mp o (Bo®”) o (6" PQ) o (jPQ) 0 mp o (Bo®”) o (upPQ) o (" PQ)

= mpo (upB) oo o (" PQ) Bmonad ;B (e"PQ) .
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Thus we obtain
oPo (P,ug) o(jB)o (DO’B) =oPo (&?DPQ)

and since (Z,7mz) = Coequp,, ((Pug) o (jB) o (Da®?),ePPQ), by the universal
property of coequalizers, there exists a unique functorial morphism A : Z — B such
that

(171) Nomy =ob.

Since we already proved in 1) that o® is a regular epimorphism, in particular we
can write (B, o?) = Coequp,, (¢,¢). Let us compute

nz0€0 (SDPQ) g Tz © (5DPQ) ° (D¢)
" 1z 0 (Puf) o (jB) o (Do”) o (D)
7P coequ - (Pﬂg) o(jB)o (DOB) o (D)

7 o (e PQ) o (D) < 770 (o (" PQ)
so that
myz oo (gDPQ) =mnzo(o (gDPQ).
Since o is a regular epimorphism, by Theorem 6.6, so is Be®. Since by assumption
B reflects coequalizers, also € is an epimorphism so that we get

(172) ’/TZOSZWZOC.

Since (B,UB) = Coequp,, (£,¢), by the universal property of coequalizers there
exists a unique functorial morphism ) : B — Z such that

(173) NooP =y
We prove that A is the two-sided inverse of A. In fact

Nolomy () NooP (17) Ty.

B

Since 7z is an epimorphism we deduce that

No\=1Idy.
Similarly
Ao )N ogP (3) Aomy () oB
and, since also o is an epimorphism, we deduce that
Ao N =1Idg.

We now want to prove that

Vg = Aoy
ie.

Novg =vy.
We compute

Xovgoy & X ompo (oP0) o (PiQ) o (4Q)
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T XNoo80 (PurQ) o (7 PQ) o (PiQ) 0 (4Q)

(173) . (167)
=" 770 ("upQ) o (6" PQ) o (PiQ) 0 (¢Q) =7z 0 (hQ) ='vzoy.
Since ¢’ is an epimorphism, we get
)\/ ovVp =UVyg

so that we deduce that v : B’ — B is an isomorphism and thus an isomorphism of
monads. /

3) If P preserves equalizers and PC = Q = @, = DP then v, and vg are
isomorphisms of monads.

By assumption we have that ¢ = Idpc and ¢’ = Idpp and k and k" are isomor-
phisms. Then we can rewrite the initial diagram as follows

(PCx)o(6P PCQ)

DPCQ PCQ L g
(ePPCQ) :
DhQJ/ ihQ ‘vg
(Pug)o(jS)o(Das) wy Y
DPQ PQ—>7
(P PQ)

Since (C,1i) = Equp,, ((QPUA) o(TP) ,QPuA) , by Lemma 2.10 we also have
(CQ,1Q) = Equp,, ((QPO’AQ) o (TPQ) QPUAQ) . We compute

(QPo*Q) o (rPQ) o+ 'Z (QPo"Q) 0 (QPr) o 7 'L (QPusQ) o 7

so that there exists a unique functorial morphism CpQ : Q — CQ such that (61)
holds i.e.

(iQ) o pg =
as constructed in Proposition 6.1. Moreover (Q,C pQ) is a left C-comodule by Propo-
sition 6.1. We also get

(PiQ) o (Ppg) = Pr.
Let us compute
(hQ) o (PCpQ) = (BMPQ) o (UBPQ) o (PiQQ) o (¢Q) o (Pch)
¢=ldpc (BMPQ) o (JBPQ) o (PiQ) o (PCpQ)
(61) (82)

= (PupQ) o (" PQ) o (PT) =" (1pQ) o (Ps"Q) o (PT)
(g) (Ué@) o (PUAQ) Pmodule PQ

and
(PCpq) o (hQ) = (Ppq) o (PurQ) o (¢°PQ) o (PiQ)
2 (P%pg) o (13Q) o (P*Q) o (PiQ)
) (PCpg) o (12Q) o (PuaQ) o (PCQ)
Pmodule ( Pch) o ( peC Q) Qcomodule PQ.



154

Thus h(Q is an isomorphism with inverse P%pg and we can conclude by applying
2). O

8. EQUIVALENCE FOR (CO)MODULE CATEGORIES

8.1. Equivalence for module categories coming from copretorsor. In this
subsection we prove that, for given categories A and B, under the assumptions of
Theorem 6.29, there exist a monad A on A and a monad B on B such that their
categories of modules are equivalent. We outline that the assumptions quoted above
are satisfied in the particular case of a regular coherd.

First of all we need to define the functors 4@ g and gQ) 4 which will be used to set
the equivalence between these module categories.
Using the functors @ and @, we construct the lifting functors 4@p : B — A and

BQa 1 n A — B.

PROPOSITION 8.1. In the setting of 6.29 there exists a functor 4 (@Qp) : gpB — oA
such that AU 4 (Qp) = Qp where (Qp,pg) = Coequpy,, (,uggU, QBU/\B) . Moreover
we have

(174) pq o (“hgrU) = "1y © (Apg)
where g, = aUMaa (Qp) : AQp — Qp.
Proof. In view of Theorem 6.29, we can apply Proposition 3.30. U

8.2. In light of Proposition 8.1, a functor @) : B — A introduced in 6.29 induces
a functor 4 (@Qp) : pB — aA for the monads A and B. Our next task is to prove
that the B-A-bimodule functor @), constructed in Proposition 7.6, induces a functor

B <C§A) : aA — B which yields the inverse of 4 (@p) .

PRoOPOSITION 8.3. Within the assumptions and notations of Theorem 6.29, there
exists a functor B@\A : AA — B such that BUB@A = @A where (@A,p@) =
Coequpy, (u%AU, @AU)\A> . Moreover we have

(175) Yhigy 0 (Bp@> = pg ° (BM@AU>

where BN@A = 3UMpp0a : BQa — Qu, so that (@\A,B/L@A) is an B-left module
functor.

Proof. In view of Proposition 7.6, we can apply Proposition 3.30 where () is @ and
we exchange the role of A and B, A and B. ([l

Now we want to prove the first isomorphism.
Within the assumptions and notations of Theorem 6.29, we will construct a functo-
rial isomorphism gQ4aQr = gB.

LEMMA 8.4. Within the assumptions and notations of Theorem 6.29 the following
equality

(176) vyo (upP) =10 (Puy)
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holds where v, is defined in (149).
Proof. We compute

o (upP) o (PP) o (DPC) "2 1 o (yP) o (6pP) o (DP=E)

2 )l o (yP) o (PQPEC) o (5pPC)
( z) o (PQP) o (pPC) = Lo (Px) o (Pu") o (6pPC)

=T ) o (Pu') o (5pPC) =10 (Px) o (PxP)o (PQPéc) o (6pPC)

2 1o (Pz)o (PYP)o (6pPQP) o (DPsc)

(149

(149)

="} o (yP) o (PxP)o (pPQP) o (DPsc) = v}yo (yP) o (2'P) o (DPs¢)
=" o (yP) o (2" P) o (DPS) = vy o (yP) o (" PQP) o (DP5c)
“49)5 o (Pz) o (PPQP) o (DPs¢) = Lo (Px) o (Péc) o (s PC)
W o (Pua)o (PeC) o (sPPC) = Lo (Puy) o (e°P) o (DP=C).

Since (P P) o (DPe®) is an epimorphism (recall that both e and e are coequal-
izers), we conclude. O

PROPOSITION 8.5. Within the assumptions and notations of Theorem 6.29, there
exists a functorial morphism o : BgU — Qa4aQp such that
(@AAQB, a) = Coequp,, (mpU, BgUM\g) . Moreover for every morphism h : BgU —
X such that

ho (mpgU) = ho (BgUAp)

z'fﬁ : CAQAAQB — X is the unique morphism such that hoa = h, we have that

(177) /f; o <p@AQB> e} (ZAUAQB) o (PApQ) =ho (yBU) e} (PAMQ]BU) .
Proof. Let us prove that
(178) (p@AQB> o (aUaQg) o (PApq) o (Pua@sU) o (PxsU)

— (pgaQs) © (1U4Qp) © (PApg) o (P2QsU)

Using Proposition 8.1, we compute
(PgaQs ) © (12U4Qu) o (PApQ) o (PuaQsl) o (Pxsl)
% (pgaQs) © (1LU4Qs)  (PApq) o (PAXaU) © (PusQPQsU)
2 (gaQs) © (WU AQp) o (PApg) o (PA gsU) o (P AzQsU)
© (PusQPQsU)
= (p@AQB> o (1aUaQp) o (PA*ug,) o (PAApg) o (PAzQpU)
o (PusQPQzU)
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(pQAQB>o(@ uQB> (IAQg) o (PAAp) o (PAzQU) o (PusQPQpU)
(%AQB) (@AU)\AAQB> o (lAQp) o (PAApqg) o (PAzQpU)

def AHQB

(150)

O(PU,AQPQBU)
92 (rga@n) o (#AQs) © (1AQp) o (PAADQ) o (PAQsU) o (PusQPQsU)
(Pga@s) © (1Q) o (PmaQs) o (PAADQ) © (PATQsU) o (PuaQPQsU)

ma

(rga@s) © (1Qn) o (PApq) o (PmaQsU) o (PusAQsU) o (PaQsU)

Amonad

(Pga@s) © 1Qz) o (PApq) o (P2QsU)

Now we want to prove that
(PgaQs) © (1Q5) © (PApo) o (Pua@sU) o (V)

(Pga@z) © (1Qs) @ (PApQ) o (PuaQsU) o (='50)

We have
<pQAQB> (IQp) o (PApq) o (PuaQsU) o (2'sU)
(PQAQB) (IQg) o (PApg) o (PuaQpU) o (PxgU) o (0pPQgU)

(rgaQs) © (1Q5) © (PApq) o (PrQsU) o (6p PQsU)
Paa QB) (1Q5) o (PzQg) o (PQPpo) o (5p PQsU)

(178)

i <p@ Q> o (IQ5) o (PxQg) o (6pPQg) o (DPpo)
(Poa@s) © (4Qn) © (WPQw) © (3P Q)  (DPpo)
(PgaQs) © (1Qs) © (usPQs) © (" PQs) @ (DPpo)

(149)

(110)

(176)

(pgaQn) © (1Qn) © (PusQp) o (=" PQp) o (DPpo)

= (Pga@s) © (1Qs) 0 (PuaQs) o (Ppo) o (P PQsU)

= (Pga@s) © (1Q) o (PuaQs) o (Ppq) o (5V)
(rga@s) © (1Qs) © (PApq) © (PuaQsU) o (='50)

(BBUa yIBU) = Coeunun (ZZIBUa ZT]BU) )

there exists a functorial morphism « : BgU — Q44@Qp such that
(p5a@n) © (IQE) o (PApq) o (PuaQsU)

Since, by Lemma 2.10

(179) ao (ypU) =
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Now we want to prove that

(@AAQB,CY> = Coequy,,(mppU, BgUAp).
Let us show the fork property for «, that is
(180) ao (mppU) = a o (BgUAg).
We have
ao (BgUAg) o (yysU) = ao (BgUAg) o (yBeU) o (PQysU)
< ao (ypU) o (PQeUAp) o (PQysU)
= <P@AQB> o (IQp) o (PApg) o (PuaQpU) o (PQsUAE) o (PQysU)

= (rga@s) © (1Q) © (PuaQs) © (Ppq) o (PQsUAR) o (PQysU)

defpg

= (p@AQB) o (IQp) o (Pua@p) o (Ppg) o (Pugel) o (PQysU)

"D (pgaQs) © (1Qp) o (PusQp) o (Ppg) o (PxsU)

= (%AQB) o (IQp) o (PApq) o (PualsU) o (PxsU)

(179) ao (ygU) o (PxgsU) ® ao (mppU) o (yysU)

and, since yygU is an epimorphism, we conclude. Now, let us consider a functorial
morphism h : BgU — X such that h o (mpglU) = h o (BgUMAp). We have to show

that there exists a unique functorial morphism h : Q4 4Qp — X such that
hoa=h.
First we will show that there exists a functorial morphism % such that h and A fulfill

(177) i.e.

ho <p@AQB> o (1sU4Qp) o (PApq) = ho (ysU) o (P*uqeU) .
To do this, we need a series of equalities. First of all, let us show that
(181)  yo (P'ug) o (PAug) o (PAQy) o (PzQPQ) = mg o (yy) o (PXPQ).
In fact, we have

yo (P ug) o (PAuG) o (PAQy) o (PzQPQ)

"y o (PAig) o (PAY) o (PzQPQ)

(101)

= yo (PAug) o (PrQ) o (PQPX) "= yo (Px) o (PQPX)

E o (Px) o (PxPQ) Y mp o (yy) o (PYPQ).

Now let us prove that

(182)  (yy) o (PXPQ) = (yB) o (P'ugB) o (PaQB) o (PQPQy).
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In fact we have
(yy) o (PxPQ) = (yB) o (PQy) o (PxPQ)
= (yB) o (PxB) o (PQPQy)

W (yB) o (P ugB) o (PzQB) o (PQPQy) .
Therefore we deduce that
(183) y o (PA,uQ) o (PA,ug) o (PAQy) o (PxQPQ)

=mpo (yB) o (P ugB) o (PzQB) o (PQPQy).

Now we compute

ho(ysU) o (P ugeU) o (PAugeU) o (PAQysU) o (PrQPQsU)
= ho (mpsU) o (yBeU) o (PAugBaU) o (PeQBsU) o (PQPQysU)
S o (BaUAp) o (yBsU) o (PugBsU) o (PrQByU) o (PQPQysU)
£ ho(yzU) o (PQeUAg) o (P*ugBgU) o (PxQBgU) o (PQPQygU)

= ho (ysU) o (PAugsl) o (PAQsUg) o (PzQBgU) o (PQPQyzU)

= ho (ypU) o (P*ugsl) o (PAQsUMg) o (PAQyzU) o (PzQPQ3U)
Since (PAQypU) o (PxQPQgU) is an epimorphism, we obtain
ho (ypU) o (P 1gsl) o (PAugsU) = ho (ysU) o (P*ugsU) o (PAQrUAp)

Since (PAQg, PApg) = Coequp,, (PA,ugBU, PAQBU)\B) , there exists a functorial
morphism h; : PAQp — X such that

(184) hi o (PApg) = ho (ygU) o (Ppgsl).
Now we prove that
(185) y o (PA/LQ) o (Pz@Q)o (ZZPQ) =yo (PAMQ) o (PxQ) o (2" PQ)

In fact, we have
yo (PAug) o (PxQ) o (+PQ) ") yo (Px) o (:PQ)

(156) , (101) ,
o (Px)o(z'PQ) = yo (P'ug) o (PxQ)o (' PQ).
Using the previous equalities, we obtain

hio (P2Qp) o (zlPQB) o (DPQPpg) = hy o (PxQg) o (PQPpg) o (' PQsU)
= hy o (PApg) o (PzQgU) o (2'PQzU)
o (ysU) o (P 1ugeU) o (PzQsU) o (2'PQsU)
S ho o (ysU) o (PAMQBU) o (PzQpU) o (2" PQpU)
" hy o (PApg) o (P2QsU) o (2" PQsU)
Z hy o (P2Qp) o (PQPpg) o (2" PQgU)

(184)
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Z hy o (PzQp) o (2" PQp) o (DPQPpq) .
Since DPQ)Ppq is an epimorphism, we deduce that
hl o) (P.I’QB) (e} (ZZPQB) = hl o) (P.I’QB) (e} (ZTPQB) .

Since <@QBZQ3) = Coequp, ((PzQg)o (' PQp) , (PxQp)o (2" PQp)), there exists
@QB — X such that
hg @) (ZQB) = hl.

a functorial morphism hs :

(186)
We compute
yo (PAug) o (P1Q) o (PxPQ) "= yo (Py) o (PxPQ)

E Yo (Px) o (PQPY)
(101) yo (Pug) o (PzQ) o (PQPY)
Zyo (P NQ) o (PAx) o (PzQPQ)

so that we get
(187)  yo (Puq) o (PzQ) o (PxPQ) =y o (P"ug) o (PAx) o (PzQPQ).

We also have

(1Q5) o (PApg) o (PAxsU) o (P2QPQsU)
"2 (1Q) 0 (PApg) o (PA*gsU) o (PAzQsU) o (P2QPQsU)
"I (1Q8) 0 (PA*g,) o (PAApg) o (PAZQsU) o (PrQPQsU)
L (@1, ) © (14Qn) 0 (PAAPG) o (PAQsU) © (P2QPQsU)
= (Q"1q, ) © (14Qp) 0 (PAZQp) o (PAQPpQ) o (PrQPQsU)
2 (@1, ) © (14Qp) 0 (PAQs) © (PrQPQQ) o (PQPQPpq)
— (Q"1as) © 14Q5) o (P22Qp) © (PQPQPpQ)

so that we get

(188) (IQp) o (PApg) o (PAxsU) o (PzQPQgU)

_ (@AMQB) o (1AQp) o (Pz2Qp) o (PQPQPpq)

and hence we obtain

hao (13Qz) © (14Qz) o (Pa2Qs) o (PQPQPpQ)

" hy o (1Q5) o (PmaQs) o (Pr2Qg) o (PQPQPpq)
o (PmaQp) o (PraQp) o (PQPQPpo)
"= o (PaQp) o (PXPQ5) o (PQPQPpq)
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= hy o (PzQp) o (PQPpq) o (PxPQsU)

T

2 hy o (PApg) o (P2QsU) o (PxPQsU)
"ho (ysU) o (P'ugeU) o (PxQsU) o (PxPQgU)
ho (ypU) o (PAugsU) o (PAxgU) o (PrQPQsU)
"2 hy o (PApg) o (PAXU) o (PrQPQsU)
"9 1y 0 (1Q5) o (PApg) o (PAxsU) o (PrQPQsU)

"2 1y 0 (Qa,) 0 (14Qp) o (P12Qp) o (PQPQPpg).
Since (IAQp) o (PrzQp) o (PQPQPpo) is an epimorphism, we deduce that
ha o (Q*pgy) = ha o (M%QB) :

By Proposition 8.3 we have <@AAQB: p@AQB) = Coequg,, <N%AUAQ37 @AU)\AAQB> =

Coequpy, (u%@ B, @A 1o B) and hence we infer that there exists a functorial morphism

~

h: @AAQB — X such that

184

(187)

/ﬁ © <pQAQB) = ha.

Hence we get
ho (pQAQB> o (IaUaQp) o (PApq) = ha o (IaU4Qp) o (PApq)

86) 84)
= hy 0 (IQp) o (PApg) "= hy o (PApg) "2 ho (ysU) o (PAgsl)

and hence equality (177) is proven. Now we have

hoao(ysl) T ho (pQAQB> o (IQg) o (PApg) o (PuaQsU)

177 1qQ is unital

A
"o (yeU) o (P 1gsU) o (PuaQpU) = ho (ysU)
so we get R
hoa = h.

Let now 7' : Q\ 440 — X be another functorial morphism such that Woa=h.
Then we have

ho (pQAQB) o (IQp) o (PApg) o (PuaQgU)
"D hoao(ysU) = ho (ysU) = h o avo (ysU)
(179) B o ( @AQB) o (ZQB) o (PApQ) o (PU,AQBU) .

Note that, by (178), since the second term is an epimorphism, <p@AQB) o(lpU aQp)o
(PApq) o (Pua@pU) o (PxsU) is epi and so (p5a@s) o (IQ5) o (PApq) o (PuaQsU)
is also an epimorphism. Therefore we deduce that 1’ = h. Hence we have proved
that <C§AAQB,04> = Coequp,, (mppU, BgU\p). O
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THEOREM 8.6. Within the assumptions and notations of Theorem 6.29, we have a
functorial isomorphism gQ s Qp = 5B.

Proof. In Proposition 8.5 we have proved the existence of a functorial morphism « :
BpU — CA)AAQB such that (@AAQB, oz) = Coequy,, (mpsU, BgUMg.) . By Proposi-

tion 3.13 and Proposition 3.14 also (gU, (sUAp)) = Coequp,, (mpeU, BeUAg.). In
view of uniqueness of a coequalizer up to isomorphisms, there exists a functorial
isomorphism

B:QuaQp = 8UpQaaQp — sU such that 3o a = gUAp.

Now since

(]BU)\B) 9] (TTLBBU) = (IBSU/\B) e} (BBU)\B)

and since o = gUAp, by applying (177) where "h = B and "h” = gUMpg, we
deduce that

B0 (pga@n) o (1aUaQs) o (PApq) = (U)o (ysU) o (P*1igsU)
equivalently
fo <P@AQB> o (laUaQg) o (PApq) o (PzQsU)
= (BUAg) o (ysU) o (P pgnU) o (PzQpU)
") (sUAg) 0 (ysU) o (PxsU)
le.
(189) o (p@AQB> o (IaUaQgp) o (PApq) o (PxQsU) = (8UAp) o (ysU) o (PxsU) -
Recall that, in view of Proposition 3.13, (gU,gUApg) is an B-left module functor.
Also (@ A AQB,B[L@A AQB> is an B-left module functor (see proof of Proposition

3.30 and Lemma 3.17) where B,u@A = BU)\BB@A : B@A — @A.Now we want to
prove that 3 lifts to a functorial morphism gQ4Qp — B i.e. that

g <@AAQB7B/~L@AAQB> — (8U,8UA5B)
is a morphism of B-left module functors. Thus we have to prove
(8UAg) o (BB) = o (Pug,aQs)
We calculate

Piig e (Bl) o (yPA) o (PQP) = "ng e (yQ) o (PQI) o (PQPx)

2 Bug0 (4Q) o (PQU) o (PQYP) L Pug o (Bup) o (yBP) o (PQyP)

"1 o (mpP) o (yBP) o (PQyP) = v o (myP) o (yyP)

(1) vy o (yP)o (PxP) W, (Pz) o (PxP)
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so that we obtain:
(190) B,u@ o(Bl)o(yPA)o (PQPx)=1o(Px)o (PxP).
We compute

Bo(Pug,aQs) o (BP@AQB) o (BlaUa@p) o (yPrpq) =

1) Bo(pgals) o (B,UQAUAQB> o (BlaUaQp) o (yPrpq)

= Bo(pgaln) o (BN@AUAQB> o (BlaUaQp) o (yPAQE) o (PQP1Qp)
o (PQPQPpq)
Ed Bo(pgaln) o (IaUaQB) o (PraUaQp) o (PXPaU4Qp)
o (PQPQPpq)
o (p@AQB) o (IaUaQp) o (PxaUaQp) o (PQPpg) o (PxPQgU)
Bo(pgaQs) o (IaUaQp) o (PApg) o (PzQgU) o (PxPQgU)

(189)

= (BUAB) o (ysU) o (PxsU) o (PxPQsU)

D U)o (ysU) o (Pxal) o (PQPxsU)

"D (5UAB) o (mpsU) o (yysU) o (PQPxsU)
PUABN (LU AR) 0 (BaUAg) o (ByaU) o (yPQsU) o (PQPxsU)

< (8UAp) o (BsUAp) o (BysU) o (BPxsU) o (yPQPQzU)
) (sUNg) o (BB) o (Bp@AQB> o (BIoU 4Q5) o (BPApg) o (BPzQsU)
o (yPRPQRU)
= (8UAp) o (BB) o (BPQAQB> o (BlaUaQp) o (yPrpq)

Since (Bp@AQB> o (BlpaUaQp) o (yPzpg) is an epimorphism, we get that (gUApg) o

(BB) = Bo (P 1o, 1@B). Therefore 3 is a morphism of B-left module functors
and hence, in view of Proposition 3.25, it gives rise to a functorial isomorphism

5Q44Q5 =~ 5B. O

Now, we prove the second isomorphism.
Within the assumptions and notations of Theorem 6.29, we will construct a functo-

X

s

rial isomorphism AQprQ4s = 4 A.

LEMMA 8.7. Within the assumptions and notations of Theorem 6.29, there exists a
functorial morphism Z : AU — QppQa uniquely determined by

(191) (pQB@A) o (QP@) 0 (QIaU) o (QPuanlU) = Zo (z4U)
such that
(192) Eo (mapalU) =Z0 (ApU4N).
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Proof. Since (Qp,pq) = Coequpy, (1GsU. @sUAp) we have that

(rap@a) o (15sUnQ4) = (pap@a) o (QsUNs50A) = (pas@a) © (Q“1g,)

so that we obtain
<pQBQA> (QPQ) (
= <pQBQA>

(pQBQA>

QU ) X (peuQa) o (xQa) o (QPQrg)
o (#6Q4) o (QuQa) o (QPQpy)
(@15, 0 (QuQa) o (QPQws)
(@%ug,) o (Qchj)O(Qy@AU)

2 (ponQa) 0 A
) (Q N@AU> ° (Qy@AU>

) (pQBQA> (
and hence we get
(193) (pQB@A> 0 (Q%) ° (X@AU> = (pQB@A) o <QP@) ° <QBMQAU> 0 (Qy@AU>

so that

HQa
1o
Pg

(Paz@a) © (@pg) ° (QUuU) © (QPzAU) 0 (XPQPAU)
X (pan@a) © (Qpg) o (xQuU) © (QPQLLU) o (QPQP,U)
"2 (resQa) o (Qrg) © (Q%Hgal) o (QUQAU) © (QPQLU) @ (QPQPx:U)
2 (pepQa) o (Qpg) o (Q%Hgal) ° (QBILU) o (QuPALU) o (QPQPAU)
"2 (ben04) o (Qpg) © (QIAU) 0 (QPzaU) 0 (QPXPAU).

Therefore we deduce that
(194) (resQa) o (@) © (QILU) © (QPzsU) 0 (XPQPAU)
= (pas@4) © (Qpg) © (QUWU) 0 (QPz:U) 0 (QPXPLU)
By using this equality we compute
(resQ4) o (Qpg) © (QIU) © (QPuasl) e (u'al) o (QPCC,T)
u (pQB@ A) o (Qp©> o (QILU) o (QPussl) 0 (QPCLU) o (w'C,U)
"2 (bas@a) © (Qpg) © (QLWU) 0 (QPzsU) 0 (QPbsU) o (w'CAU)

£ (pezQa) © (@pg) ° (QIuU) © (QPzsU) o (w'QPAU) o (QPCHcsU)

— (pesQa) o (Qrg) © (QUU) © (QPz,U) 0 (XPQPAU) o (QPScQPAU)
o) (QPC(SCAU)
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" (oQa) o (Qng) © QL) o (QPasl) o (QPYPA) @ (QPIQPA)
o (QPCSenU)
D (5gsQ4) o (@ng) = (QLU) 0 (QPaL) o (QPLQPD)
o (QPCooAU)

= <pQBQA> o <QP@> o0 (QIpAU) o (QPzpU) o (QPicaU) o (QPCSCAU>

(103)

2 (bap@a) o (Qpg) © (QUWU) 0 (QPusU) o (QP=C,1) o (QPC=C,1)
— (pas@4) o (Qrg) © (QIAD) 0 (QPuALD) o (w'4U) 0 (QPC=C,D)
since QPCe® U is epi we deduce that
(penQa4) o (Qrg) © (QUU) 0 (QPussl) o (w'aU)
= (pan@4) © (Qpg) © (QUWU) 0 (QPuA) o (w'AT).

Since (AU, z,U) = Coequp,, (w'aU,w"yU), there exists a functorial morphism
= ApU — QppQa such that

(Pos@a) o (Qpg) © (QLV)  (QPusLY) = o (2,1).

Let us prove that
=o (mAAU) ==o (AAU)\A) .
By the definition of p5 we have that

pg o (AU ) © (1AAU) = pg o (QuUa) o (14,1)

so that
pgo (lal)o (Pmanl) 2 pQ (MSAU> o (IAsU)
P ps o <QAUA)\) o (1ALU)
and hence
(195) pg o (1aU) o (PmasU) = pg o (@AUA)\> o (1A.U).

We calculate
Z o (manl) o (zxpU) o (QPQPC LU
"B 26 (2,U) o (xPuU) o (QPQP:CLU)
(191) (pQB@ ) (Qp@)O(QzAU)o(QPuAAU)O(xPAU)
o (QPQP:C,U)

X (benQa) o (Qrg) o (XQWU) © (QPQIL) 0 (QPQPuU)
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o (QPQP:C,U)
(Pes@4) o (@pg) o (@%ngal) o (QUQAU) © (QPQLU)  (QPQPuALU)

o (QPQP:C,U)
<pQB©A> o <QPQ) ° (QBM@AU> 0 (QBIAU) o (QyPALU) o (QPQPuasU)

(193)

o (QPQP:C,U)
) o (pg) o (Q“ugrll) o (QBILU) o (QuPALU) o (QPQPz,U)

[l

QPQ
0 (QPQPicAU)
Qpg) © (QIAU) o (QPzsU) 0 (QPXPLU)

ey (pQB@A> o <

0 (QPQPcU)
= (pQB@A) © (Qp@) o (QUaU) 0 (QPmapU) o (QPzx,U)

o (QPQPicAU)
" (panQ4) o (@rg) 0 (QQLUAN) © (QIALU) o (QPrALD)
0 (QPQPz\U) o (QPQPIc4U)

(103) <pQB@A> o (QP@) o (Q@AUA)\> 0 (QIALU) o (QPxzALU)
0 (QPQPu4pU) o (QPQP",U)

(resQ4) o (@pg) © (QLU) @ (QPALULN) 0 (QPAusLU) o (QPasU)

o (QPQP:=C,U)
(renQa) o (Qpg) © (QUU) 0 (QPzsU) 0 (QPQP=C,D)

Am%nad
(ran@4) © (@pg) © (QUU) 0 (QPMasU) 0 (QPusALl) o (QPr,U)
o (QPQP:C,U)
3 (pQB@A> o <QP@> ° <Q@AUA>\) 0 (QIALU) o (QPupApU)

o (QPzU) o (QPQPeC,U)
£ (pas@a) o (Qpg) © (QLLU) o (QPALULN) o (QPusAL) o (QPr,U)

o~

L

Amonad

o (QPQP:C,U)
Qrg ) © (QaU) o (QPusnl) o (QPAUAN) o (QPsU)

E <pQB@A) © <
o (QPQP:C,U)
' 2o (2al) 0 (QPLUAN) 0 (QPz,U) 0 (QPQPEC,LU)
E o (ApUaN) o (zALU) o (QPxpU) o (QPQPe,U)

191
=z

(
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=Z0 (AsUaN) o (zzaU) o (QPQPC,U)

Since (zzpU) o (QPQP@CAU) is epi, we deduce (192). Note that, in particular, we
have

(196)  (pesQa) e (Qrg) ° (QUsU) 0 (QPussl) o (xP4U) o (QPQPEC,U)

= (penQa) o (Qrg) © (QUU) 0 (QPz,U) 0 (QPQP=C,T)
and since the second term is epi, also the first is epi, and hence (pQ B@ A) o <Qp@> o
(QIaU) o (QPuapU) is an epimorphism. O

PROPOSITION 8.8. Within the assumptions and notations of Theorem 6.29, there
exists a functorial morphism = : AU — QppQa such that

(QBB@A,E) = Coequpy, (MmapsU, AyU 4\) . Moreover for every morphism k such
that
ko (mAAU) =ko (AAUA)\)

zf% : QBB@A — Y s the unique morphism such that ko= = k, we have that
(197) ko (MQB@A) o (QP@) o (QIaU) =k o (maal) o (zAnU).
Proof. By Lemma 8.7 we already know that
Zo (maplU) =Z0 (ApU4N).
Now we want to prove that
(QBB@A, E) = Coequpy,, (mapU, ApyU aN).
Let k: AU — Y be a functorial morphism such that

(198) ko (mapU) = ko (ApU M)
We have to show that there exists a functorial morphism K o) B@ A — Y such that
koZ =k.

First we will show that there exists a functorial morphism % such that & and k fulfil
(197) i.e.
]i) o (mAAU) o (l‘AAU) = /]50 (pQB@\A) o (Qp@> O (QZAU> .
We proceed in several steps. First of all we compute
ko (mapU) o (zAxU) o (QPxpU) o (Q'PaU)

(102

D ko (wal) o (xPaU) o (Q'P4U)

=ko (.IAU) 9] (XPAU) ¢) (QPXPAU) 9 (QéDPQPAU)

L ko (1aU) o (xPaU) © (xPQPAU) o (QOpPQP,U)
(105

D ko (wall) o (xPaU) o (Qe” PQPLU)
ko (maalU) o (xALU) o (QPzpU) o (Qe” PQPAU)



167

=ko (mapU) o (xApU) o (QPxpU) o (Qz"P,U).
Since () preserves coequalizers by assumption, by Lemma2.9 we have
(Q@AU, QZAU> = Coequpy, ((QPzAl 0 Q2 PoU), (QPz,U 0 Q=" PU)) , s0 we de-
duce that there exists a unique functorial morphism k; : QQ,U — Y such that
(199) k1o (QIpU) = ko (mapU) o (zALU).
Then we have
k1 o (Q/%AU> o (QIALU)

(199)

(2 k) 6 (QUAU) © (QPmanl)

ko (mapU) o (zApU) o (QPmapU)
Z ko (mapl) o (AmapU) o (xAALU) "E% ko (maalU) o (maApU) o (zAALD)
) ko (AuUNL) 0 (maAnU) o (zAALU)
= ko (mapU) o (AALU 4N) o (xAALU) Z ko (maal) o (xALU) 0 (QPALU 4N)
" k1 0 (QUU) 0 (QPALUAN) £ ki o (QQAUAN) o (QLALU)
Since QIALU is epi, we get that ko (QM%AU) = kyo0 (Q@AU)\A) . Since () preserves
coequalizers, (Q@A,Qp@> = Coequpy, (Q,LLSAU Q@AU)\A> , then there exists a

unique functorial morphism ks : QOQ4 — Y such that
(200) by = ky o (Qp@> .
We have
ko (nEsUnQa) o (QBpg) o (QUQAU) © (QPQILU) o (QPQP,D)
Lkyo (uBsUsQa) o (QusUnQa) o (QPQpy) © (QPQILU) o (QPQPAU)
ko (xaUsQa) © (QPQpg) ° (QPQLLU) © (QPQPz,U)
X kyo (Qpg) © (QUAU) 0 (QPwaU) © (xPQPAU)

) k00 (QUAU) 0 (QPaaU) o (xPQP,U)
ko (maaU) o (xAsU) o (QPzpU) o (xPQPLU)

" ko (24U) o (xPaU) o (xPQP,U)

(199)

ko (wal) 0 (xPaU) o (QPYPAU)
) ko (manl) o (zALU) 0 (QPaU) o (QPYPLU)
) k) 0 (QIAU) 0 (QPal) o (QPXPAU)
200 4o (Qp@) o (QIaU) o (QPxsU) o (QPXPAU)
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(155)

k20 (Qpg) ° (QuU) o (QPBAU) 0 (QPQPasU)
k2o (Qpg) © (QLU)  (QPmasU) o (QPAUL) © (QPQPaUL)
= kyo (Qp@> o (QIaU) o (QPmanl) o (QPxzsU)
"2 ka0 (Qpg) © (QIAU) 0 (QP2sU) o (QPXPAU)
"D ko (Qpg) © (QUs) o (QuPU) 0 (QPYXPLU)
"= ka0 (Qpg) © (Qufal) o (QmaPsl) o (QuyPsU)
"D hy o (Qpg) o (Q%Hgal) @ (QBYGPLU) o (QuyPsU)
= ko (Qpg) © (Qngall) o (QBY,PAU) © (QByPAU) o (QuPQPAU)
ks 0 (Qpg) o (QPHgal) o (QBIPLU) o (QBPr,U) o (QyPQPAU)
L ko (Qpg) o (Q%gal) o (QuQAU) © (QPQLPLU) © (QPQP,U)
"D ko (Q%ng, ) o (9Brg) o (QuQAU) © (QPQLU) @ (QPQPxU)

(154)

"L gy 0 (QaUAss@4) 0 (QBrg) o (QuAT) 0 (QPQIL) o (QPQPD)
Since (QBp@> o (Qy@AU> o (QPQLLU) o (QPQPzAU) is epi, we get
ko (1sUn04) = k2o (QuUN550Q4)

From (QBB@A,pQB@A> = Coequp,, <H51PBUB@Aa QBU)\BB@A> we deduce that
there exists a unique functorial morphism & : Q@4 — Y such that
(201) ko (papQa) = k.
Moreover we have
Fo (pan@a) o (Qpg) o (QUU) = ks o (Qpg) © (QLWV)

(200) ko (QLAU) (199)

ko (mapU) o (zA\U)

i.e.
(202) ko (penQa) o (Qpg) o (QUU) = ko (masll) o (zAsD).
Now we compute

koZo (zaU) 2 ko (pQB@A> o <Qp@> o (QIaU) o (QPuanl)

ko (mapU) o (xALU) 0 (QPuapU) = ko (maaU) o (AuapU) o (zaU)
=ko (zaU).

(202)
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Since x,U is epi we get that

~

ko= =k.

Let now & : o) B@ A — Y be another functorial morphism such that KoZ =k
Then we have

ko (ponQa) o (@pg) © (QIaU) o (QPuanU)

(191) ~

= koZo(xaU) = ko (zaU) =k 0 Zo (z,U)
o (pQB@A) o (QP@) 0 (QIaU) o (QPuanl)
Since we already observed from (196) that <pQB@A> o (Qp@) o (QIpU) o (QPuapU)

is an epimorphism, we have k' = k. Hence we have proved that (Qp B@ A=) =
Coequp,, (maalU, AyU 4\) and, in view of (202), we get that (197)holds. O

THEOREM 8.9. Within the assumptions and notations of Theorem 6.29, we have a
functorial isomorphism y A = AQppQa.

Proof. In Proposition 8.8 we have proved the existence of a functorial morphism
=2 AU, — QBB@A such that (QBB@A, E) = Coequp,, (manU, AyUN4). By Propo-

sition 3.13 and Proposition 3.14 also (U, p\UM4) = Coequp,, ((maalU, ApUN4)), in
view of uniqueness of a coequalizer up to isomorphisms, there exists a functorial
isomorphism

p:aUaQppQa = QupQa — 4U such that po = = ,UM,.
Now since
(AU/\A) o) (mAAU) = (AU)\A) ¢) (AAU)\A)
and since p o Z = ,UM\,4, by Proposition 8.8, we deduce that

(203)  po(penQa) o (Qpg) o (QAU) = (LUA) 0 (masl) o (xALU)

Now we want to prove that p lifts to a functorial morphism AQ)p B@ 4 — aA of A-left
module functors. First we observe that (,U, sUX4) is an A-left module functor in
view of Proposition 3.13. Also (QB B@ A, o, B@ A) is an A-left module functor

(see proof of Proposition 3.30) where A,uQB = 2UMaQpB : AQp — @Qp. To show
that p is morphism of A-left module functors we have to prove

(aUXa) o (Ap) =po (AMQBB@A)-
We have

po (*10u504) o (Apas@a) o (+QsU50Q4) o (QPQpg) © (QPQILU) 0 (QPQPr,U)

(174)

= po (pQB@A> o <AMQBUB@A> o (-’BQBUB@A> o (QPQPQ> o (QPQILU)
o (QPQPz,U)
" o (penQa) o (xaUsQa) o (QPQpg) © (QPQIL) @ (QPQP,U)
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2 po (penQa) o (Qrg) o (XQuU) © (QPQILD) o (QPQPr,U)

(193)

2 o (pas@a) o (Qrg) o (Q%gal) o (QuAU) © (QPQILU)
° (QPQPaAU)
po (pauQa) o (Qpg) o (@%Hgsll) ° (QBILU) @ (QBPsU) o (QyPQPLU)
" po (pesQa) o (Qpg) o (Q“ngell) © (QBYA) © (QByPLU)
© (QyPQPLU)
"2 po (penQa) o (@pg) © (Qusl) o (QmyPal) o (QByP,U)
o (QyPQPLU)
=po (pQB@A) o (Q@) o (Qupal) o (@mpPU) o (QuyPaU)
"2 po (pas@a) o (Qpg) © (QUaU) @ (QuPAU) o (QPXPU)
" po (pesQa) o (Qpg) © (QILU) o (QPwAU) o (QPXPAU)
"2 po (pas@a) o (Qrg) © (QIAU) 0 (QPmALD) 0 (QPrsU)
=0 (panQa) ° (@pg) © (QUAU) @ (QPma)  (QPAL) 0 (QPQPa,U)
w0 <pQB@A> o <Qp@> o (QMSAU> o (QIALU) 0 (QPzALU) o (QPQPz,U)
"2 po (pasQa) o (@pg) o (QQATAL) 0 (QLALT) 0 (QPALU) 0 (QPQPu,T)
Lo (pQB@A) o (Qp@) o (QIaU) o (QPALUN) 0 (QPzALU) o (QPQPz,U)

(203)

Yy

(AU)\A) @) (mAAU) o) (CIZAAU) e} (QPAAU)\A) @) (QP.I’AAU) o) (QPQPZEAU)
(AU/\A) 0] (mAAU) e} (AAAU/\A) o) ([L’AAAU) @) (QPZL‘AAU) e} (QPQPQTAU)
(AU)\A) @) (AAU)\A) o) (mAAAU) @) (:L’AAAU) @) (QPZ‘AAU> o) (QPQP$AU)

AU)ﬁ ass

ol

A

(AU/\A) o} (mAAU) O (mAAAU) (e] (xAAAU) (¢] (QP.Z'AAU)
(AU)\A) @) (mAAU) o (AmAAU) o) (Z‘AAAU) ¢) (QP.I‘AAU)

ma ass

AU)\_A ass

(AU)\A) e} (AAU)\A) o (AmAAU) e} ({L‘AAAU) o) (QP{L‘AAU)

= (AU)\A) ®) (AAU)\A) ¢) (AmAAU) ¢ (AIAAU) e} (SL’QPAAU)
(203)

= (4UM) o (Ap) o (Apas@a) © (AQpg) © (AQLLU) o (2QPALD)

Z (WUMs) o (Ap) o (ApQB@A) 0 (:cQ@) o <QPQPQ> o (QPQILU)
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Since (ApQB@A> o (xQBUB@A> o (QPQp@> o (QPQIAU) is an epimorphism, we
get that p o (A;LQBB@A) = (AUX4) o (Ap). Therefore p is a morphism of A-left
module functors an(i hence, in view of Proposition 3.25, it gives rise to a functorial
isomorphism 4QppQa = 4 A. O

8.2. Equivalence for comodule categories coming from pretorsor. The re-
sults obtained in this subsection can be found in [BM].

Given categories A and B, under the assumptions of Theorem 6.5, one can prove
that there exist a comonad C on A and a comonad ID on B such that their categories
of comodules are equivalent. We outline that the assumptions quoted above are
satisfied in the particular case of a regular herd.

Using the functors @ and @, we construct the functors “QP : PB — €A and

—C : . .
PQ" : ©A — PB which will be used to set the equivalence between these comodule
categories.

PROPOSITION 8.10. In the setting of Theorem 6.5 there exists a functor ¢ (QD) :
PB — €A such that “CUC (QD) = QP where (QD,LQ) = Equp,, (pgm’U, QDUWD) )
Moreover we have

(204) (“po"U) 0% = (C1?) 0 “pgo

where ©pop = U (QP) : QP — CQP.

Proof. In view of Theorem 6.5, we can apply Proposition 4.29. U

8.11. In light of Proposition 8.10, a functor @) : B — A introduced in Theorem 6.5
induces a functor ¢ (QD) : PB — C A for the comonads C and ID. Our next task is to

prove that the D-C-bicomodule functor ), constructed in Proposition 7.1, induces
a functor ? (@C) : €A — P which yields the inverse of ¢ (QP).

ProproOSITION 8.12. Within the assumptions and notations of Theorem 6.5, there
ewists a functor DGC : CA — PB such that DUD@C = @C where (@C,LQ) =

Equp,, (p%CU,@‘CU”yC> . Moreover we have

(205) <DL§> o Dpac = (DpécU) 0
where Dp@c = DUVDD@C : @C — D@C so that (@C,Dp@c> is a left D-comodule
functor.

Proof. In view of Proposition 7.1, we can apply Proposition 4.29 where Q is Q and
we exchange the role of A and B, C and D. O

Within the assumptions and notations of Theorem 6.5, one can construct functor-
ial isomorphism D@CCQD =~ DB and CQPP @C =~ C A. Such a result can be obtained
by dualizing all the ingredients proved in details for the equivalence between module
categories.
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THEOREM 8.13. Let A and B be categories with equalizers and let T : Q — QPQ be
a reqular pretorsor for = = (A, B,P,Q,04, 0% uy, uB) . Assume that the underlying
functors P,Q, A and B preserve equalizers. Then we have functorial isomorphisms

DR o D@CCQD and CA = CQDD@C'
9. EXAMPLES

LEMMA 9.1. Let X be a bimodule. Let L = — @7 X : Mod-T — Mod-R and
let H = Hompg (X, —). Assume that % is faithfully flat. Then the unit n of the
adjunction (L, H) is a regular mono.

Proof. Tt is well known (see e.g. [BM, Lemma 2.3]) that the diagram

Ly LnHL
L— LHL = LHLHL
LHLy

is a contractible (split) equalizer with respect to the functorial morphisms (eL,e LHL).
Since 7Y is faithfully flat we get that the diagram

n nHL
IdMod-R—>HL = HLHL
HLn

is exact. L]

COROLLARY 9.2. Let a: T — A be a ring homomorphism and assume that 1A is
faithfully flat. Let v: A — A @7 A be the map defined by setting

’y(a) =12Qra—a®r 1.
Then (T, ) = Ker (7).

COROLLARY 9.3. Let o : A — T be a ring homomorphism such that Ty is faithfully
flat. Then the unit of the adjunction (— @4 T, Homy (T, —)) is a reqular monomor-
phism.

Proof. Let n : Mod-T — Homrp (T, —) ®4 T be the unit of the adjunction. Then,
for every M € Mod-T we have

nM : M—>M@sT
T — T®alr.

We have

MM (x)=2®s 1l =(M®@40a)(x®414) =(MR40a)o0 (rﬁ)
Then, for every M € Mod-T, we have

Ker(M®a47) = (M®4 A M®,a)= (M, (M ®4a)o (rf/[yl)

= (M,nM).

Hence, (M,nM) = Ker (M ®4 ), i.e. n is a regular monomorphism. O

-1

We try here to apply the previous theory to a particular setting in which, first of
all, we compute all the ingredients we need to understand the form of the herd.

9.4. Let us consider
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e R = associative unital algebra
e A= R-ring
e (' = R-coring
e ):C®rA— A®gC aright entwining
e (= A®pC the induced A-coring
o (X4, 0%) = right C-comodule = right entwined module.
o T =End® (%).
Note that if 7" C A is a right C-Galois extension i.e. (AR,p(;;) is a right C-
comodule and the canonical Galois map
cang : A®@r A — ArC
t@pt —tp§ (t) = tt, @p t)
is an isomorphism, then we can consider the right entwining
v . C®rA— ARrC
c®pt +— cang (cang1 (14 ®rc) t)
and hence the A-coring A ®g C, which turns out to be a right Galois coring i.e. A
is a right comodule over the A-coring A ®5 C via p§ defined by

®ap§

A AR A A0, AQrC = ARRC,
tr—14®at)®rt.
The coinvariants of A with respect to this coaction is still 7" and the canonical Galois
map is
calgp,c A®r A— AR A®rC
t@pt — tphPRC () =t Quth @pt), = 1@ tt) pt, =1 @4 cang (t @7 t')

so that canyg,c is still an isomorphism. Therefore we can consider this case as a
particular case of the previous one, where

(S p8) = (Aa.05)

Let A be a right Galois extension of B over the Hopf algebra H. In this
case we have

A = Mod-R,

B = Mod-B where B = A®H)

A = —®rA: A= Mod-R — A = Mod-R
B = —®gA:B=Mod-B— B= Mod-B
Q = —®pA:B=Mod-B— A= Mod-R
P = —®rAg: A= Mod-R — B = Mod-B
QP = —@pA®pA™ —®rA

PQ = —®pAQprA™ — @5 A

C = —®rH: A= Mod-R— A= Mod-R
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| = %, L=—®pA—CL=—Qp @, A0 H™ - Q5 A®C

A second particular case of this situation we have the one where R = k
is a commutative ring, C' = H is a Hopf algebra over k£ and A is a right
Galois extension of T = A,

Now let us set

A = Mod-R,

— Mod-T where T = End® (2)

—®prA: A= Mod-R — A= Mod-R

—®rC: A= Mod-R— A= Mod-R

= —®r B:B=Mod-T — B = Mod-T where B =Homy (X4,%4)
—QrY :AC=—-@pCRrA— CA=—QrARzC

— Q7 X Mod-T — Mod-A = , A

= Homy (¥,-) : Mod-A — Mod-T

= —QLARRC: Mod-A — Mod-A

= O, L=-0rY —CL=-0rS@41ArC = - @, L@z C

L AT N EE A > 5
I

When X, is f.g.p., we set
A (2*>B = HOl’IlA (BE;A A)

and we consider the following formal dual structure M = (A, B, P, Q, 0%, 05) on the
categories A and B .

e A=(—®rA, —®gmy,— Qg uy) is a monad on A = Mod-R
eB=(—®rB,—&rmp,— 1 upg) is a monad on B = Mod-T where T =
End® (%)

P=—-—®rX;: Mod-R — Mod-T
Q=pUocL=—®rYr: Mod—T — Mod— R — &% : Mod-T — Mod-R
o4 : QP — A is defined by

UA:QPZ—(X)RZ*@TE—)—@RA
—QrfRrxr— — Qg f(x)
o8 PQ — B is defined by
O'BiPQ:—®TZR®RE;—>BZ_@TBg_(gTER@AZ;“
—®rYy®rY— — @1y 7() = —®ryy (i) ®a 7]
= —QRry®ay(r:)T; =—Qry®ay

(P A — B,Bup: BP — P,y : PA — P) is a bimodule functor
(Q:B— A Aug: AQ — Q, g : QB — Q) is a bimodule functor
o4 : QP — A is A-bilinear
oP . PQ — B is B-bilinear
oo (AMQP) =myo (AUA) and o o (Quﬁ) =My o (UAA)
oBo (BMPQ) =mpgo (B(TB> and % o (Pug) =mpgo (UBB)
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and the associative conditions hold
g o (0'Q) = 1 0 (Qo”) and Pup o (P P) = pip o (Pot).
In fact, we compute
(0% 0 (“ugP)] (~ ®r f ®r & ®r a) = 04 (— @& f ©r za)
=—Q®r [ (za) = —®r [ (z)a
and
[on (AO'A)} (—Rrf@rax®ra)=mus(—®gr f(z)®ra)=—Qr f(x)a
so that
oo (A,uQP) =mpyo (AO’A) .
We compute
(0% 0 (Qup)] (—®ra®g f@rx) = 0" (—®raf @rz) = — Qraf (v)
and
[mA o (UAAH (—®ra®p fO®rx) =ma(—Rpra®g f(z) =—paf (x)
so that we get
oo (Quf_},) =My O ((TAA) .
We compute
(0% 0 (PupQ)] (— @72 ®p f @1 b) = 0 (— @1 2 @R fb)
=0’ (—@ra@r f(b()=—rz-f(b()

[mp o (Bo®)] (- @ra®p forb) =mp(-@ra-f()©rb) =—ar[(z-f() ol
Let us compute, for every y € ¥ we have
[—@rz- fOO)]W) =—oraf(y) =
—®r[(z-f()ebl(y) =—r(@-f() (b)) =-rzf(by))
so that we obtain
oPo (B,upQ) =mpgo (BJB) .
Now we compute
[0 o (Pug)] (= @rb@ra@r f) =0 (- @rb@) @r f) = - @rb(x) f()
and
[mp o (68B)] (~ @rb@ra@r f) =mp (~@rb@ra- f() =—or[bo(z- ()]
so that, for every y € ¥ we have
[—@rb(z) - fOl(y) =—@rb(z) f(y)
and
(—@rfbo(z-fON)(y)=—@rb(z-f()(y) =—@rb(xf(y) =—rb(x)f(y)

so that we get
oPo (Pug) =mpo (JBB) .
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Now we have

[rqo (0'Q)] (= ®r 2 @r f@ry) ="ho (— @rz@r f (y)) = — ®raf (y)
and
(1150 (Qo)] (—®r a2 ®r f@ry) =pg (—@r - f () ®rY)
=—®rz-f()(y) =—rzf(y)
so that
g0 (74Q) = o (Qa").
Finally we compute
[Pupo (oPP)] (—@r f@r2®rg) ="up(—@rfOrz-g()=—@r f(z-9()
and
[lu‘;o (PUA)} (—®r fRrx®rg) :ué(— Qr f(x)®rg)=—Qr f(x)g()
so that, for every y € ¥ we have
[~ @r f(z-g))](y) =—®r flzg(y) = —@r f(2)g(y)

and

[—®r f(2)g 0] () =—®r [(z)g(y)
so that we get

Bupo (UBP) = o (PUA) .
Note that, in the case gA is faithfully flat,by Corollary 9.2,
(A,ug) = (Mod-R,— @rua) = Ker (— Qg 7)
= Equpy, (— ®pua ®p A, — @prus@r A) .

Analogously if 7B is faithfully flat we have
(B,ug) = (Mod-T,— @1 ug) = Equg,, (— @7 up r B, — @1 ug Q1 B).
Thus, in the following we will assume that both A and B are faithfully
flat so that we have a regular formal dual structure.
The counit € of the adjunction (L, W) is given by

ey Homy (3, M) @p ¥ — M
ferz— f(z)
for each M € Mod-A. Therefore we get that
can = (@e) o (épLW) : LW = Homyu (8, —) @r ¥ — C=—®4 A®grCgr
is defined by
cany : Homy (3, M) @13 — M ®@4 A®g C
Y ®r v (T0) ®p 71
for each M € Mod-A. Hence we deduce that <L, épL> is a left C-Galois functor

if and only if (EA,pg) is a right Galois comodule.
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By Lemma 3.29, we have 4Q = L = — ®7X : Mod-T — Mod-A. We have that
P, is a right adjoint of 4@, so that, by the uniqueness of the adjoint, we have

Py=W =—®4 %} : Mod-A — Mod-T.

Note that, by Corollary 6.22,, 404: 4QP4 — s A = Mod-A is the counit e of the
adjunction (4Q,Pa) = (L, W), i.e.

ATAM = €M : JQPAM = M @, %" @p X4 — M
mQa fQrx—mf(x).
Now, we can consider
Acany = (6,40?) o <5pLW> LW — C.
For every M € Mod-A, we have
acana M = ((Lﬂ) 0 (5‘pLWM) MO @4 — M@rC
m®a f @rx— mf(xg) g x1.

Therefore we deduce that 4cans = can. Recall now that, by Lemma 6.17 4cang, is
an isomorphism if and only if

cany := (Co?) o (“pgP) : QP — CA

is an isomorphism. For every M € Mod-R, we have
C&HlM . QPM:M(@RZ;@TER — CAM:M®RA®RC
m®Rf®Tx g (CO‘AM) (m ®Rf®T Zo ®R ZL‘l) = m®Rf(x0) ®R xIq.
Assume now that (X4, pg) is a right Galois comodule. Thus we deduce that
(£.%.) is a left Galois functor and thus cany := (Ca*) o (CpgP) : QP — CA
is an isomorphism. Therefore, we can consider the composite
T = ((Canl)_1 Q) o (CuaQ) o CpQ :Q — QPQ

and we can apply Theorem 6.24, that implies that the functorial morphism 7 is a
regular herd. It is defined by

T:M®rYXgp— M®prYXr Qg2 Q1 YR
m®Txl—>m®Txo®Rx} ®Tx%
where
m ®r o ®g T ((m%)o) ®r (1), = (can1QM) (m @1 g @R 71 Qr ¥7)
= [(camQM) o ((canl)_1 QM) o (CusQM) o (“poM)] (m @7 x)
= [(CuaQM) o (“poM)] (m &1 z)
=mQr To Or 1a O 1.
For every c € C, we denote by
— @t @rc? = (cany) "' (— ®p 14 Qg )
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so that
—Qprla®pc = (can1 o (canl)fl) (— ®r 14 ®gc) = cany (— Qrc' @7 62)
= —ard ((),) @r (),
ie.
— ®pgc' ((02)0) Qr (02)1 = —Qprla®grec.
Now, starting from a pretorsor, we want to compute the two comonads associated.

First of all we compute the comonad E = (E AN ) corresponding to the comonad
C defined in Proposition 6.1. We have

(E,i) = Equp,, (wl, w")
where w! = (QPo?) o (TP) and w™ = QPuy : QP — QPA, ..
W QP =—QpY¥7 ®@rYgr — QPA=—-QrAQp X, @1 YR
— Qr f @12 — Qg [ Or 20 Qp ] @1 27 — — R f (20) O 21 Or 23
and
W iQP=—QprX7QrXgr = QPA=—QrAQr X, Qr Xp
—Qrf®rr— —Qrla®R [ Qrz.
We compute
(canjA) ow! = (can;A)o

Q
)
Q

=
o

7P) = (CAo™) o (can,;QP) o (TP)

( ) o (can;QP) o ((canl)f QP) o (CuaQP) o (“poP)
= (CAO'A) o (CuaQP)o ( poP)

(Cuad)o (C %) o (“poP)

( Joc

so that we get
(can;A) o w' = (CuyA) o can,
Moreover
(canjA) ow" = (canyA) o (QPua) = (CAuy) o cany
Le.
(canyA) ow” = (C'Auy) o cany.

Assume that the functor C': A = Mod-R — A = Mod-R preserves equalizers.
Then we know that

(C, (Cua)) = Equp,, ((CuaA), (CAua))
and thus we have
(C,cany! o (Cua)) = Equp,, ((CusA) o cany, (CAuy) o canyg)
so that we get
(C,can; ' o (Cua)) = Equpy, ((can;A) o w', (cany A) o w")

1.e.

(C,can; ' o (Cua)) = Equpy, (W', w").
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Note that, in view of our assumptions, (B,ug) = Equp,, (upB, Bug) and hence we

can apply Proposition 6.2. Now, we compute the comonad D = (D, AP P ) defined
in Proposition 6.2. We have

(va) = Eunun (elv 97“)
where §' = (65 PQ) o (P7) and 6" = upPQ : PQ — BPQ = WLPQ, i.e.
0': PQ=—®r Xr®r ) — BPQ = —®rp Xg Qr 57 @r B
— Q7T ®p f > — @7 1) Qr T Q7 ] @p f — — @1 20 Qr 7] Qp 27 - f
6! PQ=—-®7Lr@rSr - WLPQ=—Q®r Xr®r L4 @r L Q4 2
—RrrRrf — —®TI‘Q®RZE%®T1‘%®RJC'—>—®T£E0®R$%®T$%f($i)®,4$:
= —®T:E0®in ®Tx%®Af($i)f‘k

)

®r 2o O T @ 7 Q4 f
— @7 Xr®r Xy — BPQ = —®p X Qr X7 @r B
—QrrRrfr——Rrx®pr f R 1p.

0" : PQ =

QTPQ:—®TER®RE§«—>BPQ:WLPQ:—®TZR®RE;®TZ®AE*
—Qrax@pfr—QrzQrfQrlp(x;)®az]

—Qrr®pr fRrx; Q4.
Note that Py = W = —®43* and by (15) we have Py F' = W) F = —QrA®@4 X" =
— ®p X" = P. Let us consider

AC&HAAF = <6AO'£AF> o <épLWAF>
- (6’AaﬁAF) 0 <5pLPAAF)

2 (Cukr) o ()
where

acangy F i LW F = LP —s CuF
is thus defined by setting

acan g, F i —QprAAY @7 Y — —Qr AR ARR(C Y - rAQrC
—Qra@afRrr— —Qra®a f(rg) Qrr1 >~ — Qraf (xy) Qg 21
or simply

acan g, F i —QprAAY @7 Y — —@Qr AU ARR(C Y -~ Rr ARz C
—Qrla®a f@rz— — Qg f(v0) Qr 21.
We have

W acanan FQ : WLWAFQ = WLPQ — WC,FQ
1.e.

Wacangp F'Q: — QrXpQpA@4 X Qr X @4 5" = — QrXpQpr A4 ARrC @4 X7
— P TORAQAfRrYRag— —Qr2rQra®a f (Yo) Qr 1 @a g

Wacanap F'Q: — QrXpQp A@a X7 Qr X4 X" = — QrXpQp A4 ARr C @4 X7
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—RrTQrla®Af@ryY®agr— —QrtQrla®a f(Yo) OrY1 ®a g

Wacan gy FQ: — @r Xr Qp¥r @r L @4 X' — — @rXp Qr A Qp C @4 XF
—QrT@r fRry®agr— — @7z ®g f(Yo) Or Y1 @4 g
If we apply W scanaa F'Q both to § and 0" we get the following

[(WAcanAAFQ) o 91} (—®r Qg f)
= (W acanap FQ) (— T 1o ®p T} A1 T @4 f)
= — ®r To Op 2 ((ﬁ)o) QR (w%)l ®af
=—Qrx@rla@prr1®4 f
and
[(Wacangp FQ) 0 0"] (— @1 x Qg f)
= (Wacanap FQ) (— @7 2 ®@p f @7 1; @4 7F)
= —®rz Qg [ ((%:)y) Or (7:), ®a ;.
Since scany is an isomorphism, we get that
(D, j) = Equp,, ((WAcanAAFQ) 0f, (W qcany iy FQ) o 9’")

Hence D C PQ) = — @1 X ®g X*. At this point we stop because it is not so clear
what is the comonad D.

We try to compute the functor @ which does not require the comonad D, but we
cannot do it as well. In fact, we have the following:

We calculate the equalizer

. (OZP)0<Pcan;1)o(PC’uA)
Q=PC = BPQP
(HTP)O(Pcanfl)o(PCuA)

(@.a) = Equg, ((0'P) o (Pi),(0"P)o (Pi))
= Equpy, ((0'P) o (Pcani') o (PCuy4), (0"P) o (Pcan; ') o (PCuy)) .
We have
(0'P) o (Pcan;') o (PCuy) : — @ C ®p T — — ®p L5 @7 X ®p T @7 B
— QrCAR [+ —Orla®rcAr [ —Qrc' @rc® g f
s~ @r o (&), 8 ()L &r (- f
=—®grc Qr (62)0 ®Qr B @r - f
where
c! (cg) Rrc; =14 ®pc
so that
146€ (¢) = ¢ (5 (7)) = ' (F) .
Moreover we have
B (B3) ®r 5] = 14 ®p .



181

On the other side,
(0"P) o (Pcani") o (PCua) : — @p C @r f — — ®p S @1 S ®p X @7 B
~QrcQrfr —QrlARrc®r fr —Rrc @2 Qg f
— —®pc @ ®g f ®r 1p.

Maybe
Q =— Q®rX
where
X = Ker ()
v  C®rYX; —>YXr®rX;r®r B

c®rf — @ (02)0®R51®Tﬁ2'szl®TCQ®Rf®TlB

In case all the computations above make sense, we could write a coherd associated
to the pretorsor. By Theorem 7.5, the coherd is defined by

X =pgo ("ugB) o (AQc”) o (6*QPQ) o (QP [cany" o (Cua)] Q) o (QqQ)
= p5o (*1oB) o (AQa®) o (' QPQ) o (QPcan;' Q) o (QPCuAQ) o (QqQ)

ie.

X:QQQ CQRPCQ=—-27r Y @rCOrE; @rXp — Q =—®r Xp

—QrTQ@rCcORfQryr— —QrrQrla®rc®r [ Qry
— —QrTQ®pc @r P Qr fRry+— —Rrz@pc @1 Qg f(y)
= = @ra-c @rc @p f(y)— —@ra-c @rcf(y)
= —®r (z- ") (Pf(y) = —@rac' (Pf (y) = —@rac' (P) f(y)
= —©ro (14 (0) F 9)
where for every x € ¥4 and h € ¥*
x-h € B =Homy (X4,%,4) is defined by setting
(x-h)(t) =xh(t) for every t € X.
In particular, we have
-t . Y4a— 34
t — axc(t).

9.1. H-Galois extension. In order to understand better the situation of the previ-
ous example, we decide to consider a very particular case, the Schauenburg setting.

Let H be a Hopf algebra and let A/k be a right H-Galois extension. Let us recall
some useful equalities related to the translation map

yi=can ' (14 ® —):H - A® A:h—can ' (14®h) = h' @ h*.
For every h,l € H, a € A, we have
(206) h(h?), @ (h?*), = 1la®h
(207) e (h?),® (h?), = (M) @ ()’ ® h



(208) (R, @h*® (h'), = (h)'® (ha)’® S ()
(209) hth? = e (h)1y

(210) (h)' @ (hl)* = I'h' @ h*?

(211) ao (a1)' ® (a1)> = 14®a.

9.5. The Schauenburg situation is the particular case when 7' = A“#) = k. Hence
we have

A = Mod-k,

B = Mod-k where T = End® (%) = AcH) — .
A = —pA: A= Mod-k — A= Mod-k
C = —@p,H: A= Mod-k — A= Mod-k
B = —®rA=A:B= Mod-k — B = Mod-k where A =Homu (Aa, Ax)
UV = -9 AC=-,H®y A— CA=—-, A H
Yoo H®kA—>A®kH,h®kar—>canc(can51(1A®kh)a)
L = —®yA: Mod-k — Mod-A= A
W = Homyu (A, —): Mod-A — Mod-k
C = —®1A®s H>®,H : Mod-A — Mod-A
I = Cpil=—%A—CLl=—@, AR s AR HY — @, A@ H
Let us assume that
k = commutative ring
H = Hopf algebra
A/k = faithfully flat H-Galois extension with p/f : A — A® H
AH) = k1,

can @ A®A— A® H defined by setting can (a ® b) = aby ® by
v : H— A® A defined by setting vy (h) := can™' (14 ® h) = h' @ h?

Then,
T A ARARA
a—ag®7(a) =ay®a; ®a

is a pretorsor. We want to construct the comonads C' and D as in Theorem 6.5
where A = B = Mod-k and P = Q = — ® A. First, let us consider w' = — ®;, w!
and W= —-—Qrw' i —QARA —- —QAR AR A where

W= (0"9ARA) 0 (A®T): ARA— AR A® A
o (4@ b) = aby @ b @ b2
= RARA) ARA—> ARAR A
0 (a@b)=14Qa®b.
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Let w = o'

X we have

—w" and & = w! — &' First of all we want to prove that for any k-module

Ker (wX) =Ker (X @ ®) = X ® Ker (@) .
Since A is faithfully flat over k£ we equivalently prove that
Ker( X@0® A) =X @ Ker (0) ® A.
Note that

AQW!

A@Ker (W) — AR A® A ARARA®A

AROT

with respect to the map m4 ® A ® A is a contractible equalizer so that also

o

Ker (W) — A® A ARARA

o

w’

is a contractible equalizer (see the dual case of [BW, Proposition 3.4 (c)]). Hence,
by Proposition 2.20, it is preserved by any functor. Since

(C,1) = Equg,, <wl =—-Q c:J\l,wT = — ®ﬁ> we have that C' = — ® C' where

C={>aab |3 (@) (), (), @ (b)) = 14w d @b},

Note that v is a fork for Wl and O , in fact

(@on) ) =< (e r2) =nr e () @ (i) = 1400t @ p?

and
(T o) (=T (M &h) = Lioh o
Since <6 ,;) = Equ (c;l, c/u?), by the universal property of the equalizer, there exists

a unique functorial morphism ¢ : H — C such that 7 o ¢ = 7. In our case this
means that Imy C C' and hence

v  H— C
h — h'®h?
We want to prove that ¢ is an isomorphism. We compute
[(A®¢)ocan] (a®b) = (A® ) (aby @ by) = aby @ by @ b7.
Let us set
PV ARC —- AR A
a®Rbd—ab®d
and let us compute
[0 (A® ) ocan] (a @ b) = 1 (aby @ b} @ b2) = aboh} ® b2 =) a @ b
and

(A p)ocano ] (a®@b®d) = [(A® ¢) o can] (ab ® d)
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—abdy®d' ® 2 "L a2 b d.

Therefore, A ® ¢ is an isomorphism and since A/k is faithfully flat, also ¢ is an
isomorphism, i.e. C' = H.

Now we want to compute the comonad D. We have
0'=(A9A® %) o (T A): A®A—>ARAR®A
0' (a ®b) = ay® al ® a?b
0" =ARARQup: ARA—-ARARA
0"(a®b) =a®b® 1,.
Since (D, j) = Equp,, (A® A®o?)o(r® A),A® A®ug), we have

D={Yaiwr |3 (@), (@) (@)= aob el
By applying A ® can to §' and 0" , for every > a' ® b° € D, we get that
[(A@can)od'] (3 a ®b’) (A®can) (D (a), @ (), @ (a');0')
22 wh( )i ) (@
=3 (@)@ (@), () > (
(@92200 <>0 (@

and
[(A® can) o 6"] <Zai®bi> = (A ® can) (Zai(@bi@lA) :Zai@)bi@lfl.

Since (A @ can) is an isomorphism, we get D = Equ (pf{, 1, A® A@ uy) = (A® A,
By Theorem 6.5, A” and € are uniquely determined by

(Pr)oj=(jj)oAP and oPoj=upoe?.
Let Yai @b e D= (A® A Then we have
G oa? (Y aeb) =(rea)ej (Y aeb)=(ei(dder)
S (@) (@)} @ (@) o

qug (Za ®bz) (myoj) <Za ®bl> Zai~bi
Since S"al @ b € (A® A we have

> (@), ® ()@ (a), (), = D_a' @b @ 1x

so that, by applying m4 ® H, since A is an H-comodule algebra we get

S @), @ (@), = 3 (@), 0), —Yd bl

and also
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ie. Ya' b e AU = k1, = k. Note that from m4 0 (A®uy) o (ra)” " = Idy

we get that A ® ua is a monomorphism and hence, since A is faithfully flat over

k, also u, is a monomorphism. We denote by v = ulle . k — k1, the obvious

isomorphism. Thus from

(qugD) (Zai®bi) :Za".bi
el <Zai®bi> =t (Zai'bi).

P = AR :a®@b@cr a®by @bl @b
P = AQO :aQ@bQc—aQbRcR1y

we get

Let us compute

1.€e.
AR - AQA®A
Pi : CRA—-ARARA
h@a — A Oh®a
so that

(QIP)O(PZ') T  HRA—-AQAR A
hoa — h'e(h?),® (h?),® (h?)]a=hi®h?ehte hla
(0"P)o(Pi) : HRA—A®A®A
h@a — WM RhM¥Ra® 1.
Recall that H C C € A® A. Such Q = (CRA)N[A®D] =7 (H® A)N
[A@ (A®A)CO(H)] 7. Note that, assuming that A preserves equalizers, for
every h@a € H® A, ie. @R @acC®A N ®ac A® (Ax A) ) if
and only if h' ® h? @ a € Equ (A® pfiy 4, A® A® A® upy) where
Equ(A®p§®A,A®A®A®uH)
=Equ(A®A®A®@my)o(ARA® f@H)o (A0 ph @ plf) , AR A® A® uy)
={a®@b®c|a®@byRcy@bic; =a@bRcR 1y}
sothat '@ h?®@a € A (A A = Equ (A® pli ., A® A® A®uy) if and
only if
Mo (h?),®ae (h?),a=heh’®e2ly.
Let us prove that Q = (H ® A)CO(H). Now,
(Ho A ={h@a|h @a®hsay =h®a® 1y}

where h € H, h > h! ® h? € C.
1) Let h®@a € (H® A) ) and let us prove that h! @ i2®a € A® (A® A)*H),
Since h@a € (H® A)“™) | we compute

e (), e (1?), g ()'e (h)? e ha =h' ol ©ae 1y
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so that h! @ h2@a e A® (A A)“H).

2) Now, let ' @ i@ a € A® (A A ie b @ (h?), ® ap @ (h?), a1 =
ht' ® h?®a® 1y or equivalently (h1)1 ® (h1)2 ® ag @ hoay = h' @ h? @ a ® 1y. By
applying to this equality the map can ® A we obtain

1a®hy ®ap® hoay = (can @ A) ((hl)1 ® (hy)® ® ag ® haa)
=(can®@A) (M ®h*®a®@1y) =14Qh®a® ly
and hence
hi ®1qa0 @ hoa; = h®@14a® 1y
so that h! @ h2 @ a € (H @ A)*) . Therefore we proved that
(@A) (HoA)N (A0 (A0 "] = (o 4) [(H & 4)°"D].
We can take
(@.q) = ((H ® )M (p© A), (H®A)CO(H)) .
By Theorem 7.5, using 7 o ¢ = v, we have that
X =mao(A@my)o(mMmaRARA) o (ARARARmM,)

(ARI®A® A)o (A ® (9 ® A) (g1 a0 ® A>

Y:A® (Ho AN e A A

a@h@b@c—a®@h' @h*@b®c (ah') (B (bc)) = a (h'h?) (be) @) b (h)

is a coherd in X = (H,(A® A (He A A 6y, 6p) where 6y : H —
(H® A)CO(H) ® A is uniquely determined by
[(90 ® A)|(rgayeun @ A] o0y = (H®i)o A",

Since (C, 1) = Equp,, (wl, w”), by the universal property of the equalizer, there exists
a unique functorial morphism ¢ : H — C such that 10 = ~. In our case this means
that Imy C C and hence

¢  H—-C
h +— h'® R
For every h € H, we have
([0 ® A g aeim © 4] 080) = [(C@ i) 0 A°] = (C B 1) 0 (p@ @) 0 A 0 7!
=(piop)oAop™ = (p@7y) o Afop™
and hence
(0 ® A) g ayoim © A] 00009 = (@) 0 AT = (p@ A A) o (H@7) 0 AT
so that
(¢ 8 AR A) 0 (98 A) g gpen © A] 0dc 0
=(p'®A®A)o(p@A® A)o (H® 7)o A
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Now
(0 @ A)| g ayeorr = (9 @ A) 0 yrg 4ycotn)

where 4o gyeotm @ (H @ A)°) _, H @ A is the canonical inclusion and hence we
get

(' @A A)ol(p®A)® Ao [i(H@)A)co(m@A 0850
= (¢*1®A®A)o(g0®A®A)o(H®fy)oAH

le.
|:i(H®A)co(H) & A:| o) 50 oY= (H ® /7) o AH

Now we have

[(i(H®A)C°(H) ® A) o (50} (hl ® hQ) = |:</L.(H®A)CO(H) & A) odc o Qoi| (h)
= ((H®v) o A") (h) = ® hy ® hj
le.

(igoayeom © A) (0 (0 @ h2)) = hy @ by @ A

Let us compute 6p : D — QQ = ®A® (H @ A following Proposition 7.2 which
needs to satisfy
(roQ) 0 dp = (Dj) o AP.
In our case this means
(1PQ) o (ryQ) 0 dp = (jPQ) o (Dj) 0 AP = (jj) o AP = (1 ® A)
where
Ky (h®a)=h'@h?@a
and

(ji) o AP (a®@b) =[(T®A)ojl(a®b) = (T®A) (a®@b) =ay®a} @a; Q.

so that
op (M @b) =3 (a), @ (o), @V

In this more specific situation we could compute both the comonads C' and D and
the functor @ so that we obtained a coherd. We now would like to compute the
monads corresponding to the coherd following Theorem 6.29. But the computations
are not straightforward and it is not clear what these new monads are.

9.2. H-Galois coextension. This is the most clear example of a coherd that we
could give. It gives also a description of the dual case of the Morita-Takeuchi
equivalence studied by Schauenburg in [Schad]. In fact we could understand the
equivalence between the module categories over the two monads constructed from
the coherd.

Let H = (H,mpy,uy, A" " S) be a Hopf algebra and let L C H be a right
coideal subalgebra i.e. AH (L) € L ® H. We can consider e - H - k as a
character so that

J=Jun = <(hy)(1) H ((hy)(2)> — hwe" (heyy) | he Hye L>
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= ((hwya)) e (heywe) —hwe™ (ko)™ (y) | he Hyy € L)
= (hwyme™ (hw) e (Ya) — hae" (h) e (y) [he Hy e L)
= (hy—he" (y)|he Hye Ly=(hy' |he H,y' € L") =HL"

where we denote L™ = LNKer <6H ) Let us prove that such J is a coideal of H (see
also [BrHaj, Lemma 3.2]). In fact, since A¥ (y) = y1) ® y2) € L ® H we have

AT (hy — he' (y)) = h( b ® heyye — hay ® h(g)sH (y)
= hay (yoy — " (yw)) ® by ( m) ®h2>y 1) ® b (y)
= hay (yoy — " (ym))) © hpyye) + h @< (Yy) Y — hay @ hee" ()
= h( (y(l) — e (y(l))) ® hyye) + ha) ® h (y et (y)) c HL+ QH+H®HL"
and obviously
" (hy = he' (y)) =™ (R) e (y) — ™ (R) " (y) = 0.

Then we can construct the coalgebra C' := H/J = H/HL" and we can consider
the canonical projection 7 : H — C = H/J which is a coalgebra map and a left
H-linear map. We can define

“pp=(m@H) oA :H - C®H and p% :=Ho71)ocAl . H-H&C
h= 7 (hay) @ he h= hay @7 (he)

so that H is a C-bicomodule. Note that “p; : H — COgH in fact, using that 7 is
a coalgebra map, the coassociativity and the naturality of A”, we compute

(A°®@H) oy =(A@H)o(r@H)o A" = (r@r®@ H)o (A" @ H) o A¥
=(rer@H) o (HA") o A" = (Cor®@H)o(r®@H®H)o (H®A")o A
=(CeT@H)o (CoA")o(r@H)o A" = (C®py)opy.

Similarly, we also have that p% : H — HOcC' in fact, using that 7 is a coalgebra
map, the coassociativity and naturality of A, we have

(H®Ao)op%:(H®AC) (H®m)o A" = (H®ACO7T)OAH
=(Hemam)oA") oAM= (Heorer)o (HaA")o A"
=Hera7m)o (A"@H)oA"=(Hor®C)o(H® H®n)o (A" @ H) oA
=Her®C)o (A"®C)o(H®T)o A" = (p;; @ C) o pf;.

Now, the map
A" . H— HOcH
h = hay ® hey

is well defined. In fact iy, @ (hry, ) @) = hay@7 (ke ) @he), . Moreover,
the map 7 : H — C'is a counit for H, in fact

[(T{'DCH) o AH} (h) = T (h(l)) (%9 h(Q) = CpH (h) ~h

[(HDCW) @) AH} (h) = h(l) X7 (h(g)) = p% (h) ~ h
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[(e“®H)o(r®H)oA"] (h) = (%) (ha)) ® hy =" (ha)) @ hz) = h

[(H @) o (Hem) o AT] (h) = hay @ (°7) (hey) = hay @™ (hez ) h
so that H is a C-coring. Moreover, H has a right L-module structure

py 0 H®L—H
h@b — myg(h®b)=hb

which is left C-colinear i.e.
(212) T (hayba)) @ haybe) =7 (h1) ® heb

(see [BrHaj, Lemma 3.3]), so that [(H @ puf;) o (A" @ L)] (H ® L) C HOcH.
Assume that H is a right L-Galois coextension over C that is

cocan = (H® pjy) o (A" ® L) : H® L — HOcH
h &b hay @ hib

is an isomorphism and assume also that H is flat over k. In particular, if Hj is
faithfully flat, we know that “(©)H = L (see [Schn2, Lemma 1.3 (2)] and [BrWi,
34.2 p. 343)) Where we denote

“H={heH|%yh)=r(lg)@h}.
In this case, we can also define the inverse of the cocanonical map, i.e.

cocan ' HOH — H® L
D H@g = hiy®S (k)"

For every Y h'®g" € HOcH, we have h’@ ®m (h§2)> Qg =Y hen (g%l)) ®gf2).
By means of the left H —linearity of m and of this equahty we have

> iy @ (S (his) 9t1) @ S (hiz) 9oy = D_ iy @ S (hig)) 7 (90) @ S (ia) 92
=D _hiny ® S (ki) W(h?4>)®5(h?2> g :Zhu)@)ﬂ(s( ®) higy) ® S (hiy) ¢
=> hiy @7 (1) @S (hiy) g

so that
> hiy @8 (hiy) g €Ker (H® [“py —n(lp) @ (—)]) =H@“WH=H®L

where in the first equality we have used that H is flat over k. Therefore cocan™! is

a well-defined map. Note that, by applying e ® L to this element, we also deduce
that, for every Y. h' ® ¢' € HOcH, we have

(213) > S (h)g €L

Now, let &£ be a commutative ring, let H be a k-Hopf algebra and let
L C H be a right coideal subalgebra. Assume that H is a right L-Galois
coextension over the coalgebra C = H/HL", assume that H; is faithfully
flat, so that “(©)H = L, assume that H, is faithfully flat and assume that
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H¢ is faithfully coflat. Assume also “H coflat. Then we can consider the
following formal codual structure X = (C,D, Q, P, d¢,dp) where

A = Mod-k

B = Comod-C

C = (-®H,-@A" —®e"): A= Mod-k — A= Mod-k

D = (—DCH,—DCAH,—D CHC) B = Comod-C — B = Comod-C
Q = —-0OcH:B=Comod-C — A= Mod-k

P = —®HY: A= Mod-k — B = Comod-C

¢ @+ =—QA!" . C=—-@H—QP=—-®HO:H

6p : =-0cA":D=-0cH— PQ=-0cH® H.

Now, for every 37,3 k" @ h'"/ @ ¢' € (H ® H) OcH, we have that

@) Y Y Kiehjer(hg)ed =33 ek or(gy) ® gy,

We want to prove that -, > k" ®@ S (h'/) g € H® L. We compute, using the left
H-linearity of 7 and (214)

so that we get

>0 KIem (S (h) ol ) ©F (1) ) iy = Y2, - K @m (L) ©S (1) ¢
which means

Z,- Zj @S (h) g e Ker (H® [Cpy—n(lp) @ (-)]) =H“9H=HaL
ie.

19 SY e sy et

Similaly, for every 32, Y3, 17 © h* © g' € (L ® H) o H, we have that

Zi Zj " ® S (h) g € Ker (L® [CpH —m(ly)®(-)]) = LoOH—-L&lL
ie.

(216) > Zj @S (k) gdelLel
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so that, since L is a subalgebra of H we get that, for every 37, 3. 1" @ h'"/ ® ¢ €
(L® H)OcH,

(217) > Zj 1S (k) ¢' € L.

Let us consider the following map
X:(H® H)OcH — H

K @ hid @ g kS (b

Zizj ® ®9Hzizj ( )9

which is left C-colinear. In fact, in view of (215), we have that }- > k"’ ®
S (k) ¢' € H® L and by (212), we get that

D707, m (K [ (9) 1, )k 8 (09) o = 32,37 = (ki kg ()

Therefore, we can define the coherd xy = —Dcx given by
X : QPQ = —DcH®HDOH—> Q = —Dcﬂ

—Ue Zl Zj k@ hid @ gt s —Oe Zl Z]- kS (k) g

Let us prove the properties of y. We have
[y o (QPY)] (—Dckz ©Y hegele nj>
— [xo (x® HOgH))] (—Dck Y hegol ®nj)
—x (-0 kS (W) g @V @n?) = -0 Y (kS () ) S (F) !
and
o (xPQ)] (-Ock @Y W eg el o)
— [xo (~ToH ® HOo)] (k@ Y_h' @ g @ @n)

—x (ke Y 0 @g's () ) = ~Oc kS (1) (9°S (V) )
so that y is coassociative. Moreover, we have
[x 0 (0cQ)] (k@ h) = [x o (~OcH @ dc)] (~Ock @ h) = x (~Ock @ hay @ hey)
= —ckS (h(l)) hy = ket (h) = (—DcH ® 6H) (k®h)= (5062) (k® h)

and
o (Qop)] (Do YK @h') = [yo (3o H)] (~Oe Sk @ 1)
:X(—DcZk§1)®k§2)®h) 0 Y kS kgg) hi
=S (k) 1kt = S () b i:—mcz e o) (k) B!
0 Y (r (1))~ Y () Dl
= —0c Y 7 (W) Oohi = ( CHCIZICH> (—DcZki ®hi)
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_ <QECHC> (_DCZ k@ hi)

so that the counitality conditions are also satisfied, i.e. x is really a coherd. Since
Hj, is faithfully flat, we have that (k, sH) = Coequ ik (H el el @ H) and since
HC is faithfully coflat, by [Schnl, Proposition 1.1], we also have that

C

(C,7) = (C, eoHc) — Coequigy e (HDCeCH ,ECHCDCH)
= Coeunomod—C (Hljcﬂ-’ WDCH)

so that X is a regular formal codual structure and thus x is a regular coherd. Fol-
lowing Theorem 6.29, we calculate the monad

(A, z) = Coequyy, (w',w")
where w' = (xP) o (QPd¢) and w™ = QP : QPC — QP. In our case
w':—®H®HOcH — —® HOcH

—®Z Z V@Y heg H—®Z Z ki @ kS (1 5) g

and
W —®H®HOcH — — ® HOcH
—©) D Koy Weg—-v) > E) e

Assume now that k is a field, so that everything is flat over k. Hence, for every
X € Mod-k

X ® HOc-H X ® HOcH
AX = pu—
Im(X@uw -X®w) Im(X®@w —w))
X ® HOcH HOcH
_ — Q —
X @ Im (w! — wr) Im (w! —wr)
and thus
HUOcH

A=-© IO

where [, = <ZZ > k’zf) ® k:EQJ)S (W' 3) g =222 (k%) Y @ gi> . In the sequel,
given elements >, h' ® ¢ € HOcH, we will use the notation

[Zihi®gi]A:Zihi®gi+Iw'

We will prove that this new monad A on the category Mod-k is isomorphic to the
monad coming from the algebra L. Consider the following map

HOcH

S wed] - 350
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which is well-defined by (213), i.e. >_ S (h?) ¢ € L. Note that, since L = “©)H, for
every b € L, we have

1y @m(ly)@b=1y® Y _(b) @ by.

The inverse of this map is given by
HO-H

ot L —

In fact we have (¢ o @) (3, h' @ ¢7],) = ¢ (3, S (h') )
DR gi]A by definition of I, and (¢ o¢™1) () = ¢ ([1x
and thus ¢ is bijective so that

= )
®0b,) = S(ly)b=1b

HOcH
A=-® IC ~ —® L: Mod-k — Mod-k.
The functorial morphisms m 4 and uy of the monad A are uniquely determined by
zo(xP)=muo (zx) and rodc=uyo0e”

where x : HUcH — M denotes the canonical projection. In our case we have

M uOH ([Zl W g%}A ® [Z] k' ® lj}A) = [Zw h'® g'S (k:J) lj]A

Iw

_ [Z” 1y ®S (hz) giS (kf) p}A _ @—1 <Z” S (hl) giS (kﬂ) lj>
— o (m (X800 3, 5 () 1))
:(gplomLO ¢®¢ ([Z hz®g} [ij;j@)lj}/x)

from which we deduce that
pomuoor =mpo(p® ).
Tw
Moreover
H _ _
unoen (€% (h)) = (z0dc) (h) = [ha) ® hey] ,

Iy

so that
UHO H (1k) = UHEICH (éH (1H>) = (JJ o 5@) (lH) = [1H(1) X 1H(2)]A = [1H X 1H]A

T
= [la@1),=¢ (1) = (¢ " our) (1x)
from which we deduce that
YO UHODH = UL.

Iy

HDCH

The two relations obtained say that ¢ : — L is an algebra isomorphism so

that
HOcH

L

A=—-—® ~ — ® L as monads.
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Following Theorem 6.29, we now calculate the monad
(E,y) = Coequp,, (2, 2")

where 2! = (Px) o (0pPQ) and 2" = P PQ : DPQ — PQ. In our case, let us
consider

2 (Ho H)OcH — H® H

> Z K QR @g iy Z K9S (W) glyy ® gl

and let us prove that 2L it is left C-colinear. By (215) we have that >, > k" ®
S (k) ¢g' € H® L so that, in view of (212), we have

DT (k) [5 (1) giw) ) © K3 [S (09) ] ) @ sl
=X 3, () ks () oty @

Hence
2 —0cH® HOH — —0OcH @ H

—He Zz Zj Y@ ht @' ~Ho Zz Zj kS (hiJ) 921) ® 922)

2 —0OcH @ HOcH — —UOcH @ H

—0e Zz Zj km ® hm ® gi — —Uc Zz Zj k‘i’j ® hi7jEH (gl)

are well-defined. For every (X , pf() € Comod-C' we have
XOcH® H B XUOcH® H

and

E (X, %) = —
(o) =1 (XOcz — XOc2)  Im(XOg (2 — 27))
so that XOeH ® H
E(X, p{)=2"9"2°27
( pX) ]XDcz
where

1>, x9®k:3 Y, hi®g¢' € HOcH
Recall (see [BrHaj, Theorem 3.5]) that, associated to the cocanonical map, we have
a unique canonical entwining structure given by
Yv=FT@H)o(H®A")ococan: HQ L — L® H
h®y = yu @ hye)

; _<z ;3 QKIS (1) gly) ® gl — Zi,j:cj®kj®h"aH(gi)>
XD(;'Z_ ’

where 7 = <8H ® L) ococan ! : HOgH — L is the cotranslation map. Since cocan
is an isomorphism, in order to understand better the monad E we first compose
with the isomorphism H ® cocan and we compute for every h,g € H, y € L,
(2" o (H @ cocan)) (h® g ® y) = hya) ® gy and (2" o (H @ cocan)) (h® g ® y) =
h ® ge™ (y). Let

i:(HH)L" — (H® H)
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denote the canonical inclusion. Then i is a left C- comodule map, in fact, for every
S (hi @ gi) (I — e (1)) = 35, hiliy ® giliz) — hi ® gie™ (1) € (H ® H) L*, since
AT () =Ly ®@lLipy e L® H, Wehave

Z‘ T (hl( i) ® hiylie) @ gilizy) — 7 (hiny) @ higa) @ gie™ (1)
= Z (higy) ® hZ(Q)l ® giliz) — 7 (hiqr)) ® hiz) @ g™ (I;)
= 7 (hiw) ® (hiey @ g;) (L =" (L)) € Co (Ho H) L.
Hence, for every (X o) X) € Comod-C', we can consider the map
XOei: XOc(H® H)L" — X0Oc (H® H).
so that, for every (X , pg’;) € Comod-C', we have

E(X,pg) _ XO-H @ H _ XO-H® H
Ixog,- Ixo.L

where
> @Ry ® gye) — 21t @ b @ ge (y)
Y7 ®geye XOcH®H®L
= XOc¢ [(H® H)L'].

Let p: H® H — (Hg% be the canonical projection and let us assume that ¢ is

left C-copure i.e. for every (X pX) € Comod-C, the sequence

XOc (H @ H) 2 XDC% 0
is exact. In this case we get that, for every (X , p)C() € Comod-C,

H®H
(H® H) L+t
where (H ® H), denotes the invariants with respect to the algebra L. In the sequel,
given h', k' € H we will use the notation

[Zih"®k"]E:Zihi®ki+(H®H)L+

Let us denote E := —0O¢ (H ® H),; and let us consider multiplication and unit of
E. Following Theorem 6.29, they are uniquely determined by

Ixo.r

0 — XOc (H® H) LT =5’

E(X,p%) = XOc = XO¢ (H® H),,

mgo (yy) =yo(Px) and  yodp=ugoe”

1.€.

mp = —Oemg and up = —Ocug
where
__ HeH HeH HeH _ HoH
e M CHem - Hemir M Y e m i
given by

m (Z YD M enrv] O [¢ @] E> B [Z K9S (h) g @ lz‘f’} B
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i (=7 () = (v (1) = [hy @ )
Let us check that mz is a well-defined map. Let us consider
f:H®H—H
h® kw— hS (k).
For every (h® k) -l € (H ® H) L™, we have
F(hlay @ kl)) — (R k)e ()] = h1yS (Iz) S (k) — hS (k) e (1) =0

so that f induces a morphism

H®H
f————— — H
L memn
[h® k] — hS (k).
Now, let us consider the composite
H&®H feldg®ldy my@Rldy P H&®H
——————— ®®H®H' T — "HRH®H —"H®H — —=¢——
HomL 2% wae “ (Ho H) L+

where p denotes the canonical projection. Note that
[po(my®H)] (H®(H@H)LT) =0
in fact, for every x € H and (h® k) -1l € (H® H) L™ we have
@ [(hla) ® klz)) — (h@ ke (1))] = 2 ® (hln) ® klg)) — 2 @ (h @ ke (1))
and thus
zhlay @ kloy —xh @ ke () = (zh®@ k) (l—e(l)) € (H® H) L™.
Therefore, the above composite map induces the map
H®H H®H H®H
HoB L' CHeHIL = (HoHL
k@hl@[gel] — [kS(h)g®l]
which is well-defined and hence also the map
_ H®H H®H H® H
" He MLt C(He H L+  (HeoH) L+
S lker] el el,— Y ksH) el .

is well defined. Observe that, by using (213) and (212) we have

dom (k’m (S (n) gi)(l)) © k) (S (1) 9) o, = D (k) @ ke (S () )

so that the maps

S ker]eldel,— Y k@) del
Y ke W @g],— Y kS(h)g
Y [keh] @ =Y kS(h)g

and



197

are left C-colinear and hence mg is also left colinear. Therefore the map

H®H H®H H®H
(HoH) L “(HoH) L+ (HoH)L*
is well-defined. Moreover, () = —[sH can be equipped with the structure of an A-B-
bimodule functor, i.e. in our sg‘@ng, with a well—d/efined structure of L-FE-bimodule

mp = —Oemp : —Uc

functor given by A,uQ = —Oc?pg and ,ug = —Dcﬂg where

g Ho L — H
k@1 kI

% H®H

Hq - (Ho H) L+
Zi Zj [kzj Q hi’j}E ®gi N ZZ Zj /{;i’jS (hz’,j) gi.

Similarly one can prove that A/LQ and ug are well-defined. Let us calculate the
coequalizer (@, l> = Coequp,, ((Pz) o (2'P), (Pz) o (2" P)) defined in Proposition
7.6

UcH — H

- RA®H
—@Im((zr®@ H)o (HOc2!) — (x® H) o (HOgz"))
HOGH
- QTG QH
—@Im((z®@ H)o (HOgz!) — (x @ H) o (HOgz"))
Since we are in the case when cocan is an isomorphism, we equivalently calculate,

for every . hi®¢' € HOcH, k€ H and t € L,
((z® H) o (HOc2') o (HOcH ® cocan)) (Z Weg ek ®t>

= YW e gt @ ke

0 =

and
((r® H) o (HOgz") o (HOcH & cocan)) <Z Wegdoke t)
- [Z i ® g"] @ kel (1) .
Having in mind that also ¢ is an isomorphism, we also compute
(@ H) ((z® H) o (HO¢2') o (HOcH ® cocan)) <th ®gOk® t)
= (p® H) [Z h® git(l)} Rkt =Y S (1) g't) ® kty)
and

(p@H)((x® H)o (HOgz") o (HOcH ® cocan)) (th ® ¢ ®k®t)

= (p® H) [Zhi@@gi] @ ke (t) =) S (1) g @ ke (2).
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Let
o= (p®H)((z®H)o (HOc2') o (HOcH ® cocan))
and
= (@ H)((x® H) o (HOcz") o (HOcH ® cocan)) .
Then, for every Y h'®g¢' € HOcH, k€ H and t € L,

(q — o) (Z Wegoke t) => S (W) g'tay®@kte — > _ S (b)) g @ ke (1)
= XS g k| t- > s g k|- 1)1,
= [ sy g or]- (- o)1)
so that we get

Im (o —a,) = (L® H) L

HOcH
Iy

and hence the isomorphism ¢ : A = — L induces an isomorphism

(Q.1) = Coeaup,, ((Px)o (+'P) ,(Px) o ('P))
L® H
“TemL

In the sequel, given elements [* € L and h' € H we will use the notation
[Zzz ® hﬂ Y leh+(LeH)L".

Following Proposition 7.6, the functor Q can be equipped with the structure of a
B-A-bimodule functor, i.e. 1n our settmg7 with a structure of E-L-bimodule functor.

In particular ¥ B = — RF ,uQ EQ Q and ’UQ =—-Q® “Q QA — Q where

Lo H HeoH Lo H
"o  TeomLt “HeH) L™  (LeH) L

Yo 2 ek a0c et =y Y0 Y (18 (k) b @]

~

— ® Coequ (o, o) = —

and
5 Lo L®H L® H
~ . —
Ha (Lo H) LT (L H)L*

Y@y @ hlg—[yy' @ hlg

Such a bimodule functor @ is the one giving rise, together with the functor @, to
the equivalence of the categories of modules over the monads A ~ L and B = F
constructed in the above Subsection 8.1 (in particular see Theorems 8.6 and 8.9).
More explicitly,

LQE = — ®E HL . EB =k (C’omod—C’) — ]L.A =L (MOd—kZ) = MOd—L

and
~ L® H
EQL:— LmILA:MOd—L—)[EB:]E(COmOd-O).



199

Now we will give details of the isomorphisms associated to the equivalence of cat-
egories. Given a right F-module functor F' we will denote simply by — ®g F' the
functor defined by

Coeunun (/’LgEUu FEU)\E) .
Let us consider the functor

L® H

E@LLQE:_@)EHL@LW:EB:E(

Comod-C) — gBB = g (Comod-C) .

We want to prove that E@ 1@ E is functorially isomorphic to Id,z. Now, for any
(X, EuX) € gB we have

(X7 E:uX) Y] E = Coeunun (ﬂglEU (X7 E:uX) 7E]EU)\E (Xa EMX))

- COeunun (mEX7 EE/'LX) 3é4 (X7 E:LLX) :

Thus to this aim it is enough to construct an isomorphism of left E-modules B :

Hy @y it — G298 This will imply that 8 = —Ocf: Q.Q = —OcHy, @,

% — B = —DC% gives rise to a functorial isomorphism E@LLQE ~
5. We want to show that 3 is the followin morphism
Id, 5. Wi h hat 3 is the foll g h
—~ L®H H®H
G:H®

LTemrr  (HeH)L*
herlr@h]g— [ha® ]y

First we have to prove that it is a well-defined map. Let us consider the map

He H
(HoH) L
h®x®h' — [he®h'.

f:H®L®H —

For every (z @ 1) - (t — e’ (t)) € (L ® H) L™ we have

Bhe[(zah) (t—e"1)])=8(h®@ztq) @hte —h@xe " (1))
= hata) ® h'te —he @ We (t) e (H® H) LT

so that 3 factors through E tH® Lé%fﬁ — 1 Hg‘%’fﬁ. Moreover, for every [ € L,

we have

B@rh)=[h)xzb|,=hlz)db0|,=0hlzh)

L&H HeH
®QH)Lt (HRH)L*"

so that E is also L-balanced and gives rise to the map B cH®p @
The inverse of 5 is given by

5. HoH g, LeH
— e —
(H® H) L+ (Lo H)L*

[z@ylp— oLl ®Y]s.



200

This map is well-defined, in fact, let us consider the map 0 : H ® H — H @,

( L(g%HL —defined by setting

O(eey) =@l ®ylg

For every (h®@g) - (t—€e”(t)) € (H®@ H)L"*, we have (h®@g) - (t —e (1)) =
hta) @ gtz) — h ® ge™ (t) and using that A (L) C L ® H, we compute

htay ®1 (10 ® gtzy) — h®r (1L ® g™ (1))

=h®rta) - (1L @ gte) —h@r (1, ® ge™ (1))
=h® (ta) ® gte) —her (1, @ ge™ (1))
=h®r (tn) ® gt — 1L ® ge™ (1))
=hor (1.eg) t—(1L@g)e (1)
=he (lr®g) (t—e"() e H®L (L® H)L*

so that 0 factors through % — H®p i Lé?}i + giving rise to the map . We
compute, using definition of Q L=® LQ and p4 3

(008) (herlonly) = Bhaeen]y) =hes, 18K =houe- 1 oK,
= h@L[$1L®h/]@:h®L[x®h’]©
and

(5o8) (e yls) =8 (varllreyly) = r @l

Let us show that B\ is an isomorphism of left F-modules. Using definition of ,L:g,
(215) ie. 30,50 k" @S (W) g' € H® L, definition of mz we compute

B W en], golkaily) =833 KIS () g e lo i)

=B K e S () g e )g) = B (3230 K@ [S (0) gz o k] ,)
=[S ks ey geen] =30 ST K9S (1) dr e n],

:Zizj [k @ h'] - [gr @ W], Z Z [k @ h*] ﬁ(gi@L [m@h’]@>,

Similarly we want to understand the other isomorphism. Given a right L-module
functor G we will denote simply by — ® GG the functor defined by

COQunun (/’LéLU7 GLU)\L) .

Let us consider the functor

~ L®H
QL =— W Qp H: 1A= Mod-L — 1 A= Mod-L.

We want to prove that Qg E@ 1 is functorially isomorphic to Id, 4. Now, for any
(X, %puyx) € LA we have

(Xa L:LLX) X L = Coeunun (:uéILU (X> L:uX) 7L]LU)\L (Xa L:uX))
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= Coeunun (mLX LLIUX) = (X LH’ )

Thus to this aim it is enough to construct an 1somorphlsm of left L-modules C

(Lé%]m ®g H — L. This will imply that ( = — ®C QEEQ -® (Lé%?ﬁ Qe —

— ® L gives rise to a functorial isomorphism ;Qg EQ L = Id, 4. We want to show
that ( is the following morphism

XX e lgeeg = 305 195 (1) g

Let us consider
(L@ HO:H — L
ij ij i ij ij
Zizjz @hI®g Hzizjz S (h) g

and let us prove that it is well-defined. By (217) we get that 3=, > 1"/S (™) g' € L.
Now we use that “H is coflat. Let us prove that

C[(LeH)LTOcH] = 0.

Let Y. 2" @ h' € (L® H) L*OcH where, for each i, 2 € (L ® H) L*. This means
that there exist elements w*/ € L ® H and elements t*/ € LT such that

ZZ — E 'wlvj . tlz.]
J

Since w™ € L ® H there exist [** € L and ¢** € H such that

wlmj — E N llz.jzk ® gl7]7k.

DL TR zz (49 @ %) - 9 @ b
-2 X, [ 0 - (49 e g (49)]
=D 20, 2 N @ g @ b — (19 @ g ) ey (89) @ B
so that
(X @) =32 30, 30, 1kihs (g 4405 ) 1 = (945 (9774)) em () 1
=3 S (1)) S (g% b = (1948 (94)) e (£9) B
=03 3 R (#9) S () B = (19ES (g%)) e (#9) B = 0.

—=22L_[-H — L defined by setting

Hence we have

hence we have a well defined map C L® H L+

E (Zz Zj [li,j ® hi’j]@ ® gi> B ZZ Zj s (hl}j) 9
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We now have to prove that this map induces a map ( :
e € E. We have to prove that

(ZZ [ @ h]g €®9>—C(ZZ [ @ h'] s @ e g)

Since e € E, there exist %, y* € H such that e = [Zk Py ]E Hence we have to

prove that
(55, ol [5, e o)
—C<ZZ (149 @ hid] 5 [Zx@y] 9)

and by using definition of ¥ pg and MQ we have to prove that
¢ X, s (n)at ey g0 o)
(X e rlge s 1))

el @p H — L. Let

ie.
2.2, 2, SN tS () gt =3 % D 1S () S (o) o
which is true, so that we can conclude that the map C LQLQ%I - ®p H — L is

well-defined. Now, we want to prove that C is bijective. The inverse of C is given by

Lo H
=L 2 e H
T Ter) L o"

Now we compute
(-0 (X, e rlgend) == (XX, 5 () o)
=y ®1lulg®p ) Zj 1495 (hi) g
— Z Zj g @ 1ulg@e IV @0V, - g' = Z Zj 1y ®1ulg IV © W], ©p ¢’
-3 %, M engens

(Zo E) () =¢ ([1H ® lulg ®p z) = 1S ()l =1.

Let us show that Eis an isomorphism of left L-modules. Let a € L and let us
consider

o330, M engend) =C(30 3 [e 1Y) @ g end)
=303 ats () g = (30,30 148 (9 o
—a-0 (Zi PO TP gi) .

and
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As observed at the beginning of this section, this reproduces what happens in the
dual case of the [Schad] setting where, starting from a Hopf-Galois extension, one
can produce a new Hopf algebra such that the Hopf-Galois object turns into a Hopf
bi-Galois object and Hopf algebras are Morita-Takeuchi equivalent. In our setting,
coming from a coGalois coextension we get a coherd, which allows us to compute
the monads and in particular a new monad together with the new bimodule functor.
Following the theory developed in the previous sections, we could then calculate in
details also the equivalence between the module categories with respects to the two
monads.

9.3. Galois comodules. Let g>4 be a B-A-bimodule. Let L = — ®p ¥4, R =
Homy (X4, —). Let C be an A-coring and let C = (— ®4C,— ®@4 A, 70 (— ®48)).
Assume that (X, px) is a B-C-comodule i.e. (¥, px) is a C-comodule and

Py 8 — 2 ®aC
is a morphism of B-A-bimodules. In particular the map
At B — Ende(proq.a) (X, px)) defined by setting A (b) (z) = bx

is well-defined and is a ring morphism. Moreover A is a monomorphism. In this
case f = — Rppy i — Qg X4 — — Rp 24 ¥4 C is a left C-comodule functor. The
associated functorial morphism can = ¢ = (Ce) o (BR) : LR — C,
can : Homa (p¥a, —) ®p Xa o Homu (X4, —) @ X4 ®4C i ®a4C
f@px— fRpxo®@az1+— f(20) @411

canyy : Homy (pXA, M) ®p 34 — M ®4C
f@px— f(x0) ®a 71

can = (Ce)o(BR) = (e®4C)oHomy (pXa, —) ®p ps
cany = ou (f®pt) = (e®aC)(f ®pto®@at1) = f(to) ®ats.
We have
K, : Mod-B— ©(Mod-A) = Comod-C
M — (M®p3,M®pps).
Since Mod-B has all equalizers, K, has a right adjoint
D, (X,z) = Equ((—®aC)ops,Homy (pX4,x))
= {f € Homy (p¥4, X) |z o f = (f®aC)ops}
= Home(aroq.) (5, px) , (X, 2))
Hence D, = Home (y1o0.4) (2, ps) , —) : © (Mod-A) = Comod-C — Mod-B has a left
adjoint K, = (— ®p X, — ®p px).

THEOREM 9.6 ([GT, Theorem 3.1] ). Home o4y (3, p5),—) : ©(Mod-A) —
Mod-B s full and faithful if and only if
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1) — ®p X4 preserves the equalizer

xro—

HomC(Mod—A) ((E, PZ‘) ) (X7 .%')) 4Z> Hom 4 (Ea X) Hom 4 (Za X ®a C) .

(—=®aC)opx.
2) can : Homy (pX4, —) ®p X4 — — ®4 C is a comonad isomorphism.
Proof. Apply Theorem 4.53 to the adjunction (— ®p 34, Homy (X4, —)) . O

THEOREM 9.7 ([GT, Theorem 3.2]). K, : Mod-B — © (Mod-A) = Comod-C is an
equivalence of categories if and only if

1) — ®p X4 preserves the equalizer

xro—

HomC(Mod—A) ((Ev PE) ) (Xa QZ’)) *Z> Hom 4 (E, X) Hom 4 (Z, X ®a C) .

(—®aC)ops

2) — ®p X4 reflects isomorphisms and
3) can : Homy (X4, —) ®p X4 — — ®4 C is a comonad isomorphism.

Proof. Apply Theorem 4.55 to the adjunction (— ®p 34, Homy (X4, —)) . O

Let us now consider a particular case of the previous situation.

Let C be an A-coring and let ¥ be a right C-comodule. Set T" = Ende 044y (X, px))-
Then it is easy to check that (¥, ps) is a T-C-comodule. Following [Wis|, we say
that 3 is a Galois C-comodule whenever can : Homy (724, —) @7 X — — ®4 C is
an isomorphism. The adjunction (“U,“F) for C = (— ®4C,— ®4 A,ro(— Qa4¢))
gives us the following

ProproOSITION 9.8. Let C be an A-coring and let 3 be a right C-comodule. Set
T = Ende(proq-4) (X, p2)). Then the map

WL : Homy (734, L) — Home (aroq.4) (5, ps) ,CFL) defined by setting
VL(f)=(f®aC)ops

is an isomorphism whose inverse is defined by setting (wL)f1 (h)=rpo(L®ae)oh
, for every L € Mod-A. In this way we get a functorial isomorphism

¢ : Homy (134, —) — Home(arog.a) (5, ps) ,“F) .
9.9. Note that, in particular, we have
YA : Homy (rX4, A) — Home(proq.4) ((E, ps) ,CFA)
where
Home (aroqay (2, ps), “FA) = Home(yroqa) (5, p5), A®4C)
~ Homc(pzoa-4) (2, px) ,C)

so that
YA : Homy (rE4, A) — Home(yroq.4) (2, p5) ,C)

and is defined by setting
(WA ()] () =[leo (f ®aC)ops] (t) = f (o) ta.
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THEOREM 9.10 ([GT]). Let C be an A-coring and let ¥ be a right C-comodule.
Assume that AC is flat. Set T = Endc(proq.a) (X, px)). Then the following are
equivalent:

(a) The functor Homeproq 4y (3, p5),—) + ©(Mod-A) — Mod-T is full and
faithful where C = —® 4C.

(b) € : Home(aroaa) (2, p5) , — @7 B) — € (Mod-A) is an isomorphism.

(c) (X, ps) is a generator of © (Mod-A).

(d) can : Home(proq-a) (X, px), —) @0 X — —®4C is an isomorphism and 13 is

flat.

Proof. By Proposition A.12, 4C is flat if and only if (Mod—A)c is a Grothendieck
category and the forgetful functor U : (Mod-A)° — Mod-A is left exact. Also,
by the foregoing, D, = Homc (rr04.4) (X, px), —) : C(Mod-A) — Mod-T has a left
adjoint K@ = (— K7 E, — Q7 ,02) .

(a) < (b) It follows by Proposition 2.32.

(a) < (c) It follows by Proposition A.3.

(¢) = (d) Since (X, px) is a generator of © (Mod-A) and since (— @7 3, — @7 px) :
Mod-T — ©(Mod-A) is a left adjoint of Home (p704.4) (3, p5) , —) : C(Mod-A) —
Mod-T, by Gabriel-Popescu Theorem A.9, (— ®1 X, — ®1 px) is a left exact func-
tor. Since the forgetful functor U : (M od—A)c — Mod-A is also left exact, we
deduce that — ®¢r X : Mod-T — Mod-A is left exact i.e. X is flat. Since
Home (p704.4) (3, ps) , —) is full and faithful, by Theorem 9.6, can is an isomorphism.

(d) = (a) It follows by Theorem 9.6. O

THEOREM 9.11 ([GT]). Let C be an A-coring, let B be a ring and assume that 4C
is flat. Let (X, ps) be a B-C-comodule. Then the following are equivalent:

(a) The functor — ®p ¥4 : Mod-B — © (Mod-A) is an equivalence of categories
where C = — ®4C.

(b) can : Homyu (X4, —) — — ®4C is an isomorphism and ¥ is faithfully flat.

(¢) (X, ps) is a generator of © (Mod-A) and the functor — ®p ¥ : Mod-B —
C(Mod-A) is full and faithful.

(d) (2, ps) is a generator of ©(Mod-A), the functor — ®p ¥ : Mod-B —
©(Mod-A) is faithful and X\ : B — T = Endec(yeaa) (X, px)) is an iso-
morphism.

Proof. (a) = (b) By Theorem 9.7, can is an isomorphism. Since 4C is flat, by
Proposition A.12, the forgetful functor U : © (Mod-A) — Mod-A is exact. Since U
is also faithful, we get that the functor

—®p X4 : Mod-B — Mod-A

is faithful and exact.

(b) = (a) It follows by Theorem 9.7.

(a) = (c) Since B is a generator of Mod-B, p¥ ~ B ®gX is a generator of
C(Mod-A).

(¢) = (d) Since — ®p X : Mod-B — ©(Mod-A) is full and faithful and it is
the left adjoint of the adjunction (— ®p X, Home (pr,q.4) (X, ps) —)), the unit is a
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functorial isomorphism. In particular we have that

nB : B — Home (104 4) (%, ps),(B®p %, ps)) ~ Ende(aod-4) ((Z, px))
is an isomorphism. Note that nB is exactly .

(d) = (b) By Theorem 9.10, can : Home(pzo0.4) (X, px), =) @ X — —®4C is an
isomorphism and X is flat. Since — ®p X : Mod-B — © (Mod-A) is faithful and
U :%(Mod-A) — Mod-A is also faithful, the functor —®5¥4 = U (— ®p %) : Mod-
B — (Mod-A) is faithful. Then g¥ is faithfully flat. O

REMARK 9.12. By Theorem 9.11 we deduce that if —®5X 4 : Mod-B — © (Mod-A)
is an equivalence of categories then X is a Galois C-comodule.

9.13. Let gX4 be a B-A-bimodule. In the case that ¥4 is finitely generated and
projective we have a natural isomorphism

A:Homy (X, —) -5 — @4 X7
[ f (@) ®aa]
where X* = Homy (3, A) and (v, 27),_, _, is a dual basis for ¥ 4. We can consider
the adjunction (— ®p X4, — ®4 X*) and the associated comonad — ®4 3* ®p X4 :
Mod-A — Mod-A, then the A-coring ¥* ®p X4 is called the comatriz coring asso-

ciated to the bimodule g¥4. Moreover, when (X, ps) is a B-C-comodule then we
have the following commutative diagram

(218) Homy (5, —) @p ¥ — 28 @AY ®p T
can A]
—®4C

where
can: X' ®p X —C
defined by setting
can (¢ ®p s) = ¢ (so) 51
is a morphism of A-corings where ¥* ®p ¥ is an A-coring via comultiplication
Alp®pt) = ng@gxi@ij ®pt and counit € (p ®p t) = ¢ ().

REMARK 9.14. Following [BrWi, pag 189] we say that ¥ is a Galois C-comodule
when X, is finitely generated and projective and ev : Home(pzoq.4) (X,C) ®p X — C
is an isomorphism.

COROLLARY 9.15 ([GT]). Let C be an A-coring, let B be a ring and let (X, ps) be a
B-C-bicomodule. Then the following are equivalent:
(a) 4C is flat and the functor — ®p ¥ : Mod-B — © (Mod-A) is an equivalence
of categories where C = — ®4C
(b) X4 is finitely generated and projective, the canonical map can : X*®p3 — C
is an isomorphism and X is faithfully flat
(¢) AC is flat, X is a finitely generated projective generator of © (Mod-A) and
A B — T = Ende(poq.-4) (3, ps)) is an isomorphism.
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Proof. (a) = (c¢) Apply Proposition A.19 to the functor T = — ®p X. Since B is a
finitely generated and projective generator of Mod-B, ¥¢ ~ B ®p X is a finitely
generated and projective generator of © (Mod-A). By the equivalence (a) < (d) of
Theorem 9.11 we get that X\ : B — T = Endc(azoa.4) (2, px)) is an isomorphism.

(¢) = (b) Let us consider U : ©(Mod-A) — Mod-A which is the left adjoint
of the free functor — ®4 C : Mod-A — € (Mod-A). We have to prove that X, is
finitely generated and projective. Now, by Proposition A.18, we prove that ¥, is
finite, i.e. that Hompsoqa (X4, —) preserves coproducts. Let us consider a family
(Ai);er € Mod-A. We have the following

(U,—®C)ad]j
H Homyrean (U (D), A1) 27 H Home (y104.4) (2, 4; ®4C)
icl i€l
Yfinite —®ACright adj
zt HQmC(MOd_A) (E, H (Az R4 C)) ®a :g t adj HomC(Mod-A) (Z, (H AZ> X4 C>
el il
U,—® 4C)ad]j
O Y Homasoan (U (2),]_[,41-)
iel

Since ¥4 = U (X) we deduce that Hompseq 4 (X4, —) preserves coproducts. Since by
assumption 4C is flat, by Theorem 9.10 (¢) = (d) we get that

can : Home pro4.4) (3, px) , —) @ X — —®4C is an isomorphism and g3 is flat. By
diagram 218 we obtain that can is also an isomorphism. Since X is a finitely gener-
ated projective generator of © (Mod-A), by Corollary A.21 Home (p704.4) (3, ps) , —)
is an equivalence of categories, hence so is — @5 ¥ : Mod-B — © (Mod-A) so that
g2 is faithfully flat.

(b) = (a) Since can is an isomorphism, we have that 4C is flat if and only if
42" ®p X is flat. By assumption we know that gX is flat. Since X4 is finitely
generated and projective, also 43* is finitely generated and projective so 4X* is flat.
Therefore the functor — ® 4 X* ®p X is left exact and, since can is an isomorphism,
—®4C is also left exact. By diagram 218, since can is an isomorphism, can is also an
isomorphism. Now, 4C is flat and g is faithfully flat, then we can apply Theorem
9.11 (b) = (a) to deduce that — ®p X : Mod-B — © (Mod-A) is an equivalence of
categories. [

REMARK 9.16. By Corollary 9.15 we deduce that if 4C is flat and — ®g ¥4 : Mod-
B — ©(Mod-A) is an equivalence of categories, then ¥ is a Galois C-comodule.

COROLLARY 9.17 ([GT, Theorem 3.10] Generalized Descent for Modules). Let pX4
be a B-A-bimodule such that X4 is finitely generated and projective. Let ¥* =
Homy (X, A). Then the following are equivalent:
(a) 4 (X" ®pYX) is flat and the functor — ®p ¥ : Mod-B — ©(Mod-A) is an
equivalence of categories where C = — ®4 X" Qg 2
(b) Y is faithfully flat.

Proof. By (9.13) we have that X* ® g ¥ is an A-coring and thus C = — ®4 ¥* @p 2
is a comonad on Mod-A. Note that ¥ is a B-C-bicomodule via a canonical right
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coaction pf 1 ¥ — YL ®4 Y* ®p ¥ defined by setting p$ (s) = > 2; ®4 27 @p s where
i=1
(w;,2F),_, _, is a dual basis for ¥ 4. Then we can apply Corollary 9.15 (a) < (b) to

,,,,,

the case "C” = X* ®p X so that can : ¥* ®p 3 — C is the identity map. 0J

9.18. Let B — A a k-algebra extension. Let "gY,” = gA, in 9.13. Then the
comatrix coring becomes C = A®p A which is an A-coring with coproduct A€ : C =
ARpA—CR,C=A®R A4 ARp A defined by setting

AC(a®pd)=a®ply®414Qpd
and counit €€ : C = A®p A — A defined by setting
e (a®pd) =ad

for every a,a’ € A. Such A-coring C = A®p A is called canonical coring or Sweedler
coring associated to the algebra extension B — A.

DEFINITION 9.19. Let B be a k-algebra and let B % A be an algebra extension.
A right descent datum from A to B is a right A-module M together with a right
A-module morphism ¢ : M — M ®p A such that

(219) (6®pA)od=(M®po®pA)o(Megly')od
and
(220) a0 =M

where l;l : B®pg A — A is the canonical isomorphism and puy; : M ®g A — M is
induced by the A-module structure of M, u4, : M ® A — A. Given (M, ), (M’,5)
two right descent data from A to B, a morphism of right descent data from A to B
is a right A-module map f : M — M’ such that

§'of=(f®pA)od

We will denote by D (A | B) the category of right descent data. Similarly one can
define left descent data from A to B and their category (A | B)D.

Let A = (A,ma,u4) be a monad on a category A. Then we can consider the
adjunction (o F,oU), where ,F : A — 4 A and AU : 4 A — A, with unit un
which is the unit of the monad and counit A4 determined by ,U ()\ A (X , A/Lx)) =
Ay for every (X, A,uX) € s A. Then ,F,U is a comonad on the category oA by
Proposition 4.4. Hence we can consider the category of comodules for the comonad
C = 4 FoU, Y (4 A) = © (4 A) which is the category of descent data with respect to
the monad A and it is denoted by Des 4 (A).

EXAMPLE 9.20. Let B % A be a k-algebra extension. Then A is a B-ring. In fact
my : A® A — Ainduces m : A®g A — A as follows. We have to prove that
ma (ab® a’) =ma (a® ba'). We compute
ma (ab®a') = my (ac (b) ® a') = (ac (b)) d’
=a(oc(b)d)=ma(a®@ac(b)a’)=ma(a®bad).
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Moreover the unit isuw =0 : B — A. Then A = (— ®p A, —R@pm,(—@ru)o 7“:1)
is a monad on the category of right B-modules, Mod-B, as in Example 3.3. Note
that we have an iso of categories K : Mod-A — , (Mod-B) given by

Mod-A — 4 (Mod-B)

(X,px) = (X.7)
where 1§ : X @5 A — X is well-defined starting from py : X ® A — X. In fact we
have

iy (b ®a) = i (i (z® 0 (b)) ®a)
XISAmOdMA( (o ()@a))zuf((x@)ba)

Now, since A = (— ®p A, —®@pm,(—Rru)o le) is a monad, we can consider
A =—®pA:Mod-B — 5 (Mod-B) ~ Mod-A and y\U = —®4 Ap : o (Mod-B) ~
Mod-A — Mod-B so that C = y Fp\U = —®4 A®p A is a comonad on 5 (Mod-B) ~
Mod-A associated to the A-coring C = A ®p A. The category of comodules for the
comonad C = , FyU = —®4 A®p A is then the category of right comodules for the
A-coringC =A®p A

W (4 (Mod-B)) = (s (Mod-B)) = (s (Mod-B)) =~ (Mod-A)
= C(Mod-A) = +"U (Mod-A)

and it is the category of right descent data from A to B, usually denoted by
D(A] B).

COROLLARY 9.21 ([Scha4, Theorem 4.5.2] Faithfully flat descent). Let A be a k-
algebra and let B C A be a k-algebra extension. Let C = A ®@p A be the canonical
A-coring. The following statements are equivalent:
(a) A is flat and the functor — @p A : Mod-B — D (A | B) is an equivalence
of categories;
(b) A is faithfully flat.

TR myl(o

Proof. Apply Corollary 9.17 to the case "p¥4” = pAy4, noting that by Example
9.20 € (Mod-A) =D (A | B) where C = —®,C = —®4 A®p A. O

REMARK 9.22. The inverse equivalence of the induction functor — ®p A : Mod-
B —-D(A| B)=%(Mod-A) where C = — ®4C = —®4 A®p A, maps a descent
datum (M,d) into M = {m € M | §(m) =m®p 14} ~ M“C. Moreover, since
we have an equivalence, in particular the counit is an isomorphism, so that the map

M ®p AL M

m@p ar— ma

is an isomorphism with inverse given by

M — Mcoé Rp A

m +— d(m).
In fact we have [(0 ®g A) 0 0] (m) = mg, ®p Mo, ®p M1 =My @p 14 @ my so that
) (m) € ]\4605 Xp A.
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Now, we consider a particular case of the setting investigated above.

LEMMA 9.23. Let C be an A-coring. Then A can be endowed with a right C-comodule
structure p5 if and only if C has a grouplike element, namely [(lé‘ o pi) (1,4)}.

Proof. Assume first that A has a right C-comodule structure given by p%. We want
to prove that g = [({¢ 0 pS) (14)] is a grouplike element for C. First, from

9= [(1¢ o r5) (1a)]
we deduce that
(221) p5 (1) = (1) " (9) =14 ®ag
Let us compute
AC((180p%) (1a)) = (A% 01 0 p%) (1a) = [(I§ ®4C) 0 (A®a A°) 0 p5] (14)
WL (18 @4 C) 0 (05 ©4C) 0 p5] (1a) = [(IE @4 C) 0 (05 ©4C)] (65 (10))
112 24C) 0 (05 @4C)] (1a®ag) = [(12005) ®4C] (14 ®4g)
= (I 0p%) (1a)®ag=g®ag.
Moreover
e ((lg 0 p5) (1a)) = (90 lg 0 p5) (1)
— [ZA o (A ®A €C) o pi] (1A) ArigliCcom

Conversely, let us assume that g € C is a grouplike element and let us define pG :
A — A®4C by setting

14.

pala)=1a®ag-a.

We have to check that it defines a C-comodule structure on A. We compute, for
every a € A,

[(A@a %) 0p5] (@) = (A®AA°) (1a®ag-a) 2™ 1y @ag®ag-a

= (05 ®4C) (1a®ag-a) = [(p5®aC) o p4] (a)
so that
(A@aA%) 0 ph = (5 @4C) 0 p.
We also have, for every a € A,
[7’2 o (A R4 56) o p‘j] (a) = [rﬁ o (A ®a 50)} (14 ®ag-a)
=14 (1a®ac°(g-a)) A 14e%(g)a=a
so that
rho (A®ae®) opf =1da.
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Let C be an A-coring and assume that g € C is a grouplike element. Then we can
consider the map p4 : A — A ®4 C defined by setting

pa(a) =14®4 (g-a) for every a € A.

We denote by C = — ®4 C. Then, by Lemma 9.23, (A, p4) is a right C-comodule
and

Endearoaa) (A, pa)) 2 {b€ A|14®a(g-b) =b®ag}
={beA|14®4(g-b)=11®@abg} ={b€ A|g-b=0bg} = A"
In this case the map
can: X' X =Ax A —C
is defined by setting
can (a ®p a') = aga’
and C is called a Galois coring iff can is an isomorphism and B = A®C.

PRrROPOSITION 9.24. Let C be an A-coring and assume that g € C is a grouplike
element. Let B C A°C. Then the following statements are equivalent:
(a) AC is flat and the functor —®g A : Mod-B — € (Mod-A) = (Mod-A)° is an
equivalence of categories;
(b) the canonical map can : AQg A — C is an isomorphism and gA is faithfully
flat;
(¢) AC is flat, A is a finitely generated projective generator of ©(Mod-A) and
A B — T = Ende(yoa.4) (4, pa)) = A is an isomorphism.

THEOREM 9.25. [BRZ2002, Theorem 5.6]Let C be an A-coring and assume that
g € C 1is a grouplike element.

1) IfC is a Galois coring and yeoc A is faithfully flat, then the functor —® geoc A :
Mod-A¢*C — € (Mod-A) = (Mod-A)C is an equivalence of categories and 4C
is flat.

2) If the functor — ®pcc A 1 Mod-A“C — ©(Mod-A) is an equivalence of
categories, then C is a Galois coring.

3) If AC is flat and the functor — @ geoc A : Mod-A“C — ©(Mod-A) is an
equivalence of categories, then secoc A 1s faithfully flat.

Proof. 1) follows from Proposition 9.24 (b) = (a).
2) follows from Theorem 9.7.
3) follows from Proposition 9.24 (a) = (b). O

COROLLARY 9.26. Let C be an A-coring and assume that g € C is a grouplike
element. Assume that 4C is flat. Let B C A°C. Then the following statements are
equivalent:
(a) the functor — ®p A : Mod-B — € (Mod-A) = (Mod-A) is an equivalence
of categories;
(b) the canonical map can : AQg A — C is an isomorphism and gA is faithfully
flat;
(c) A is a finitely generated projective generator of © (Mod-A) and X : B — T =
Ende(aroa-1) (A, pa)) = A is an isomorphism.
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DEFINITION 9.27. Let k be a commutative ring. An entwining structure (A, C, )
over k consists of

e A= (A, m,u) a k-algebra

e C = (C,A ¢e) a k-coalgebra

e ):(C®A— A® C satisfying the following relations

(222)

(meC)o(A®Y)o(h @ A) =1¢o(C®m) and ¢O(C®u)oral = (u®C)olE~1
and

(223)

(WRC)o(CRY)o(ARA)=(A®A)orp and rpo(A®e)oh =1ls0(c® A).

NOTATION 9.28. Let (A, C,v) be an entwining structure over k. We will use sigma

notation
Y(c®a)= Zaa@)co‘

or with summation understood

Y (c®a)=a,® .
Using this notation we can rewrite (222) and (223) as follows
(224) (ab), @ c* = aubs @™, Y(c@14) = (1), @ =14®¢
(225)  Ga @GRS = @ D¢, ance () =0 (¢)a
Moreover we set, for every a,b,a’,b/ € A and c € C

alb®c)=ab®c and bc)b =b)p(cab) =0bb,® .
We also define a map A :C=ARC -CR,C=A®C®4 AR C, by setting
AC(a®c) =a®cuy®ala®cp

and a map ¢ : C — A, as follows

€ (a®c) = as(c).
DEFINITION 9.29. Let (A, C, 1) be an entwining structure. An entwined (A, C,1))-

module is a triple (M, M\},p]\(’}) where (M, uj\“/[) is a right A-module, (M, p%) is a
right C-comodule such that the structures are compatible

(uar @ C) o (M @) o (p§; © A) = plyy o iy
i.e. for every m € M and for every a € A we have

(226) Z (ma), ® (ma), = Z Moy @ mS.

A morphism of entwined modules f : (M, v p]\%) — (N, 8 pg) is a morphism of
right A-modules and a morphism of right C-comodules. We denote by MG (1) the
category of entwined (A, C,1)-modules.

PROPOSITION 9.30 ([BrWi, 32.6 pg. 325]). Let k be a commutative ring, let A =
(A,m,u) be a k-algebra and let C = (C,A,¢) be a k-coalgebra.
1) If (A,C,) is an entwining structure, then, using the notations introduced
in (9.28), (C = AR C,A°, SC) is an A-coring that will be called the A-coring
associated to the entwining (A, C, 1)) .
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2) If A® C is an A-coring then (A,C,v) is an entwining structure where
Y(ec®a)=(1a4®c)-a.

3) If C = A® C is the A-coring associated to the entwining (A, C, ), then
M = (Mod-A)° ~ MS ().

Proof. 1) Let us define the A-bimodule structures on C = A ® C. Set, for every
a,b,a’, b/ € Aand c e C

a(b®c)=ab®c  and b))t =bp(cxb) =0bb, @
ie.
adbec) =dbp(cal)=db,® .
We check the right module structure. Let us compute
(a®c) (bb) = ap (c@bb') = a[p (C@Om) (c®bRV)]
M al(m @ C)o (ABY) o (V8 A) (cbe V)]
—al(m®C)o (A 1)) (ba @ @) = a|(me C) (ba @t @ ("))
_ (bab’ﬂ ® (&)5) = abol, ® ()’ = (aby ® )V = ((a @ ) b) V.
Let us calculate
(@@c)la=ay(c®1a) =al[(¥o(COu)(c® ;)]
=a[(¢o(Cou)ors")(c)] e [(u®C)olg") ()]
=a[(u®C)(lzy®c)]=a(la®c)=a®c.
Now, let us check that it is a bimodule
(d(a@c)V =dap(crl)=d (ap(cab))=d ((a®c)b).
We define the coproduct on C = AQC, A :C = A®C — C®4C = ARCR41ARC,
by setting
AC(a®c)=a® c(1) ®a 1a ® ¢
where we denote A (c) = cuy ® c). It is straightforward to check that it is left
A-linear. Let us check it is also right A-linear. Let us compute

A°((a® o)) = A (a (c @ V) = A (abl, ® ¢?)

o o (225) a
= abl, @ ¢y @ala @y = a(b)y ®cly ®ala®ch

=ay (C(l) ® b;) Ralsg® c'(lz) 224 ar) (C(l) ® b/a) ®4 Y (c’é) ® 1A)
= (a®c) U, ®a ¢ (cfy) @ 1a) = (¢ @ 1)) @a bt (cfy) @ 14)
=a® cu) ®a (b’a ® c‘é)) la=a®cu ®ab, ® Cly)
=a®cu) @7 (@ @) =a®cay ®ay (e @)
=a®cay®a (la®cp) b =(a®cu)y@ala®@ce)b = (A% (a®c)) b
Let us check the coassociativity

(AC ® C) (a ®cay®aly® C(g)) =a® c1)y1) ®ala @ cayz) ®ala®cp)
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Acoass

= a®cu)®ala®cen) ®ala®cpe)e
= (CoA%) (a@cu @ala®cp).
We define the counit of C, €€ : C — A, as follows
(a®c)=as(c).

It is straightforward to check that £° is left A-linear. Let us check it is also right
A-linear. Let us compute

€ ((a®c)t)) = (ap (caV)) = (ab), ® ) = able (c*)
25 4e ()b = (€ (a®c)) V.

Let now check the counitality

(reo(C® 56) o AC) (a®c)=(rco (C® 5C)) (a®cay®ala®cp))

=re(a®cay®ac(cp)) =a®c

and similarly

(le o (8C ®C) o AC) (a®c)=(lco (6C ®C)) (a®cay ®ala®cp)

= le (ac (c)) ®ala® ) =a®c

the right counitality is proved.
2) Assume that A® C' is an A-coring with the coproduct and counit as above, i.e.

A°(a®@c)=a®cu)y@ala®ce and & (a®@c)=ac(c).
Let us set
Y(c®a)=(1a®c)-a.

We want to prove that v is an entwining for A and C. Since A ® C' is an A-coring,
it is in particular a right A-module, so that

(a®c)-d) -V =(axc) (aV)
(227) aalby @ ¥ = a(a't), @ c*
Let us compute, for every a,b € A and ¢ € C
(MR C)o(ARY)o (P @A) (c®a®b)
=[(m®C)o(A® V)] (¢ (c®a)@D)
—[(m®C) o (A8 V)] (ta ®* @) = (m® C) (00 @ by @ (c*)°)

= aabs ® ()’ 2 (ab),, ®

=Y (c®ab) =[Po(COm)(c®a®b)

and
[Wo(C®u)ors'](c)=[Yo(COu(c®1y) =1 (c®1a)
= (la®e) 1, EN g e = (e ) (e = [(u® C) ol (o).
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On the other hand, A¢ and ¢ are A-bilinear maps and in particular right A-module
map so that we have

AC((a@c)t) = (A°(a®c)) b and & ((a@c)b) = (f(a®e)) V!

le.

(228) aby, ® ¢}y ®a 14 ® clyy = a ® cay ®a b, @ c(y)
and

(229) able (¢*) =ae(c)V.

Then, for every c € C' and a € A, we have

(A A)ou](c®a) = (A8 A) (a0 ® ) = 4y ® ) © cfy

(228) o o
=" 1a® cuyaa @ cyy =9 (0(1) ® aa) ® Ca)

= (W ®C) (c1) ® aa ® ) = [ ®C) o (C® V)] (cay ® c) ® a)
=y ®@C)o(C¢)o(A® A)](c®a)
and

[rac(A®e)o)](c®a) = [rao(A®e)](ay, ®cY) = aye (¢¥)

(229) e(c)a = [lao(e®@A)](c®a).

3) Let M € MG (), that is p§; is a right A-module map where A ® C has a right
A-module structure given by
(a®c)V =a (cV) =ab, ® ™.

Since p{; is a right A-module map, then the comodule structure given by the com-
posite

C

p%:Mp—M>M®O:M®AA®C:M®AC

is a right A-module map and thus (M , p%) is a right C-comodule. Conversely, let
(M , pﬁ}) be a right C-comodule, then we can consider

C
P ML M@, C=M®,A®C~MeC

as a right A-module map and thus we can see M as a (A, C,v)-entwined module.
In fact, (226) just means that the map p¥; is a right A-module map. 0

THEOREM 9.31 ([SS, Lemma 1.7]). Let C be a k-coalgebra and let A be a k-algebra
such that (A, C,v) is an entwining structure. Then C = A ® C is an A-coring.
Assume that 4C is flat (i.e. C is k-flat) and that (A,m,pS) € MG (¢). Let B =
AC Then the following statements are equivalent:
(a) the functor — @ A : Mod-B — M () is an equivalence of categories;
(b) the canonical map can: A®Rp A — A® C is an isomorphism (i.e. B C A is
a C-Galois extension) and gA is faithfully flat.

Proof. By Proposition 9.30 we know that M§ = (Mod—A)C ~ MG (v). By hypoth-
esis (A,m,pg) € MG (¥) and thus, by Lemma 9.23, C = A ® C has a grouplike
element, that is p§ (14). Then we can apply Corollary 9.26 to conclude. O
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DEFINITION 9.32. Let H = (H, AH,EH,mH,uH) be a k-bialgebra, let
A= ((A7 mMa,Ua) ,pg) be a right H-comodule algebra, let D = ((D, AP, 5D) ,,ug)
be a right H-module coalgebra and g € D be a grouplike element. We define
the category of (D, A)-Hopf modules (or Doi-Koppinen Hopf modules) denoted by
ML (H) , as follows:
o M € Ob(M?E (H)) is aright D-comodule via p¥;, a right A-module via 4,
such that for every m € M we have

(230) (oo 1) (m @ a) = 3" iy (mo © a0) © ufs (my © @)

where pP (m) =>"mo®@m; € M® D and pff (a) =Y ap®a; € AQ H, i.e.
p¥ is a morphism of right A-modules or equivalently, p4; is a morphism of
right D-comodules

o [ € Homynpy (M, N) is both a morphism of right D-comodules and a
morphism of right A-modules.

LEMMA 9.33. Let H = (H, AH,sH,mH,uH) be a k-bialgebra, let A = ((A,mA,uA) ,pg)
be a right H-comodule algebra, let D = ((D,AD,ED) ,ug) be a right H-module
coalgebra and g € D be a grouplike element. Then A € ME (H) and A is a right
D-comodule algebra.

Proof. We denote pfl (d ® h) = d - h. First of all we want to prove that A is a right
D-comodule. In fact we can consider

ph:A—A®D
defined by setting
ph(a)=ay®g-a.
Let us compute, for every a € A,
[(A X AD) @) p£:| (a) = (A X AD) (CLO ®g : Cll) =ag (g . al)(l) X (g . al)(2)

DisHmodcoalg Ais Hcom

ao @ g(1) * A1y @ G(2) * A1y, g, @ gy - 6o, D G2) - a1

ggrouplike

=" ag, ® g a0, ®g-a1 = (pf ® D) (a® g-a1) = [(pi ® D) o piy] (a)
so that
(A® AP) o pd = (p3 ® D) o p3.
We compute, for every a € A,

[TAO(A®€D>OIOQ} (a) = [er(A®5D)} (ap® g -a)

PRI (a9 @ P ()" ()

) ggrouplike

=14 (ap® el (ga1))

H(al

= ape? (g) e al, = a

so that
T4 0 (A ®€D) oph =1Idyu.
Note that A is a right A-module via m 4. It remains to prove (230) . Recall that

ph(a)=> a®g-a €A D
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so that we have
(PR o pi) (a@b) = (pF oma) (a@b) = p} (ab)
= > (ab)g @ (9@ (ab)) EEN " aghy @ g - (arby)
Distimodeonls Z aghy ® (g - a1) - by = Z aoho ® pigy (1 (9 © a1) @ by)
= malag®bo) @ ppy (1 (9 ® a1) @ by)

=D i (a0 @ bo) © (g a1 ® by).

Then we deduce that A € MZE (H). Note that this last computation says that m
is a morphism of right D-comodules. It remains to prove that u 4 is also a morphism
of right D-comodules. Let us compute

(PR oua) (1e) = p5 (14) = (1a)g® g - (1a),
Aingmalg 1A X qg- 1H 1A ® g
= (ua® D) (1; @ g) = [(ua ® D) o pP] (1)
so that we conclude that ((A, ma,Ua) ,pg ) is a right D-comodule algebra. [

THEOREM 9.34 ([MeZu, Theorem 3.29 (a) < (f)]). Let H = (H, A" e my,up)
be a k-bialgebra, let A = ((A, mMa,Ua) ,pﬁ{) be a right H-comodule algebra, let D =
((D,AD,ED) ,,ug) be a right H-module coalgebra and let g € D be a grouplike
element. Then ((A, mMa,UA) ,,02) is a right D-comodule algebra and D = A® D is
an A-coring. Assume that oD is flat (i.e. D is k-flat). Let B = A“P. Then the
following statements are equivalent:

(a) the functor — @p A: Mod-B — MP% (H) is an equivalence of categories;

(b) the canonical map can : AQp A — A® D is an isomorphism (i.e. B C A is

a D-Galois extension) and gA is faithfully flat.

Proof. We set pu# (d® h) = d - h. By Lemma 9.33, we know that ((A,ma,ua),p%)
is a right D-comodule algebra. First of all we want to prove that D = A® D is an
A-coring. Let us consider v : D ® A — A ® D defined by setting, for every a € A
and d € D,

DisHmodcoalg

Y(d®a)=ay®d-a
where we denote pff (a) = ag ® a;. Let us prove that (A, D, ) is then an entwining
structure over k. We have to prove (222). Let us compute, for every a,b € A,d € D,

[(m4® D)o (AR ) o (th® A)] (d®a®b)
=[(ma® D)o (A ¢)](a®d- a1 ®b)
= (ma® D) (ag ® by @ (d - a1) - by) = aoho @ (d - ay) - by

(D,ug ) Hmodcoalg

= (l()b() ® d . (albl) (ab)o ® d . (ab)1
=P (d@ab) =[po(D@ma)l(d®a®b)

(A,pg)H-com alg

so that
(ma®D)o(A®p)o(Pp @A) =1po(D®@ma).
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Let us compute, for every d € D,

(Yo (D@ua)orp'](d)=[o(D@ua)(d® 1) =1 (d® 1s)

A’PH H-com alg isHmodcoa,
=(1A)O®d-(1,4)1( i Ly@d-1y P2, 0 d

= (ua ® D) (1 ® d) = [(ua ® D) o l};'] (d)
so that we have
Yo (D®us)ory = (us® D)olpl.
Let us prove (223). Let us compute, for every a € A,d € D
[(w@D)o(D®v)o (A" ® A)](d®a)
= [( ® D) o (D @ 4)] (dy ® dz) ® a)

= (v ®@ D) (day ® ap ® dpy) - a1) = ag, @ dqyy - ap, @ dgg) - ax

A isHcomod
= ap @ dqy - ar,y ® d) - arg, a0 ® (d- al)(l) ®(d- (11)(2)

= (A0 AP) (apy®d-a)) = [(A® AP) 0] (d® a)

DisHmodcoalg

so that we get
(Y@ D)o (D)o (AP @A) = (A AP) oy

and

[rac(A®eP) o] (d®a)=[rao (A®e”)] (ao®d-a;)

=r4(ap®e?(d- ar)) Pistimodeoal, | (ao ® e (d)e™ (a1))

=as” (d) =" (d)a=14(e” (d)®a) = [lao (" ® A)] (d® a)
so that we get
740 (A®5D) oth =140 (5D®A).
Then by Proposition 9.30, (D = A® D, AP, eD) is the A-coring associated to the
entwining (A4, D, ) and M% = (Mod-A)® ~ ML (). Note that M € MZE (), is
such that (M , ,uﬁ) is a right A-module, (M , p]\%) is a right D-comodule satisfying
(1ay ® D) o (M @) o (p3y © A) = piyy © iy
i.e. for every m € M and for every a € A
(02 0 k) (m  0) = s (mo ® ao) @ plh (my ® )

which is exactly the condition (230) for M € MZ (H). Since morphisms in both
categories MZ (1) and M% (H) are right A-linear and right D-colinear morphisms
we deduce that

ME () = MZ (H).

Since by Lemma 9.33 A € M%) (H) ~ MZ% (), we can apply Theorem 9.31 to the
case "C” = D and "MG (¢)” = M (v) ~ ME (H). O
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COROLLARY 9.35 ([Schnl, Theorem I (2) < (4)]). Let H = (H,A", &% my, uy)
be a k-bialgebra and let ((A,mA,uA) ,pf{) be a right H-comodule algebra. Then
H = A®H is an A-coring. Assume that A H is flat (i.e. H is k-flat). Let B = A",
Then the following statements are equivalent:
(a) the functor — ®p A : Mod-B — MY is an equivalence of categories;
(b) the canonical map can: AQg A — A® H is an isomorphism (i.e. B C A is
an H-Galois extension) and gA is faithfully flat.

Proof. We can apply Theorem 9.34 to the case ”D” = H so that MY (H) = M¥.
U

10. BICATEGORIES

In this last part we will change some notations to be more clear and to give more
evidence to a new product we introduce here.

Let C be a bicategory. For every O-cell X in C, we denote by 1x : X — X the
identity 1-cell over X. For every 1-cell A in C, we denote by 14 : A — A the identity
2-cell over A. We will use juxtaposition when we compose 2-cells vertically and we
will denote by - the horizontal composition of 1-cells and 2-cells.

Let us assume that C is a bicategory with completeness requirement (all the
categories C ((X, A), (Y, B)) have coequalizers which are preserved by composition
with 1-cells).

We keep denoting by (A, ma,us) a monad with its multiplication and unit.

We now want to define the 2-category Mnd (C) following the definition given in
[St]. For simplicity we will always assume to work with a 2-category C even if one
can prove similar results for an arbitrary bicategory.

DEFINITION 10.1. Let C be a 2-category. A monad in C is a pair (X, A) where X
is an object of C, A: X — X is a 1-cell in C together with 2-cells my : 14-14 — 14
and uy : 1x — 14 satisfying associativity and unitality conditions, i.e.

(231) mA(lA-mA) = mA(mA-lA)

(232) mA(uA'lA) = 1A:mA(1A~uA).

DEFINITION 10.2. Let C be a 2-category and let (X, A), (Y, B) be monads in C. A
monad functor in Cis a pair (Q,¢) : (X, A) — (Y, B) where Q : X — Y is a 1-cell
and ¢ : B-Q — @Q - A satisfying the following conditions

(233) (lg-ma)(¢-14)(Ap-0) = ¢(mp-1q)

(234) ¢(UB . 1Q) == 1Q cUA-.

DEFINITION 10.3. Let C be a 2-category, let (X, A), (Y, B) be monads in C and let
(Q,0),(Q,¢): (X,A) — (Y, B) be monad functors. A monad functor transforma-
tion o : (Q,¢) — (Q',¢') in Cis a 2-cell o : Q — @’ such that

(235) ¢ (1g-0)=(0-14)0¢.

DEFINITION 10.4. The 2-category Mnd (C) consists of

e Objects: monads in C
e 1-cells: monad functors in C
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e 2-cells: monad functor transformations in C.

REMARK 10.5. We denote by (X, 1x) in C the trivial monad on the object X with
trivial multiplication and unit m;, : 1, - 1;, — 1, and uy, : 1x — 1;,.

DEFINITION 10.6. Let C,C" be two 2-categories and let G : C — C' be a pseudo-
functor. Then the pseudofunctor Mnd (G) : Mnd (C) — Mnd (C') is defined as
follows:

e Mnd (G) (X, A) = (G (X),G (A))

e Mnd (G) (Q,9) = (G(Q),G (¢))

e Mnd (G) (0) =G (o).
REMARK 10.7. Note that Cmd (C) = Mnd (C,) where C, is the dual reversing
2-cells of C.

11. CONSTRUCTION OF BIM (C)

The idea of defining this bicategory goes back to the strict monoidal category of
balanced bimodule functors that we defined in Subsection 3.2. We observed that,
considering bimodule functors with respect to the same monad on both sides, we
have a unit and a composition, so that they form a strict monoidal category. In the
case we consider a bimodule with respect to two different monads, the unit object
fails and the composition between them is no longer inside the class of objects of the
category. The way to solve this problem is to look at balanced bimodule functors
as 0-cells of a bicategory, changing the definition of their product.

DEFINITION 11.1. Let X be a 0-cell and let (Y, B) be a monad in C. A left B-module
in C (or simply a left B-module) is a pair (@), \g) where @ : X — Y is a 1-cell and
Ao B-Q — @ is a2-cell in C, satisfying the associativity and unitality properties
with respect to the monad B, i.e.

)\Q (mB . 1@) = )\Q (13 . )\Q) and )\Q (uB : 1Q) = 1Q.

DEFINITION 11.2. Let (X, A) and (Y, 1y) be monads in C. A right A-module in C
(or simply a right A-module) is a monad functor in C,, i.e. a l-cell Q : X — Y
and a 2-cell pg: Q-A — 1y - Q = @ in C, satisfying the associativity and unitality
properties with respect to the monad A, i.e.

pq (Lo -ma) = pq (pg - 1) and pq (1 - ua) = lg.
DEFINITION 11.3. Let (X, A) and (Y, B) be monads in C. A B-A-bimodule in C (or
simply a B-A-bimodule) is a triple (Q, A, pg) where

e (Q,)\g) is a left B-module in C
e (@, pg) is a right A-module in C
e the compatibility condition holds

Ao (1 pQ) = pq (Aq - 14).

LEMMA 11.4. Let (X, A), (Y, B) be monads in C and let (Q, \g) be a left A-module
and (Q, pg) be a right B-module. Then (Q,\g) = Coequc (ma-1g,1a-Ag) and

(Q?pQ) = Coequc (1Q smp, PQ - 1B)
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Proof. We will only prove the statement for the left module. Similarly can be proved
the other one. Since \q is associative, we deduce that

A (ma-1q) = Ag(1a- Ag)-
Now, assume that (.5, 0) is such that
a(mA-lQ):cr(lA-)\Q).
Then we have

O’(UA-1@))\QUZAO'(1A~)\Q)<UA'1A'1Q)

PL7 G (ma - 1) (ua - 1a - 1g) M2
Moreover, since Ag is epi, we conclude that the 2-cell o (uy - 1g) is unique with
respect to the property
O'(UA'lQ)AQ =0
so that
(@, Aq) = Coeque (ma - 19,14 Ag)-
O

PROPOSITION 11.5. Let (X, A), (Y, B) and (W,C) be monads in C and let Q : Y —
X and Q' : W — Y be respectively a A-B-bimodule with (Q, \g, pg) and a B-C-
bimodule in C with (Q/, )\Q/, pQ/). Then (Q op Q/,p@Q/) = Coequc (pQ : 1Q/, 1Q : )\Ql)
is a A-C-bimodule in C via the actions A\geyqr and pgegqr uniquely determined by

(236) Ao (14 Po.@) = .o (Mg - 1g)
and
(237) PQesq (Po.@ - 1c) = po.q (1g - ') -

Proof. Let us define the bimodule structures on Qez(Q’. Let us consider the following
diagram

Ql 1o /lc
Q@ -B-Q- C—>Q Q- Qepq-C
1g- )\Ql c
1Q~lB-pQ/l ilQ PQ! PQepQ’
B0 rele ! ! !
QBQ= Q@ Qo0

Note that the left square serially commutes. In fact we have

o
(1o - o) (pg -1 -10) = (po - 1) (g - 15 - por)
and b
(lg-pg)(lg-Ag -1c) "= (lg-Ag) (1o 15 - pe)-
Therefore, we get
po.e (Lo pe) (pg 1o - 1) = po.q (1o - por) (1o - Agr - Lc)
and by the universal property of the coequalizer
(QepQ - C,poq - 1c) = Coeque (pg - 1o - 1oy 1g - Ao - 1¢), there exists a unique
2-cell pgey : Qo Q' - C — Q o5 (' such that

Paes@ (Po.o - 1c) = oo (1g - pg') -
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We now want to prove that pg.,q defines a structure of right C-module. Let us
consider the following diagram

rQ-lgrlcle ro,qlc-lc
QO-B-Q-C-C Q-Q-C-C Qe -C-C
1Q-)\Ql-1c-1c
1Q'1B'pQ/'1C 1Q'1B'1Ql'mc 1Q'PQ/'1C 1Q-1Ql-mc pQ.BQl'lc IQ'BQ/.mC
PQ-lgr-lc Po,qlc
Q-B-Q-C Q-Q-C QepQ -C
1Q‘>‘Q/'1C
lo1Bpor Loy PQepQ’
/ Paler / PQ.Q! /
Q- -B-Q Q- Q QepQ
IQ-)\Q/

The diagram serially commutes and since the rows and the first two columns are
coequalizers, also the third column is a coequalizer. In particular,

PQes@ (PQesq " 10) = PQesq (Lgesq - Mmc)

i.e. pgeyq is associative. Now, we also have that the following diagram

B-O-C ralarte / _Peee le /
. . . . . °
QB Q0000 Qu -
1g-1lppg || 1@-1B-1gruc 1gpgr || 1@ 1lgruc PQepQ’ lQ.BQI‘UC
.B.0O Y ’ ° /
QB-Q =200 Qe Q

serially commutes. In particular
(Lgenq uc) P, = (Poq - 1c) (1o - 1o - uc)
so that
Pae@ (Lgepq - Uc) P.o' = Paesar (Po.ar - 1c) (1g - 1gr - uc)

Q’'mod

=roq (lg-pq) (1o -l -uc) =" pou
and since pg ¢ is an epimorphism, we get that
PQesQ (1gesq - tc) = 1gesqr

so that pge,q is also unital. Therefore (Q o5 @', pgey) is a right C-module. Sim-
ilarly, let us consider the following diagram

la-pQ-1lgr 14- pQ o
A-Q-BQ—=4-Q-Q@— AQ'BQ'
14-10- )\Q/
Ag-1lp- 1Q/\L i)\Q-lQ/ AQ'BQI
pQ'lQ’ PQ,qQ’
QB-Q—=Q Q'BQ'
1Q-)\Ql
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Since we are assuming that the coequalizers are preserved by the composition with
any 1-cell, both the rows are coequalizers and the left square serially commutes. In
fact
Qbim
(Ao 1) (1a-po-lo) "= (pg-lg) (Ao 1p-1¢)

A
(Ao 1g) (Ta-1g-Ag) = (lg-Ag) (Mg - 15 1¢).
By the universal property of the coequalizer
(Qep Q' ,pgqo) = Coequc (pg - 1o, 1g - Ag), there exists a unique 2-cell Ageyor :
A-Qep(Q — ep () such that

Ao (14 Po.@) = Po.or (Ao - 1g)-
By similar computations, one can prove that (Q) o5 @', A\ge,¢) is a left A-module.
Finally, we prove that the structures are compatible. In fact

PQesq" (Aqesq - 1) (1a - po.o - o)
(236)
= pges@ (P - 1c) (Ag - 1g - 1o)
(237) o
= poq (lg-pe) (Mg -1 - 1o) = po.or (Mg - 1g) (1a - 1q - pg)
(236)
= Ages@ (1a - poq) (1a-1q - pgr)
(237)
=" Ao (14 pgesq) (14 - poq - 1c)

and since 14 - pg o - 1o is epi, we get that

PQes@ (AQesq - 1c) = Agepq (14 * Poesqr)
ie. (Q op QI, )‘Q'BQ" pQ.BQ/) is an A-C-bimodule. 0]
PROPOSITION 11.6. Let (X, A) and (Y, B) be monads in the 2-category C, let (Q, A\g)
be a left A-module and (Q), pg) be a right B-module. Then Ae,4Q ~ Q) and Qep B =~
Q.
Proof. Let us consider the trivial left A-module (A, m4) and note that (A e4 Q,pag) =
Coeque (ma - 1g,1a - Ag). We already observed, in Lemma 11.4, that (Q,\g) =

Coequc (ma - 1g, 14 - Ag). Therefore, there exists an isomorphism I : Aey Q) — @
such that

(238) lopag = Aq-
Similarly, if we consider the trivial right B-module (B, mp), since (Q) o5 B,pg 5) =
Coeque (1g - mp, po - 1) = (Q, pg) we deduce that there exists an isomorphism
rg : () e B — () such that
(239) TQPQ.B = PQ-

U
ProposiTION 11.7. Let (X, A), (Y, B), (Z,C), (W, D) be monads in the 2-category
C and let (Q, g, pg) be an A-B-bimodule, (Q', Ay, pg) be a B-C-bimodule and

(Q", Mg, pgr) be a C-D-bimodule. Then the coequalizers (Q o5 Q') 8¢ Q" >~ Q) op
(Q' oc Q") are isomorphic as A-D-bimodules.
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Proof. Let us consider the following diagram

pQlgr-lc-lgn pQ,Q"lc'lQ”
Q- B-Q-C- Q' ==L0.q-C.q QenQ-C-q
1Q~>\Q/~10~1Q//
1Q-13~1Q1-)\Q// IQ'IB'pQ"lQ”l IQ’IQ"AQ” IQ-pQ/'lQN 2 IQ.BQ/')\QN pQ'sQ"lQ”
) , pQ-lgr-lgn J " P, lgn , I
Q- -B-Q-Q Q-Q-Q QepQ'-Q
1Q')‘Q"1Q”
1Q'IB'pQ/,Q” 3 1Q‘pQ/7Q// 4 PQepq’.Q"
/ " P larecar / y PR.QecQ” / " ’ "
Q-B-QocQ'——=Q QecQ' ——>Qop(Qec Q") = (QopQ)ecQ
QAQ e Q"

Note that the left upper square serially commutes because of naturality of the 2-
cells. The right upper square commutes because of naturality and of (237). The left
bottom square commutes because of naturality and of (236). The rows are coequal-
izers and, since the 1-cells preserves coequalizers, also the columns are coequalizers.
By the commutativity of the diagram, we deduce that

PQ.@ecq@ (1g *Parqr) (P - 1o - 1gv)
3
= pQ.@ec@” (PQ - 1grecqr) (1g - 18 - Pgr.qr)

coequ

P pQ’Q/.CQ” (1Q . AQ"CQ”) (]_Q . ]_B 'pQ/’QN)
3
= pQ.@ecq (1g P qr) (1g - Ag - 1g7)

and since (Q op Q/ : Qu,pQ’Q/ : 1Q//) = COeun (pQ : 1Q/ : 1Q//, 1Q : )\Q/ : 1Q//), there
exists a unique 2-cell £ : Qe Q' - Q" — Q o5 (Q)' ¢ Q") such that

(240) £ (Po.@ - 1gr) = P.@ecq (1g - Porqr) -

Moreover, we have

2
E(Lgesq - Aqr) (Po@ - 1o~ 1gv) =& (Poq - 1gv) (1o - 1o - Agr)
(240)
=" Po.ecq (1g poqr) (g lg - Agr)
PQ’ o coequ

= peeecq (1o poer) (g - po - 1)
(240) 2
=" & (oo - 1ov) (1o por - 1g7) = & (Pgesq - 1ov) (Po.o - 1o - 1)
and since pg o - 1o - 1gr is epi, we get that & is a fork for (1ge,o - AQ7, Qe+ 1) -
By the universal property of the coequalizer
((Q op Q/) o Q//7pQ.BQ/7Q”> = Coequc (1Q°BQ' . )\QN, PQepqQ’ * 1Q//), there exists a unique
2-cell ¢ : (Qop Q") ec Q" — Qep(Q o Q") such that

CPQes@ " =§

and thus we have
(240)

(Pqesq.@" (Po.@ * 1g7) = (P.q - 1ov) = Po.qrecqr (1g - P ")
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1.e.

(241) (PQerq.@" (PQ.@ - 1g7) = PQ.@recq (1g - Do @) -

Similarly, we have
PQese.@" (Po.q - 1o) (1g - pgr - 1gv)

2
= PQes@.@" (Poesq - 1g7) (Po.qr - 1o+ 1gv)
pQO Q/’Qucoequ
U= PQes@.@" (1esq - Aqr) (Po.q - 1c - 1)
2
= Do @ (PQ.@ - 1gv) (1g - 1gr - Agr)
and since (Q . Q/ L 1ol Q”, 1Q 'pQ/’Q//) = Coequc ((1Q *PQ 1Q//) , (1Q : 1Q/ : )\Q//)) y there
exists a unique £ : Q- Q' o¢ Q" — (Q o5 Q') o¢ Q" such that
(242) §' (1 - per.qr) = Poesqr.@ (Po.q * 1or) -

Moreover, we have

rQ
5/ (pQ ) 1Q’°CQ”) (1Q -1p 'pQ/,Q“) = fl (1Q 'pQ/,Q“) (pQ g 1Q”)
(242)
= Pes @ (Pa - 1ov) (g - 1o - 1)
PQ,q’coequ

= P (P - 1ov) (1o - Mg - 1gv)
(242) 3
= fl (1Q 'pQ’,Q”) (1Q ’ /\Q’ ’ 1Q”) = él (1Q ’ )\Q"CQH) (1Q -1p 'pQ’,Q”)
and since 1g-15-pgr o is epi, we deduce that £’ is a fork for (pg - Lgreaors 1o - Agrenqr) -
Since (Q o5 (Q" oc Q") po.qrecq@’) = Coeque (pq - Lorecq, 1q - Agracqr) ; there ex-
ists a unique 2-cell (' : Q o5 (Q' oc Q") — (Q o5 Q') 8¢ Q" such that

('Po.qrecqr = ¢

and thus

(242)
(Po.qecer (1o - porgr) =& (1o Porgr) = Poesq.ar (Po.q - 1ov)

so that

(243) ('Pa.qrecq (1 - Por @) = Paesr.r (Pa.qr - 1or) -
We now want to prove that ( and (' are two-sided inverse. We have
(243)
(C'Po.qecqr (g -Porar) = (Poesq.qr (Po.q - 1ov)

(241)
= pQ.qecq (1 Pgr.qr)

and since pg orecq (1g - Do) is an epimorphism, we deduce that

(¢ = 1Qep(Qecq)-
Similarly, we have
/ (241)
C('CPesa @ (Po.@ - 1ov) = ('Po.qrecqr (1q - Pg.qr)
(243)

= PQes@.@" (Po.q' - 1ov)
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and since pge,0r .07 (Po.¢ - 1) is an epimorphism, we get that

('C = LQos@)ec:
Therefore, (Q o5 Q') oc Q" ~ Qo5 (Q)' o« Q") via (. Moreover, by Proposition 11.5,
we know that (Q ep Q') e¢ Q" and Q ep (Q' e¢ Q") are A-D-bimodules. We now
want to prove that ( is a morphism of left A-modules and right D-modules. Let us
compute

CAQeos@)ec@” (14 Pgesqr.qr) (14 - P - 1g7)

defA
(Q- Ql). Q"
B: C CpQ.BQ,’Q” ()\(Q.BQ/) . 1Q1/) (]-A . pQ,Q, . 1Q”>

def)\(Q.BQ/)
=" (Pqesq.@" (P.q " 1g7) (Ag - 1gr - 1gv)
(241)
= pQ.qecq (1g Poqr) (Mg - 1g - 1gv)

AQ
= PQ.@rec@” (AQ * 1grecqr) (14 - 1q - pgr.qr)

CL'BQI)

def)
(
=" AQes(@ec@n) (14 - P@.qrecqr) (14 - 1q - pgr o)

(241)
=" AQes(@ec@) (1a-C) (14 pgesq @) (1a-poq - 1ov)

and since (1A . pQ.BQ/,Q//) (1A PQ,Q 1Q//) is epi7 we get that

CAQo@)ec@” = AQen(@ecq) (1a-C)
i.e. ( is a morphism of left A-modules. Similarly, one can prove that ¢ is a morphism
of right D-modules. 0

NOTATION 11.8. In the setting of Proposition 11.7, let us consider the isomorphism
of bimodules

(:(QepQ)ec Q" — Qep(Q ocQ").
In order to be more clear, in the following, we will denote it by
(@@ (QepQ)ec Q" — Qep(Q oc Q")
which is the unique satisfying the following

(244) €.Q".@"PQesq @ (Pa.@ * 1o7) = Po.@recq (1 - Par o) -
ProrposiTION 11.9. Let (X, A), (Y, B), (Z,C), (W, D), (U, E) be monads in the 2-
category C and let (Q), g, pg) be an A-B-bimodule, (Q)', g/, pgr) be a B-C-bimodule,
(Q", Agr, pgr) be a C-D-bimodule and (Q", A\g, pgr) be a D-E-bimodule. Then the
Pentagon Axiom holds, i.e. the following diagram is commutative

(Qop @) 0c Q") op Q" g Qrtrlar (Q o5 (@ oc Q") op Q"
CQ-BQ’,Q”,Q”’l \LCQ’Q/.CQ/I’QW
(Qon Q) oc (Q op Q") Qo (Q oc Q") 0p Q")

CQ,Q’,Q”'DQ”’ Q.BCQ/,Q”,Q”’

Qep (Q oc (Q"ep Q"))
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Proof. We compute

(1Q .B CQ/,Q”,Q”/) <Q7Q/.CQH’QIII (CQ Q/ Q” .D 1Qm)p(Q‘BQ/)'CQH7Q”/
(pQ‘BQ/ Q" ]_Q///) (pQ Q- ]_Q// . ]_Q///)

<1Q op CQ/ Q" Q///) CQ QecQ", Q///pQ.B Q"CQ” Q" (CQ}Q/7Q// . 1Q///)
(pQ.BQ/ Q// . 1Q///) (pQ Q/ . 1Q// . ]_QIN)
(

(244)
(1Q .B CQ/ Q// Q///) CQ Q/.CQ// Q///pQ.B Q/.CQ// Ql// vaQ/.CQ” M ]_Q///)

(1Q . pQ/,Q“ . 1Q///)
= (1g *58 (0",0".0") PQ.(@sc@ep@™ (1q * P@ecqr.@n) (1g - Por.qr - 1gm)
= PQ.@ec(@ ep@™) (1g - Cor.@n.@m) (1 - PQrecqr.qm) (1q - Do qr - 1gm)

(241)
= pQ’QI.O(QH.DQIII) <1Q . pQ’yQN'DQH/) (1Q . 1Q/ . pQNme)

and

<Q7Ql QII.DQ///CQ.BQI Q// Q///p(Q.BQ/).CQN Q/// (pQ.BQlyQ” . 1Q///) (prQ, . 1QII M 1QHI)
(241)
CQ Q/ Q//.DQ///pQ.BQ/ Q//.DQ/// (1Q.BQ/ . pQ//7Q///) (prQ/ . 1Q// . 1Q///)

PQ Q'
CQ Q,Q"epQ"PQesQ",Q"epQ" (pQ Q- 1Q”.DQW> (1Q ’ 1Q’ 'pQ”,Q’”)

(241)
= PQ.q'ec(@"ep@") (1 " g .@rep@m) (1g - 1gr - Por.@m)

so that we get that
(1Q op CQ',Q”,Q’”) CQ,Q"CQ”,QW (CQvQ/7Q” [ J») ]‘Q”/)p(Q°BQ/)'CQN7QW (pQ°BQ'7Q” . 1@///)
(pQ,Q/ . 1Q// . 1Q///)
= CQvQ/7QN°DQIHCQ‘BQlaanQmp(Q'BQl)’CQ”vQH/ (pQ°BQ/7QN ) 1Q”’) (pQ,Q’ Lo 1Q”’)

and since P(QepQ)ecQ",Q" (pQ°BQ'7Q” : 1Qm) (pQVQ/ : 1Q// . 1Q///) is an epimorphism, we
deduce that the Pentagon Axiom holds. 0

ProprosITION 11.10. Let (X, A), (Y, B), (Z,C) be monads in the 2-category C and
let (Q, Aq, pg) be an A-B-bimodule and (Q', Ao/, pgr) be a B-C-bimodule. Then the

Triangle Aziom holds, i.e. the following diagram is commutative

(QesB)os@ —— " Qey(BesQ)

m lQoBlQ/

Qep Q)
Proof. We compute

(rqQ e 1¢') (PQesB.Q") (PQ.B 1@) =pe.q (rq - 1¢) (pe.B - 1q)
(239)
2 poo (00 10) = po (1o - Aer)
(238)
= poq (lg-lg) (1g - PBg)

= (g ®Blg) Pg,Berq (1g - PBQ)
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(241)
(1g B lg) C@.B.Q'PGesB.@ (P05 - 1¢')

so that, since pge,5.o (Po.B - 1or) is an epimorphism, we get

roeply = (lgeply)(onq-
O
ProprosITION 11.11. Let (X, A), (Y, B) be monads in C, let (P, Ap, pp), (Q, Aq, pQ)
be A-B-bimodules in C, let (P', Apr, ppr),(Q', Mg/, por) be B-C-bimodules in C and

let f:P—Q,f : P — @Q be bimodule morphisms in C. Then there exists a unique
A-C-bimodule morphism fep f': Peg P'— Qep ().

Proof. Since f is an A-B-bimodule morphism, we have that

(245) No(La-f) = fAp and po (f - 15) = fop.
Since f’ is a B-C-bimodule morphism, we have that
(246) Mo (1p- ) = FAp and pgr (1) = Flppr.
Let us consider the following diagram
pp 1p/
P-B- PP’HPOBP’
L Apy
flsf'l J{ff’ f.Bf/
/p ! < / pQ Q' /
QB0 0 "% Qeyq
QA

Note that the left square serially commutes, in fact
(f- ) (pp-1p) = (f-1g) (1p- ') (pp - 1pr)
L (f1g) (pp- 1) (1p-15- f)
D po 1) (F 15 10) (lp 15+ ) = (o - 10) (F 15 )
and
(f- f’) (1P Ap) = (f1g) (1p- f) (1p - Ap)
2 (f1g) (1p - M) (1p 15+ )
L (1o 2) (f-15-1¢) (1p - 15 )
=(lg-Ag) (f-1p-f).
Thus, we get that
po@ (f - ) (pp-1p) = poq (f - ) (1p - Ap)

and since (P e P, ppp) = Coequc (pp - 1p, 1p - Apr) we deduce that there exists a
unique 2-cell fep f': Peg P’ — () o5 ' such that

(247) (fes f)ppp =poo (f-f).
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We now want to prove that f eg f’ is a morphism of A-C-bimodules. Note that, by

Proposition 11.5, P eg P’ and () e ()’ are A-C-bimodules. We compute

’ (247) /
Ao (1a- fep f')(1a-prp) = Agepq (1a-poq) (La- f-f)

(236) ’
= poq@ (Mg lg)(a-f-f)

=po. (Mg -1g)(a- f-1g)(1a-1p- f')

) poa (F10) (p 1) (1a - 1p- ')

2 poo (F1o) (e ) Ap - 1p) = por (f - ) p - 1p)
(247)

=" (f o f)prp (Ap-1p)
L (f o ) Aregr (1a - ppp)
and since 14 - pp ps is an epimorphism, we get that
AQepq (La- fop ') =(fep f') Apepp
i.e. fep f'is a morphism of left A-modules. Similarly, we also have

(247)
Pgep (fop [ -10) (ppp - 10) =" pgese (Do 1) (f - f - 1c)

(237)
=" po (Lg-po) (f-f - 1c)

=poq (1o pe)(lg- f'-1c)(f-1p - 1c)
(246)

= po.q (lg- ") (g -pp) (f-1p -1¢)
L poa (o f)(f - 10) (- pp) = poor (- 1) (1p - ppr)
= (fos [)ppp (1p- pp)
D (f o5 1) presrr (e - 1)
and since ppps - 1¢ is epi, we get that
PQesy (foB f - 1c) = (f o5 ') preypr

i.e. fep f'is also a morphism of right C-modules.

O

PROPOSITION 11.12. For any monad (Y, B) in C, the composition denoted by ep is

compatible with the vertical canonical composition.

Proof. Let (X, A),(Y,B),(Z,C) be monads in C, let (P, Ap, pp) ., (Q, Ao, pg)

(W, Aw, pw> be A-B-bimodules in C, let (P,, )\p/, pp/) y (Ql, /\Q/, ,OQ/) R (W/, /\W/, pW’)
be B-C-bimodulesin Candlet f : P — @, g : Q — W be A-B-bimodule morphisms,
floP — Q¢ :Q — W be B-C-bimodule morphisms in C. By Proposition 11.11
we can consider the A-C-bimodule morphisms f e f' : Peg P — () e )’ and

gepyg :Qep @ — W eg W and we can compose them in order to get

(goBg’)(foBf/):PQBP’—>WQBW’,
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On the other hand, we can first consider the canonical vertical composites gf :
P — W and ¢'f': PP — W', which are still bimodule morphisms, and then we can
compose them horizontally getting

(9f) o5 (¢'f)): Pop P'— W eg W'
We have to prove that
(gong) (fosf)=1(9f)es(df).

Let us consider the following diagrams

PP1 ’
P.B-P—=sp.P -2 pey P
1p- )\P/
lefl lff’ if'Bf'
Q- B- Q’*)Q Q ——=QepQ’
1o Ay
nggl J{gy’ iéﬁBQ
le / P /
W-B-W =—=W -W —%W ez W
o
and
PPl ’
P-B- PP’HPOBP'
1p- ,\P,
(gf)~lB~(g’f’)l l(gf)(g’f’) i(gf)-B(g’f/)
pw Ly

W.-B-W —=W. W’—>W.BW’

WA

We have to prove that (gf) ep (¢'f’) makes the external square of the first diagram
commutative. Since Bim (C) is a bicategory, in particular we have that (¢f)-(¢'f") =
(g-4¢")(f-f) so that, by the commutativity of the first diagram, we deduce that
also the left square of the second one commutes, i.e.

[(gf)- (' /)] pp-1p) = (pw - Iw)[(9f) - 15 - (g'f")]

[(af) - (@ (Ap-Ap) = (Lw - Aw)[(gf) 1 (g'f)].
Therefore, the exists the unique 2-cell (gf) g (¢'f') : Peg P’ — W ez W’ such that

[(9f) o5 (9" )] ppp = pww [(9f) - (¢ )]
Then we have
[(gf) o5 (' f)pPrr = pw: [(9f) - (9" )] = pwaw (g - 9') (f - £)]
=pww (9-9) ([ f)=(ge59) (f o5 [") prr

and since pp ps is an epimorphism, we get that

(9f) e (g f)= (959 ) (fesf).

DEFINITION 11.13. The bicategory BIM (C) consists of

e (-cells are monads in C
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e 1-cells are bimodules in C together with their horizontal composition defined
as follows. Let (X, A), (Y, B) and (W,C) be monadsin Candlet @ : Y — X
and Q" : W — Y be respectively an A-B-bimodule with (Q, Ao, pg) and a
B-C-bimodule in C with (@', g/, pg/). Then the horizontal composition of
the two bimodules is given by (Q o5 Q',pg.o) = Coequc (pg - 1o, 1g - Agr)
[Note that @ eg Q' is an A-C-bimodule in C by Proposition 11.5. Moreover,
such horizontal composition is weakly associative and unital by Propositions
11.7 and 11.6.

e 2-cells are bimodule morphisms in C.

EXAMPLE 11.14. Let us consider the bicategory SetMat as defined in [RW, 2.1].
The objects of this bicategory are sets, denoted by A, B,.... An arrow (l-cell)
M : A — B is a set valued matrix which, to fix notation ,has entries M (a,b) for
every a € Aand b € B. A 2-cell f: M — N : A — B is a matrix of functions

f(a,b): M (a,b) — N (a,b). Moreover, for AL B-L Cwehave L-M:A—C
defined by
(L-M)(a,c)=> L(be)x Ma,b).
beB

A monad in SetMat on an object A is thus a pair (A, M) where A is a set and
M : A — A is a matrix whose entries are M (a,b) for every a,b € A, ie. it
is a small category with set of objects A. Hence, a monad functor is a functor
F: (A, M) — (B, N) where A and B are the sets of objects of the small categories
M and N. Note that, since F' is a functor between categories, F' is just a map
F : A — B at the level of objects. This map induces a 1-cell Qr : A — B defined

as follows
- & if b F (a)

Moreover, we can consider the following 2-cell ¢*" : QrA — BQr defined, for every
(a,b) € A x B, by the map

o" (a,b) : QrA(a,b) — BQr (a,b).
note that

QrA(a,b) = ZQFabe(aa) U {aF M} x Aa,ad)
a’cA a€F—(b
where F~ (b) = {a € A | F (a) = b}. Similarly we have
BQr (a,b) = > B(V,b) x Qr (a,t') = B(F (a),b) x {(a, F (a))}.
VeB
We can identify the set
U {(d',F(d))} x A(a,d') = QrA(a,b) = U Aaa
o' €F(b) a'eF=(b

and
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so that we define the map ¢ (a,b) : QrA(a,b) = U A(a,d’) — BQr(a,b) =
o' €F—(b)
B (F (a),b) = B(F (a),F (a’)). Clearly, such a map is induced by the matrix map
Afa,d') — B(F(a),F(d))
f—= F(f).
Since F' is a functor, F' preserves composition, F'(go f) = F'(g) o F'(f), i.e. Fis
compatible with respect to the multiplications of the monads (A, M) and (B, N),
and F preserves the identity, F' (1) = 1p(, i. e. F' is compatible with respect to the
units of the monads (A, M) and (B, N). Hence we get that F' is a monad functor.

Let now F,G : (A, M) — (B, N) be monad functors and let x : (F,¢r) — (G, ¢%)
be a functor transformation. Then we have that x : Qr — Q¢ is defined by setting

X (CL, b) : QF <a7 b) - QG <a7 b)

{ %) ifb;éF(a)}H{ %) ifb;éG(a)}
{(a,F (a))} ifb=F(a) {(a,G(a))} ifb=G(a)|"

Then, we have Qr (a,b) 9r) Qr (a, V)
Qr (a,b) 0 Qr (a 1)
{ %) ifb;éF(a)}’_){ %) ifb’;éF(a’)}
{(a, F(a))} ifb=F(a) {(d/,F(a))} iV =F(d)

and Qg (a, b) Yelf) Q¢ (a', V') we have that
x (@', V) (Qr (f)) = Qa (f) (x (a, b))

i.e.x is a monad functor transformation.

Now, let us define the following map
F(C):Mnd (C) — BIM (C)
(X, 4) — (X, 4)

(X, 4) YV, B) — (Q- A, (1g-ma) (6 14) ,1g - ma)

(ngb)i)(Puw)'_)O"lA.

PROPOSITION 11.15. The map F defined above is well-defined and it is a pseudo-
functor.

Proof. First, let us prove that (Q - A, (1g-ma) (¢ -14),1g-my4) is a bimodule. In
fact, we have

Ao-a(1p-Aga) =g -ma)(¢-1a) (1p-1g-ma)(1p- ¢ - 14)
2 (1g-ma) (Lo - 1a-ma)(¢-1a-14) (1p-¢ - 14)

TER (1g-ma) (lg -ma-14) (¢-1a-14) (1 ¢ - 1)

= (g -ma)(¢-1a) (mp-1g-14) =Aga(mp-1g-14)
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and

Aga(up-1g-1a) = (1g-ma)(¢-1a) (up-1q - 14)

(234 m guni
:)(1Q-mA)(1Q-uA-1A) A:tlQ-lA.

For the right A-module structure, we have

p@-a(pga-1a) = (1g-ma) (1g-ma-1a)

"ER (1g-ma) (g - 1a-ma) = po.a(le-1a-ma)
and )
poa(lo - 1a-ua) = (lg-ma)(lg-L1a-us) "E" 1o - 1a.
Finally, we compute
Poa(Aga-1a) = (1g-ma)(1g-ma-1a) (- 14 14a)
"L (1g -ma) (g - 1a-ma)(¢-1a-14)

2 (1g-ma) (6-14) (g 1o ma) = Aoa (15 - po.a)

so that (@ - A, (1g-ma) (¢-14),1g - ma) is a B-A-bimodule. Now, let us consider
the identity object (X,1x) € Mnd (C). Then F ((X,1x)) = (X, 1x) which is an
identity object in BIM (C). Now, let us consider the composite of 1-cells in Mnd (C)

(x,4) %Y v, By P (2, 0).

We have to prove that

F((P4)(Q,0)) = F((P,v))es F((Q,9)).
We have that (P,¢) (Q,¢) = (P-Q,(1p-¢) (¢-1g)) where P-Q : X — Z and
(1p-¢)(¢-1g): C-P-Q — P-Q-A. Then we have
F((PY)(Q.¢)=F(P-Q,(1p-¢) (¥ 1q)))
=(P-Q-A(lp-1g-ma)(1p-¢-1a) (¥ -1g-14),1p 1o -ma).
On the other hand, we have
F((P4) = (P-B,(1p-mg)(¢-1p),1p - mp)
F((Q.¢) = (Q-A (lg-ma)(¢-1a),1q - ma)
and thus
F((Py))es F((Q,0) = (P-B)es (Q-A).

By definition of ((P . B) op (Q . A) ,pP.B7Q.A) = Coequc (pP.B : 1Q : 1A, 1p . 13 : /\Q.A)
we have the following diagram

pp-5-lgla PP-B,Q-A

P-B-Q A

P-B-B-Q-A (P-B)ey (Q-A)

1p~13~>\Q.A
Note that, pp.p = 1p - mp so that we can rewrite it in the following way

lpmp-lg-la PP.B,Q-A

P-B-Q A

P-B-B-Q-A

(P-B)es(Q-A)

1p-1p-Ag.a
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Since we have

(Bep (Q-A),ppqg.a) = Coequc (mp-1g - 14,15 Ag.4)

and we are assuming that the composition with 1-cells preserves coequalizer, we also
have

(P . (B op (Q . A)) s 1p -pB’Q.A) = Coequc <1p mpg - 1Q . 1A7 1p . 1B . )\Q.A) .
Therefore, there exists a unique isomorphism h : (P - B)eg(Q - A) — P-(Begp (Q - A))
such that
(248) h(pp.pqa) =1p  pBga-

Moreover, by Proposition 11.6, P - (Beg (Q - A)) ~ P - (Q - A) so that we get
(P-B)epg (Q-A)~P-(Q-A)=P-Q-A.
Now, the left C-module structure A(p.pyey(g-4) of (P-B) e (Q - A), by (236) is
uniquely determined by
Ap-Byop(@-4) (1 - PP.B.gA) = PPBoA(APB-1g-14).
By (248) we get
prega=h""(1p ppoa)
and thus we can rewrite the above relation

Ap-Byes(@a) (1o PPBQA) = APBren@a) (1o [ (1p - pB.q.a)])

= /\(P'B)°B(Q'A) (10 ) hfl) (1 -1p 'pB,Q-A)

and
pr.Bga(App-1lg-14) =h7 (1p-ppga) App - 1o+ 1a)
LB 1 (1p ppoa) (Ap-1p-1g- 14)
i ! (AP - 1Beg(@-1)) (1c - 1p - PBG-2A)
so that

Ap-Bres@a) (Lo ™) (e 1p-ppga) =™ (Ap - 1lpey@a) (le - 1p - pBg.a) -

Since 1o - 1p - pp,g-a is epi, we get

Ap-Bpes@a) (Ie-h™) = b7 (A - 1pesg.a))
and thus
Ap-Bjes@a) =~ (A 1pep@.a) (1o h)
so that we get that
AP-B)op(Q4) = AP+ 1pep(@a) = AP 1lg.a = Apqa.
Similarly, the right A-module structure A\(p.gje,(Q-a) of (P - B) o5 (Q - A), by (237)
is uniquely determined by
P(P-B)es(@-A) (PP.B-A-14) =DPp.BoAa(lp 1B pg.a).
By (248) we get
ppoa=h"(1p ppoa)
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and thus we can rewrite the above relation
P(P-Byos(@-4) (P-B.QA - 14) = pp-Bres(@-a) ([P (1p - pBGA)] - 14)
= P(P-B)ep(Q-A) (hil : 1A) (1p-pBga-1la)
and

pp.eoa(lp-1p-poa)=h""(1p ppoa)(lp-15-pg.a)

237 _
B0 -1 (1p - pBep@a)) (1p - PB.G.a - 14)

so that

pp-Byes@ay (B 1a) (Ip - pega-1a) =h™" (1p - ppeg@a)) (1p - Peoa-14).
Since 1p - pp.g.4 - 14 is epi, we get

pp-Byen@a) (B 1a) =" (1p - ppegioa)
and thus
pp-Bres(@4) =" (1P PBag@-a) (b~ 1a)
so that we get that

P(P-B)ep(@A) = 1+ PBep(@a) = 1P poa = prqa-

12. ENTWINED MODULES AND COMODULES
Let (X, 1x), (Y, B) be monads in C and let us compute the category
Mnd (C) ((X,1x), (Y, B)). Note that C(X,B) : C(X,Y) — C(X,Y) is a monad
over the category C(X,Y). In fact, we set multiplication and unit of the monad
to be C(X,mp) = mp(—) : C(X,B-B) — C(X,B) and C(X,ug) = ug(—) :
C(X,1y) — C(X, B). In fact we have
C(X,mp)C(X,mp-1g) = mp(mp-1g)=mp(lp-mp)
= C(X,mp)C(X,1p - mp)
and
C(X,mp)C(X,up-1) = mp(up-1g)=1p=mp(lp-up)
= C(X,mB)C(X, 1B : ’LLB)
The objects of such category are the monad functors (@, ¢) from (X, 1x) to (Y, B),
i.e. the 1-cells @ : X — Y together with the 2-cells ¢ : B-Q = C(X,B)Q — Q
satisfying the following conditions
¢(1p-¢) = ¢(mp-1lg)
¢(up-1g) = lqg
which says that ¢ gives a structure of left C (X, B)-module to the 1-cell @ : X — Y.
Therefore, we can conclude that
Mnd (C) (X, 1x), (Y, B)) = cx,»C(X,Y).

Now, following [St, pg. 158], we define the bicategory of comonads as follows:
Cmd (C) = Mnd (C,), where (—), denotes the bicategory obtained by reversing



236

2-cells. This means that a comonad (X,C) in Cis a 1-cell C' : X — X together
with 2-cells A : ¢ — C - C and €° : C — 1y called comultiplication and counit
satisfying the reversed diagrams, i.e.
(249) (e - A9) A% = (AY - 1¢) A°
(250) (10 . 60) AC = 10 = ({EC . 10) AC.
A comonad functor is a pair (P,v¢) : (X,C) — (Y, D) where P : X — Y is a 1-cell
inCand ¢ : P-C — D- P is a 2-cell in C satisfying
(" 1p) e =1p-% and (1p-¥) (¥ -1c) (1p- A°) = (AP - 1p) 4.

Finally, a comonad functorial morphism w : (P,¢') — (P,¢)isw : PP — Pis a
2-cell in C satisfying

U(w-le)=(1p-w)d'
Now, we consider the category Cmd (C) ((X,1x), (Y, C)) where (X, 1x) and (Y, C)
are O-cells in Cmd (C) respectively with trivial comultiplication and counit the

former and AY, ¢ the latter. Note that C(X,C):C(X,Y) — C(X,Y) is a
comonad over the category C(X,Y) with comultiplication and counit given by
C(X,A%) =A"(): C(X,0) — C(X,C-C) and C (X, =" () : C(X,C) —
C (X, 1y). The objects of such category are the comonad functors (@, ) : (X,1x) —
(Y,C) where Q : X - Yisalcelland v : Q- -1x — C-Q = C(X,C)Q is a 2-cell
satisfying (eC . 1Q) Y =1¢g and (AC . lQ) = (1¢ - ¥) 1 so that

Cmd (C) (X, 1x), (¥, C)) = “HIC(X,Y).
Following the definition of the 2-category Mnd (C) for any bicategory C, we can
consider the 2-categories Mnd (Mnd (C)) and Mnd (BIM (C)) and the functor
between them
Mnd (F (C)) : Mnd (Mnd (C)) — Mnd (BIM (Q)).
Let us first consider Mnd (Mnd (C)):
e O-cells: pairs ((X,A),(Q,¢)) where (X, A) is an object in Mnd (C) and
(@, ¢) is a 1-cell in Mnd (C) together with a pair of 2-cells in Mnd (C) mq.¢)
and wu(q,¢ satisfying associativity and unitality conditions. Therefore we have
that A: X — X isa l-cell in C together with 2-cells mg4 = m(x 4y : A-A— A
and uyg = wx,a) : 1x — A satisfying associativity and unitality conditions
and we have that @ : X — X is a 1-cell in C together with the 2-cell of C
¢:A-Q — Q- A satisfying the following conditions
(251) ¢(ma-lg) = (lg-ma)(d-1a)(1a-¢)
(252) ¢(ua-1q) = lg-ua
Finally, the 2-cells of Mnd (C)
mqe : (Q,9) - (Q,¢) = (@-Q,(1g-¢)(¢-1g)) — (Q,¢) and ugg) :

(1x,11,) — (Q, ¢) satisfying the associativity and unitality conditions, needs
to satisfy also the following

(253) ¢ (La-me) = (mee-1a) (g 0) (- 1¢)
(254) ¢ (La-u@g) = e la-
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An object, or 0-cell, of Mnd (Mnd (C)) is called distributive law and it gives
rise to a monad structure on Q- A. In fact, the monad functor transformation
m(Q,¢) induces a multiplication on @ - A

defined by setting
ma.a = (Mqe) ma) (lg -6 1a) = (M) - 14) (lg - 1o -ma) (1o~ ¢+ 1a).

Using naturality and associativity of m g 4), naturality of ¢, associativity of
my, we have

mg.a (mg.a-1g-1a)
= (mqu) - 1) (g - 1g -ma) (1o - ¢ 1a) (M) - 1a-1g - 14)

(lg-1lg-ma-1g-1a)(1g-¢-1a-1g - 1a)

= (Mm@ - 1a) (M@ 1o -1a) (1o 1o 1o -ma) (1o - 1o - ¢ 14)
(lg-1lg-ma-1lg-1a)(1g - ¢-1a-1g-14)

= (Mm@ - 1a) (g - m@e) - 1a) (1o - 1o - 1o -ma) (1o - 1o~ ¢ - 1a)
(lg-lg-ma-1lg-14)(1g-¢-1a-1g - 14)

= (M@ - 1a) (1o - 1o ma) (1o -m@e - 1a-1a) (1o - 1o~ ¢ - 1a)
(lg-lg-ma-1lg-14)(1g-¢-1a-1g - 14)

(251)
= (m(Q#)) : 1A> (1@ . 1Q -mA) (1@ -m(Q,d,) . 1A' 1A) (1Q : 1Q : 1Q sy - 1A)

(lg-1g-¢-1a-1a)(1g-1g-1a-0-14)(lg-0-1a-1g-14)
= (m@e - 14) (g - 1g -ma) (g - 1g-ma-1a) (1o - m@Qe) - 1a-1a-14)
(lg-lg-¢-1a-1a)(lg-¢-1g-1a-1a)(1g-1a-1g ¢ 14)
= (m@e - 14) (g -1g -ma) (g -1g - 1a-ma) (1o - m@Qe) - 1a-1a-14)
(lg-lg-¢-1a-1a)(1g-¢-1g-1a-14)(1g-1a-1g- ¢ 14)
= (M) - 1a) (g - 1g - ma) (1g - mQue) - 1a-14) (1o - 1g - 1g - 1a - ma)
(lg-lg-¢-1a-1a)(1g-¢-1g-1a-1a)(1g-1a-1g- ¢ 14)
= (M) - 1a) (g - 1g - ma) (1g - mQue) - 1a-14) (1o - 1g - ¢ - 14)
(lg-1lg-la-lg-ma)(lg-¢d-1g-1a-1a)(lg-1a-1g-d-1a)
= (mq.) - 1) (g - 1g -ma) (1g - M@y - 1a-1a) (1g-1g -0 -14) (1g-¢-1g - 1)
(lg-1la-1g-1g-ma)(lg-1a-1g-¢- 1a)
(253)

=" (M) - 1a) (Lo - 1o -ma) (lg- ¢ 14) (g - 1a-mQg) - 14)
(lg-1la-1g-1g-ma)(lg-1a-1g ¢ 1a)
=mg.a(lg-1a-mg.a)
so that mg.4 is associative. Similarly, the monad functor transformation

u(Q,¢) induces a unit of ) - A
UQ.-A - 1X — Q A
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defined by setting
uga = (@) - 1a) ua.
Using naturality of u(g 4), unitality of mg 4) and m4 we have

mqg.A (ZLQ.A . 1Q . 1A)
= (M) - 14) (1g - 1g-ma) (1g- ¢ 1a) (e - 1a-1o-1a) (ua-1g-14)

= (Mm@ - 14) (U@ - 1o - 1a) (1o -ma) (¢ 1a) (ua-1g - 14)

252
(:) (1Q -mA) <1Q “Ug - 1A) = 1Q : 1A-

so that we have a monad

(Q-A,mga,uga) = (Q- A, (M@ -ma) (1g-¢-14), (@) - 1) ua). We
will see that such a monad is taken to an A-ring in the bimodule category.

o Leells: pairs (U, 9),7) : (X, A),(Q, ) — (¥, B), (P,)) where (U, ¢) :
(X,A) — (Y,B) is a 1-cell in Mnd (C), i.e. a monad functor where ¢ :
B-U — U - Asatisfies ¢ (ug - 1y) = 1y -ug and (1y - ma) (p - 14) (15 - @) =
@ (mp - 1y), and 7 is 2-cell in Mnd (C), i.e. a monad functor transforma-
tion 7 : (P7¢) (Uu 90) - (U7 @) <Q7¢)7 Le. T (P U, (1P ’ Q0> (¢ ’ ]'Q)) -
(U-Q,(1ly - ¢) (¢ - 1g)) satistying

(v -¢) (¢ -1o) (Ip-7) = (7-14) (1p- ¥) (¥ - 1q) -

o 2-cells: o: ((U,p),7) — (U, ¢),7") where o : (U, ) — (U, ¢') is a 2-cell
in Mnd (C) i.e.

P (1p-0)=(0-1a) %,
satisfying
" (lp-o)=(0-1g)T

Let us now consider Mnd (BIM (C)):

e O-cells: pairs ((X,A),(Q, g, pg)) where (X, A) is an object in BIM (C),
i.e. amonad in C and (@, A\, pg) : (X, A) — (X, A) is a 1-cell in BIM (C)
together with 2-cells in BIM (C), i.e. (Q, g, pg) is an A-bimodule in C
together with bimodule morphisms M(QArgwq) Qe,Q — Q and U@rgwa)

1x — @ satisfying associativity and unitality conditions

m(QM\QvPQ) <m<QM\Q7PQ) °4 1Q> - m(Q,AvaQ) <1Q *4 m(Q)\Q:PQ))

"(QAqrq) (U(Q«\chz) °4 1Q> = lo= M(QAqrq) <1Q *4 u(QAQW@))
o l-cells: pairs (U, Ay, pu),0) : (X, A4),(Q, . pq)) — (Y, B), (P, Ap, pp))
where (U, A\y, pv) : (X, A) — (Y, B) is a 1-cell in BIM (C) and

§ : (P, Ap,pp) (U Ay, pu) = PegU — (U, Av,pu) (Q, g, pq) = U o4 Q
satisfies the following conditions

) (U(R)\P’pp) op ]-U) = 1U L} u(QJ\Q,PQ) and

<1U LY m(Qv/\QnDQ)) ((5 L 1Q) (1p op (5) =9 <1U op m(pv)\Pva))
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o 2-cells: w: (U Av,pv),0) — (U, g, pur),0") where w : (U, \y, pv) —
(U, Avr, pur) is a 2-cell in BIM (C), i.e. it is a B-A-bimodule morphism,
satisfying
' (lpepw)=(weylg)d.
Now, let us apply the functor
Mnd (F (C)) : Mnd (Mnd (C)) — Mnd (BIM (C))
to the distributive law ((X, A), (Q, ¢)). We get

Mnd (' (C)) (((X,A),(Q,9))) = (F(C)(X,A4),F(C)(Q,9))
= (( A)(Q-A, (1g-ma)(¢-14),1g-ma))

Mnd (F (C)) (m@qg) = F(C) (m@e) =m@e  1a
Mnd (F (C)) (wq.)) = (Ww)‘u(w) 14

where

Mnd (F () (o) : :(Z(.%?f'@) b

Mnd (F (C)) () : Mnd(F(C))(1x) = A — Mnd (F (C)) (Q) = Q- A.
(

)

)
In particular, (Q - A, (1g - ma) (¢ - 14), 1g - m4) comes together with bimodule mor-
phisms Mnd (F (C)) (mq.4)) = mQe) - 1a and Mnd (F (Q)) (uq.e) = u@e) - La-
Note that

Mnd (F(C)(Q-Q) = Q-Q-A~(Q-A)es(Q-A)
= Mnd (F (C)) (@) ¢4 Mnd (F (C)) (Q).
where the isomorphism is given by the following: by definition,
(Q-A)es(Q-A),pgaga)=Coequc(lg-ma-lg-1a,1q-1a-Aga)

and since we are assuming that the coequalizers are preserved, by Lemma 11.4 we
also have

(Q . Q . A, 1Q . )\QA) = Coequc (1Q s - 1Q . 1A7 1Q . 1A . )\Q.A)
so that there exists a unique isomorphism
a:(Q-A)es (Q-A)—Q-Q-A
such that
(255) apgaga=1g-Aga=(lg-1g-ma)(lg-¢-1a).
Recall that we can consider the monad
(Q . A, mqg.a, UQ.A) = (Q : A, (m(Q@ : mA) (1Q : qb . 1A) y (U(Q@) : 1A) UA) and thus
moa = (m@e) -ma)(lg-¢-1a)

= (mqe) -14) (1g-1g-ma) (1g- ¢ - 1a)

= (Mm@ - 1a) aP@.a,0-a
that is, mg.4 factorizes through (Q - A) e4 (Q) - A) and we denote by

(256) M@, (1gma)(@1a)lgma) — (Mm@ - 1a) @
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the unique A-bimodule morphism such that

mQA = m(Q~A,(1Q~mA)(¢~1A),1Q-mA)pQ'A7Q'A'

Note that also ug,¢) - 14 is an A-bimodule morphism, in fact

Aoga (1a-w@Qe) - 1a) = (g -ma) (6 1a) (14 - u@e) - 1a)

(252) U(Q,¢)

(1g - ma) (w@e) - 1a-1a) =" (u@e) - 1a) ma

and
U(Q,¢)

poa (wqe) - 1a-1a) = (Lo ma) (u@e - 1a-1a) =7 (uqe) - 1a) ma.
Therefore,

(Q ’ A’ m(QA (1Q-mA)(¢-1A) 1Q-mA)7u(Q-A (1Q-mA)(¢-1A),1Q-mA))
= (@A (me) - 14) s u@e) - 14)
is an A-ring, so that the functor Mind (F (C)) : Mind (Mnd (C)) — Mnd (BIM (C))

associates distributive laws to A-rings.
Let us now consider Cmd (Mnd (C)) :

e O-cells: ((X,A),(C,v)) where (X,A)isamonad, C: X — X, v: A-C —
C- A together with A® : ' — C-C and ¢ : C' — 1y satisfying coassociativity
and counitality and satisfying

(257) (Ie-7) (v-1¢) (1a-A%) = (A% 14)y
(258) 1y-e¢ = (9-14) 7.
Note that, if we consider (C’ - A, ACA, 6C‘A) where
ACA = (v 10 1A)(1A-AC-1A) (ug-1c-14) and €94 : C- A — A coas-

sociativity and counitality properties are not satisfied. But, by applying the
functor Cmd (F (C)) to the comonad (C, A%, %) we get

Cmd (F (C)) ((C,A%, %)) = (C- A, A% - 14,9 - 1,4)
where
A Iy =AY C-A—C-AeyC- A
and A® -1, and €% - 14 are A-bimodule morphisms, clearly satisfying coas-
sociativity and counitality conditions. Hence, (C’ CALAY 14,601 A) is an
A-coring.
Since
Mnd (C) (X, 1x), (Y, B)) = c(x,5 C (X, Y)
dually we get
Cmd (C) (X, 1x),(Y,C)) = “I9C(X,Y).
Consider the objects ((X, 1X) (1x1x):1x)), ((X,A),(C,7)) € Cmd (Mnd (C))
[(C)7) : (X,A) = (X,A),v: A-C — C- A] and let
((Q,9),0) € Cmd (Mnd (C) (X, 1x), (1(X %) 1X)) ((X,A4),(C,v))) be a comonad
functor, where (@, ¢) : (X,1x) — (X, A) is a 1-cell in Mnd (C),ie. ¢p:A-Q—Q
satisfies ¢ (ua - 1g) = 1g and ¢ (14 - @) = ¢ (ma - 1g) and o : (Q, ¢)
(@Q,0) = (C.7)(Q.¢) = (C-Q,(lc - ¢) (v 1q)) is a 2-cell in Mnd

XlX 1X) =

(L
(©), 1
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(Ic-¢)(y-1g)(la-0) = o¢, i.e. o is an A-linear map. Since ((Q,¢),0) is a
comonad functor, the 2-cell o : Q — C'- Q) satisfies (50 . 1Q) o=1gand (1¢-¢) ¢ =
(AY-1q) ¢. This means that ((Q,9),0) € ggigC (X, X) (7) is an entwined mod-
ule. By applying the functor Cmd (¥ (C)) : Cmd (Mnd (C)) — Cmd (BIM (C))

to the element

((Q,9),0) € Cmd (Mnd (C) ((X,1x), (1x14): Lx)), (X, 4),(C,7))) we get

Cmd (F (Q)) (@, ) ,0)) € Cmd (BIM (C) (X, 1x) , (Lix10), 1x)) , (X, 4) . (C,7)))
which is an element of “X ¢4 BIM (X, X), i.e. it is a left C' - A-comodule with re-
spect to e 4.

APPENDIX A. GABRIEL POPESCU THEOREM

NoTATION A.l. Let A be a Grothendieck category, let U be an object of A and
let B = Homy (U,U). Assume that U is a generator of A i.e. that the functor
Homy (U, —) : A — Mod-B is faithful.

LEMMA A.2. In the assumptions and notations of A.1, let X € A and let X\ :
UHomaUX)) _, X be the codiagonal morphism of the family (f)fe(HomA(aX)). Then

Im(\) = X.

Proof. Let J : Ker()\) — UHmal:X) be the canonical monomorphism and let
A Homal:X)) X he the codiagonal morphism of the family (f) fe(HomA(U.X))

and, for every f € Homyu (U, X) let if : U — UHoma(U:X)) the f-th canonical
injection. Then we have Ao iy = f. Let x : X — Coker (\) be the canonical
projection and let us assume that x # 0. Then there exists h : U — X such that
x o h # 0. Then we have

0#£xoh=xoAloi,=00i,=0.
Contradiction. Thus Coker (A) = 0 and hence X = KerCoker (A) = Im (). O

PROPOSITION A.3. In the assumptions and notations of A.1, the functor Hom 4 (U, —) :
A — Mod-B is full.

Proof. Let ¢ € Homp (Hom 4 (U, X),Homy (U, Z)). We have to prove that there
exists a morphism ¢g : X — Z such that ¢ = Homy (U, g). For any subset F' of
Hom 4 (U, X)) we denote by

ip: UF) — yHoma(U.X)

the canonmical injection. If F = {f} we will write i; instead of ifs. Let A :
U HemaU:X)) X be the codiagonal morphism of the family (f) Fe(Hom 4 (U,x)) and let
p 2 UHomaUX) 7 he the codiagonal morphism of the family (¢ () peomaw,x))-
Then, for every f € Homy (U, X) we have

Aoiy=fand poir=(f).



242

Let F' be a finite subset of Hom 4 (U, X) and let us consider the commutative diagram

0 —— Ker (\p) gE M x

N

0 —= Ker (\) — 2= pHomaW.x)*—= X

JF

where A\ : U¥) — X is the codiagonal morphism of the family (f) rers J and jp
are the canonical inclusions and hp is the morphism that factorizes iz o jr through

Ker (A). We have

Joip 0 jp = jtojohp.
For every f € Flet oy : U — U and 7y : UF) — U be respectively the canonical
injections and projections. Then

Idym = ZfeF aypomy.
Let 0 : U — Ker (Ar) be any morphism. We compute
0=Apojpoo=Apoldym ojFoa:ZfeF

:ZfepfowfojFoa.

Since 7y 0 jpoo € B =Homy (U,U) and ¢ € Homp (Homy (U, X) ,Hom4 (U, 2)),
we get that

0=¢ (X, fomoiraa) = (3, e(Nomejr)oo

and hence, since U is a generator of A, we get that

S, #omodr =0
On the other hand we have that

ApoQfompojpoo

poipoay=poip=ep(f)
and hence we obtain
0 = ZfeFMOiFOafOWijFZHOiFO<Zf€FCVfO7Tf>OJF
= uOiFOjF:/,LOjOhF.

Let u : Ker (u) — UHomal:X) he the canonical injection. Then there exists a
morphism fr : Ker (Ap) — Ker (1) such that

johp=uopp

and since both j and hr are mono, also Br is mono. We want to check that the
family (ﬁF)FQHomA(U,X) is compatible. For every F,G C Hom 4 (U, X) finite subsets,

let us denote i : U¥) — U@, Thus we have A\g 0i%G = A\p and

O:)\FOJF:)\GOZngF
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Since jg : Ker (A\g) — U@ there exists a unique morphism z/;c_i : Ker (Ap) — Ker (A\g)
such that

i% o jr = ja oif.
We want to prove that 8g 0% = (r for every F, G finite subsets of Homy (U, X).
Let us compute

~

uoﬁGoig = jthoig:iGojGo

= jth:uoﬂp.

ey e .
i% =igoijpojp=1irojp

Since u is mono we conclude. Let us consider the exact sequence
0 — Ker (A\p) 25 U 22, x

Since A is a Grothendieck category, we have that lim_, are exact and hence we get
the exact sequence

0 — lim Ker (Ar) fm— jr 00 F) — py(Homa(UX)) lim—=Ap=A 5

It follows that Ker (\) = lim_, Ker (Ar) and hence there exists a unique monomor-
phism § = lim_, B : lim_, Ker (Ar) = Ker (A) — Ker (1) such that

B o hp = B for every finite subset F' of Hom 4 (U, X).
Since for every finite subset F' of Homy (U, X)

uofohp=uofp=johg

we get that
woB=j
and hence
poj=wouof=0
0 —— Ker (\) — > [(Homav.x)) A X — 2 Coker (\)

/| g/f//;%
Coker (5) —  Ker (x)
s

Therefore there exists a unique morphism g : Im (\) ~ Coker (j) — Z such that
fiop = p where p : UHomaU:X)) _, Coker (5) is the canonical projection. By Lemma
A.2, we have that Im (\) = X and then X = Im (\) = Coker (j). Then there exists
an isomorphism ¢ : X — Coker (j) such that to A = p. Set g = ot and for every
f € Homy (U, X), we compute

gof=potof=potoloif=popoir=poir=e(f).
This means that ¢ = Homy (U, g). O
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LEMMA A.4. Let A be an abelian category and let U € A. Then, for every exact
sequence in A

0K - x Ly
the sequence

0 — Homy (U, ) "2 Hom,, (U, X) " 28 Hom,, (U, v)

15 an exact sequence of abelian groups.

Proof. Let h € Hom 4 (U, K). Then Homy (U, k) (h) = kh. Since k is a monomor-
phism it follows that kh = 0 if and only if h = 0. Hence Hom4 (U, k) is also a
monomorphism. Also (Homu (U, f) o Homu (U, k)) (h) = fkh = 0. This implies
that Im (Homy (U, k)) € Ker (Hom4 (U, f)). Let now g € Hom 4 (U, X) and assume
that Homy (U, f) (g) = 0 i.e. fg = 0. Since (K, k) = Ker (f) there exists a mor-
phism ¢’ : U — K such that g = k¢’ = Hom4 (U, k) (¢’) € Im (Homy (U, k)). There-
fore we get that Ker (Hom4 (U, f)) € Im (Hom 4 (U, k)) and hence Ker (Hom 4 (U, f))
Im (Hom 4 (U, k)). O

LEMMA A.5. In the assumptions and notations of A.1, let (T, H) be an adjunction
where T : B— A and H: A— B and let f : X — Y be a morphism in A. Then f
is a monomorphism (resp. epimorphism) if and only if TH (f) is a monomorphism
(resp. epimorphism).

Proof. First of all, for every X € A let eX : TH (X) — X be the counit of the
adjunction (7, H). Then, in view of Proposition A.3 and Proposition 2.32, €X is an
isomorphism and for every morphism f : X — Y in A we have

foeX =eY o TH(f).
Thus f is mono (resp. epi) if and only if TH (f) is mono (resp. epi). O

LEMMA A.6. In the assumptions and notations of A.1, let m,n € Nym,n > 1,
let f: B™ — B"™ be a morphism of right B-modules, let X = Coim (?) and let
j: X — B"™ be the canonical injection. Let T : Mod-B — A be a left adjoint of the
functor Homy (U, —) : A — Mod-B. Then T (j) is a monomorphism.

Proof. Let m,n € Nym,n > 1, let f : U™ — U™ be a morphism in A. Let us
consider the diagram

0 —=Ker (f) ——~pym —L oy
|

Coim (f)

o

where p is the canonical epimorphism and ¢ is the canonical monomorphism. By
applying to it the functor H = Hom 4 (U, —), in view of Lemma A.4, we obtain the
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diagram

0 — Ker (H (f)) = H (Ker (f)) ——

0
Since Coim (H (f)) = Coker (H (k)) and H (p) o H (k) = 0 there exists a unique
morphism (¢ : Coim (H (f)) — H (Coim (f)) such that
(259) H(p)=(oq

where ¢ : H (U™) — Coim (H (f)) is the canonical epimorphism. Let j : Coim (H (f)) —
H (U™) be the canonical monomorphism such that j o ¢ = H(f). Then from
joqoH (k)= H (fok)=0 we get that

(260) qo H (k) =0.
0 — Ker (H (f)) = H (Ker (f) — 1o 1 (U™) ) H(U™)
H(p)l a H(i) Tj

H (Coim (f)) <= — Coim (H (f)) = Coker (H (k))

— T

From H (i)o(ogq ) g (i1)o H (p) = H (f) = j oq, since ¢ is an epimorphism, we

get that
(261) H(i)o(=.
Let us apply T to it having in mind that 7" is right exact

TH(k) TH(f)

0 —= TH (Ker (f)) TH(U™)

TH(p)J T(a) TH (i) ]T(a‘)

TH (U")

TH (Coim (f)) %T(Coim (H (f)))

Let us prove that 7' (j) is mono. From formula (260) we obtain that 7' (g) o
TH (k)=T (qo H (k)) =0. Since

TH (Coim (f)) = Coim(TH (f)) = Coker (Ker (TH (f)))
= Coker (T'H (Ker (f))) = Coker (T'H (k))
there exists a unique & : TH (Coim (f)) — T (Coim (H (f))) such that
(262) {oTH (p)=T(q)-
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We have

T(¢)otoTH (p) 2 T(0) 0T (q) 2 TH (p)

and since TH (p) is epi by Lemma A.5, we get
T (¢) 0 & = Idru(coim(y))-

We compute

£oT () oT(q) 2 coTH (p) 2 T (g)

and since T (q) is epi, we obtain that

§o T (¢) = Idr(coim(m (1))

Therefore 7' () is an isomorphism. From formula (261) we get that TH (i)oT (¢) =
T (j) and by Lemma A.5 we conclude that 7" (j) is a monomorphism.

Let m,n € Nym,n > 1, let f : B™ — B" be a morphism of right B-modules
and let X = Coim (7) Since U is a generator, by Proposition A.3, there exists
a unique morphism f : U™ — U™ such that H (f) = f. Then, by the foregoing,
X = Coim (H (f)) and T (j) is a monomorphism where j : X — B" is the canonical
monomorphism. 0

LEMMA A.7. Let B be a ring and let X be a submodule of a free module A%,
Let Py (X) be the set of finite subsets of X and let jr : Xp — X be the canonical
inclusion of the submodule of X spanned by F' € Py (X). Then for every F' € Py (X)
there exists a finite subset Zp of Z and a monomorphism ip : Xp — AYr) such that
the diagram

AL

AZF)

where j : X — A% is the canonical inclusion and hp : A%rP) — AZ) js the canonical
section of the canonical projection tp @ A% — AVr) s commutative. Moreover
<iF)FeP0(X) is a family of morphisms between the direct systems (XF)FE%(X) and

(A(ZF))FEP()(X) and (hp o iF)FePO(X) is a compatible family of morphisms such that
lin (hF e} ZF) = j

Proof. Let (e,),., be the canonical basis of A(). Then, for every x € X there exists
a finite subset F, of Z such that

r= Zzer e.a, where a, € A for every z € F.

For every F' € Py (X) let us set

ZF:UFx

zeF

and let (el) . be the canonical basis of AZr) Then the assignment

z€Z

F

e, — e, where z € Zp
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yields the canonical section hp : A@F) — A of the canonical projection mp :
AY) — AZF) gince mp (e,) = ef for every z € F. Set ip = mp o j o jp. Then we
have

Im (j o jr) C ZzeF e A= ZZGF (hpomr)(e,) A
and since
(hpomr)(e,) =e, for every z € F

we obtain that
(263) hpoip =hpompojojr=jojp.

Assume now that F,G € Py (X) and that FF C G. Then Zp C Zg so that we
can consider the canonical section h& : A4r) — A(Z3) of the canonical projection
78 A%6) — AZF) We have

G (eG

7 (e5) = el and hf (ef) = €S for every z € Zp.

Moreover
hG o} hg == hF
Let j% : X — X¢ be the canonical inclusion. Then
jGojg:jF and WGth:hg
so that we get
iG 0 J§ =176 ©jojgo s =mG0jojr=
(223) Ta © hF OiF = hg OiF
and hence
hGOZ'GOjg:hGOthiF:hFOiF
which proves that (hpoip) Fepy(x) 18 a compatible family of morphisms. Since
im_, (XF) pepy(xy = X, to prove that

lim (hpoip) =7
it is enough to prove that
Jjojr=hroir
for every F' € Py (X). This holds in view of (263). O

LEMMA AS8. Let f: X =Y and p: W — X be morphisms in an abelian category
A. Assume that p is an epimorphism and that

Ker (f o p) = Ker (p).
Then f is a monomorphism.

Proof. Since p is an epimorphism, we have that Coker (Ker (p)) = (X, p). It follows
that Coker (Ker (f op)) = (X, p). Let f op: Coker (Ker (f op)) — Ker (Coker (f op))
be the isomorphism such that

(264) fop=kofopop
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where k : Ker (Coker (f op)) — Y is the canonical monomorphism. Since p is an

epimorphism, from formula (264) we obtain that f = ko fop and hence f is a
monomorphism. O

THEOREM A.9 ([Po, page 112]). Let A be a Grothendieck category, let U be an object
of A and let B = Homy (U,U). Assume that U is a generator of A and that there
exists a left adjoint T : Mod-B — A of the functor Homy4 (U,—) : A — Mod-B.
Then T is an exact functor.

Proof. By Proposition A.3, H is full and faithful. Since 7" is a left adjoint so that it
preserves epimorphisms, we have only to prove that it is left exact.

Now let X be a submodule of a free right B-module B(%). Let P, (X) be the set of
finite subset of X and let jr : X — X be the canonical inclusion of the submodule
of X spanned by F' € Py (X). By Lemma A.7, for every F' € Py (X) there exists a
finite subset Zr of Z and a monomorphism ip : Xp — AZr) guch that the diagram

Xp JF X J A2)
N
AZF)

where j : X — A is the canonical inclusion and hp : A?F) — A@) is the canonical
section of the canonical projection 7p : A¥) — AZF) is commutative. Moreover
(hpoip) Fepy(x) 18 & compatible family of morphisms such that

Since 7' is a left adjoint functor, we have
T(G)=T (lim (hp o ip)> —lm T (hp oip).

By Lemma A.6 we know that 7 (ip) is a monomorphism. On the other hand 7p o
hr=1d ne, and hence also T' (hr) is a monomorphism. Since A is a Grothendieck
category, direct limits are exact in .4 and hence T (j) is a monomorphism.

Finally let

O—>LL>M

be a monomorphism in Mod-B. Then we can construct the following commutative
diagram with exact rows and columns

n
|

i 0
|

0 — Ker (p) —— P —*
IdKer<p)J/ f f
0 — Ker (p) ——= g L 0
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where p : BM) — M is the usual epimorphism of right B-modules and (P, f', p') is
the pullback of (p, f). Recall that

P= {(x,y) € BM x L|p(x) :f(y)}

and f': P — B™) is defined by setting f’ ((x,y)) = z while p’ : P — L is defined by
setting p’ ((z,y)) = y. Moreover i’ : Ker (p) — P is defined by setting i’ (x) = (z,0).
Since f is a monomorphism we have that also f’ is a monomorphism and since p is
an epimorphism, also p’ is an epimorphism. Then, by the foregoing, both 7' (f’) and
T (i) are monomorphism. Since 7' (i) is a monomorphism we get that 7" (i') is also
a monomorphism so that (7" (Ker (p)),7T (i) is a kernel of T (p’). Since T (f') is
a monomorphism and T (f') T (i') = T (i) we get that (T (Ker (p)),T (i')) is also a
kernel of T (p) T (f"). Infact T (p) T (f")T (') =T (p) T (i) = 0andif { : Z — T (P)
is a morphism such that 7" (p) T'(f') ( = 0 there exists a unique morphism (' : Z —
T (Ker (p)) such that T (f")¢ =T (i)' sothat T (f)¢ =T () =T ()T (')
and since 7' (f) is mono we get that ¢ = 7' (i') ('. Since T'(p) T (f") =T (f) T (p)
we deduce that (T (Ker (p)),T (¢')) is a kernel of T'(f) T (p'). Therefore we obtain
that

Ker (T'(f)T'(p')) = Ker (T (p')) -
Since T is right exact we know that T'(p’) is an epimorphism and hence, in view of
Lemma A.8, we deduce that 7' (f) is a monomorphism.

0

T(") l

0— T (Ker (p) ~s 1 (P) —2

Id7(Ker(p)) l T(f") l T(f) l
0 — T (Ker (p)) —2 7 (B) 22 1 (a1 —— ¢
]

LEMMA A.10. Let C be an A-coring. Then the category (.Mod—A)(C has coproducts
and cokernels so that it is cocomplete. Moreover if U : (Mod-A)® — (Mod-A) is
the forgetful functor we have

U ((]_[ (Mz-,pi)ig,pM)) = @ZH M; and U ((Coker (f), p2*"D)) = Coker (f).

Proof. Let (M,, p;),.; be a family of right C-comodules and let ¢; : M; — M = € M;

i€l
be the canonical injection and 7; : M — M, the canonical projection. Since m;e; =
Idss, the map

i€l

g ®aC M, R4C — M®4C
is injective and hence also the map
pi=(ei®aC)opi: M;— M®sC

is injective. Let
oMM — M®,C
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be the codiagonal map of the p;. Then p™ is uniquely defined by

pM ogi = .

Then (M, pM) € (Mod-A)®. In fact, for every i € I we have
(pM ®AC) OPM°5z‘ = (PM ®AC) o p; = (PM ®AC) 0(g;®4C)op;
= (P ®aC)opi=(:®4C)o(p;@aC)opi=(504C)o0 (M;@4A) 0p,
= (M®AAC) o(g;®aC)op; = (M®AAC) op; = (M®AAC) opMog;
and
rao (M®ae)opMoeg=ryo(M®@4e)op =ryo(M®se% 0(e;®4C)o0p;
=ryo(e®aA)o(M®se) 0p =eoryio(M®se)op =e.
Let f : (M, pM) — (N, pN) be a morphism in (Mod—A)(C so that f: M — N is a
morphism in Mod-A and let us consider
ML N2 Coker (f) — 0
the cokernel of f in Mod-A. Then we have the following diagram in Mod-A

M ! N " > Coker (f) ——0

ipl\/f \LPN ipCOker(f)

M. C 8 N @y, e P28 Coker (f) @4 C —— 0

We compute
(p©aC)opNof=(pRaC)o(f®aC)op™ =(pf©aC)op™ =0
by the universal property of the cokernel there exists a unique morphism p

Coker (f) — Coker (f) ®4 C such that
Coker(f)

Coker(f) .

p op:(p®AC)OpN.
Let us check that (Coker (f), p®* ) € (Mod- A) Let us compute
(pCokel" f) R4 C) o pCoker op= ( Coker(f ®A C) o (p Q4 C) o pN

=(p®aC®aC)o(p" ®aC)op" =(p@4CR4C)o0 (N®AAC) op

= (Coker (f) ®4 A%) o (p®aC) o p™ = (Coker (f) @4 A) o pCoker(f) o g
and

Tcoker(f) © (Coker (f) ®a 5C) o plokerlf) o p
= TCoker(f) © (Coker f)®a gc) o(p®aC)op"

= TCoker(f) © (P ®a A) o (N®ae) 0p" =poryo (N®ac)opV =p

and since p is epi we conclude. Now, let ¢ : (N, p") — (Z, p?) be a morphism in

(M oal—A)(C such that (o f = 0. Then, there exists a unique morphism ¢’ : Coker (f) —
Z in Mod-A such that ('op = (. We want to prove that (' € (Mod—A)C. We compute

pPolop=p7ol=(C®4C)op"
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= (C/ XA C) o (p XA C) o pN — (C/ ®a C) o pCoker(f) op
and since p is an epimorphism we get that (' € (Mod- A)‘C. 0

LEMMA A.11. Let C be an A-coring and assume that AC is flat. Then the category
(Mod-A)® has kernels. Moreover if U : (Mod-A) — (Mod-A) is the forgetful

functor we have

U ((Ker (f) ,pKer(f))) = Ker (f).

Proof. Since by Lemma A.10 the preadditive category (M od—A)(C has coproducts,
it also has products. Now, let f : (M, p™) — (N,p") a morphism in (Mod-A)°.
Then in Mod-A we can consider the exact sequence

0— Ker(f) 24> M N
and, since 4C is flat, we get the exact sequence

Ker (f) —= M ! N

ipKer(f) lpkl le

O*>K€I(f)®AC%M AC&N@)AC

0

We have
0=p"ofok=(f®4C)op"ok.
By the properties of the kernel of f there exists a unique morphism p¥() : Ker (f) —
Ker (f) ®4 C such that
pMok = (k®aC)opirih),
We have to prove that (Ker (f), pfer()) e € (Mod-A)®. Let us compute
(k®4C®4C)o ( Ker(f) & c) opKer( ) — (pM @4 C) o (k®4C) opKer(f)
= (M @aC)opMok=(M®sA%) 0p™ok = (M®4A) 0 (k®4C)oplrh
= (k®4C®4C)o (Ker (f) @4 A°) o piertd)
and
ko rger(y) © (Ker (f) ®4€°) o PR =0 (k@4 C) o0 (Ker (f) ®4 %) o prerd)
=ryo (M®Agc) o(k@AC)opKer(f) =ryo (M@Agc) opMok =k.
Since k is mono we conclude. Let now ¢ : (Z,p?) — (M, p™) be a morphism in

(Mod-A)® such that f o ¢ = 0. Then by the universal property of the kernel of f in
Mod-A there exists a unique morphism ¢’ : Z — Ker (f) such that

kol =¢(.
We want to prove that ¢’ € (M od—A)(C . Let us compute
(k®@4C)op ™ol =pMoko( =po(=((®sC)op”
= (k®4C)o(¢'®aC)op”

and since k® 4C is mono we conclude that ¢’ € (Mod-A)® and U ((Ker (f), pKer9)) =
Ker (f). O
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ProrosiTioN A.12 ([ELGO2, Proposition 1.2]). Let C be an A-coring. Then the
following are equivalent
(a) AC is flat.
(b) (Mod-A)C is an abelian category and the forgetful functor U : (Mod-A)® —
Mod-A is left exact (and hence exact).

(¢) (]\/[od—A)(C is a Grothendieck category and the forgetful functor U : (]\/[od—A)(C —
Mod-A is left exact (and hence exact).

Proof. By Lemma A.10, the category (M oal—A)(C has coproducts and cokernels.
(a) = (c¢) By Lemma A.11 has kernels. Consider the following diagram

(Ker (f), per)) - (M, pM) f (N, oY) X (Coker (f) , pCoker)
X’J ) \p\ - ‘k/

in (Mod-A)®. Then we get the diagram

Ker (f) M — N —X Coker (f)

N

Coker (k) - s Ker (x) .

in Mod-A. Since Mod-A is preabelian, f is an isomorphism in Mod-A and hence also
in (Mod-A)®. Thus also the category (Mod-A)® is preabelian and moreover abelian
(there exist products of every finite family of objects in the category). Moreover,
by Lemma A.10 and Lemma A.11 U is left exact. Further, the direct limits are
exacts for module categories and thus also for (M od—A)C. We now have to find a
generator for (Mod-A)®. Let (M,pM) € (Mod-A)® and let p : AM — M is the
usual epimorphism of right A-modules. Let us consider the epimorphism [ given by
the following composite

1M AM) o, 248 M@, C — 0

where the first arrow is the canonical isomorphism and the second one is the usual
epimorphism so that [ ((cm)m6 M) = > em M ®4 Cyy Where ¢, are almost all zero.
Then we have the following diagram

0 0

P M

|
L

on — L M@, —>0

p
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where (P, p, g) is the pullback of (l pM ) Recall that P is the submodule of
C™M) x M
defined by setting
P={(z,m) e CM s M |1 (x) =pM (m)}

and p : P — C™) is defined by setting p((z,m)) = = while g : P — M by
setting g ((z,m)) = m. Since p™ is mono, p is also mono (thus p(P) = H is a
subcomodule of C™™)) and since [ is epi, ¢ is epi. Denote by A¥ : CF) — CM) the
canonical inclusion for any F' C M. Let m € M, then there exist n € N and F,,, =
{3/171/27 LR 7yn} g M SuCh that pM (m) = ZyeFm Yy ®A Cy = l (h%@ ((Cy)yeFm)>.
Then, for every m € M, there exists z € P such that m = g (2) = g((p(2),m))
where p (z) = hil <(cy)y€Fm> € hi (C(Fm)) C CM) | Thus, for every m € M, there

exists T, = (¢y),cp, € such that m =g ((h¥ (2,),m)). Then we have defined
the following homomorphism

TmA — M

= g (b, (Tm) m)) .

Vg

m

such that
m= v, (Tm).

Since z,,A C C¥n)  we deduce that the subcomodules of C™) form a set of generators
for (]\Jod—A)(C i.e. € H is a generator for (Mod—A)(C.
HCc®
(¢) = (b) Obvious.
(b) = (a) By Example 4.3 and Definition 4.10 F : Mod-A — (Mod-A)® is a right
adjoint of U and then F is left exact. Then using the hypothesis that U is left exact,
we deduce that U o F': Mod-A — Mod-A is also left exact, i.e. 4C is flat. 0

DEFINITION A.13. Let A be a Grothendieck category. An object A € A is called
finitely generated if, for every direct family of subobjects {A;},.; of A such that
A = > A;, there exists an index ig € I such that A = A;,.

icl
PRrROPOSITION A.14. Let A be a Grothendieck category. An object A € A is finitely

generated if and only if, for every family of subobjects {A;}..; of A such thaty_ A; =
il

iel
n

A, there exists a finite number of subobjects Ay, ..., A, such that A= > A;.

iel

Proof. (<) Let {A;},.; be a direct family of subobjects of A closed under sums

icl
and such that A = >~ A;. By hypothesis there exists a finite number of subobjects
iel
Ay, ..., A, such that A = > A;. Since the family is direct and closed under sums,

el

n
there exists an index iy € [ such that A = > A; C A;,. Then A is finitely generated.
i€l
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(=) Let {A;},; be a family of subobjects of A closed under sums and which

contains A itself. Assume that A =) A;. Since A is finitely generated, there exists
i€l
an index g € [ such that A4, = A. O

LEMMA A.15. Let A be a Grothendieck category and let 0 — A — A 25 A" —
0 be an ezxact sequence in A. Then if A is finitely generated A" is also finitely
generated.

Proof. Let (AY),_,; be a direct family of subobjects of A” such that A” = > A’. Then
iel
we have, for every i € I, A = A; /A’ for A; subobject of A such that A’ C A,.
Hence (A;),; is a direct family of subobjects of A such that A =} A; and since A
il
is finitely generated there exists an index ¢y € I such that A = A;,. Then we have
A=A, A = Al ie. A" is also finitely generated. !

107

el

LEMMA A.16. Let A be a Grothendieck category and let A € A be a finitely generated

object. Let f : A — [] B; be a morphism in A. Then there exist a finite subset
el

F C I such that Tm (f) C > & (By).

el

Proof. Let ¢; : B; — [ B; the canonical inclusions and consider V (g;),; : [ Bi —
Jjel i€l

[I B; defined by setting V (g;),c; | LI Bj | = > ei(B;). We prove V (€),c; =

jer jer iel

Idy B,- In fact we have that V(ej)jel og; = & = Ildjy, 0oe. Thus, [[ B; =
iel jel el

Im (Idg] Bi) =Im (V (&),c;) = Ezlei (B;) where (g; (B;)),¢; define a family of sub-

objects of [[ B;. Let f : A — [] Bj. By Lemma A.15, since A is finitely generated

i€l jeI
also Coim (f) is finitely generated and, since Coim (f) ~ Im (f) C > ¢; (B;), there
iel
exists a finite subset F' C I such that Im (f) C > &; (B;). O
i€l

DEFINITION A.17. Let A be an abelian category. A projective object P € A is
called finite if the functor Hom 4 (P, —) preserves coproducts.

PROPOSITION A.18. Let A be a Grothendieck category and let P be a projective
object. Then P is finite if and only if P is finitely generated.

Proof. Assume first that P € A is finite. Let {P,;},.; be a family of subobjects of P

such that > P, = P. Let p; : P, — P be the canonical inclusion for every ¢ € I and
i€l
consider p = V (p;),c; : [I 5 — P. Then we have
i€l

(V (2)ier) (H R-) =S ()= P=pP

el il el
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and thus p is an epimorphism. Since P is projective there exists i : P — [] P; such
iel
that po? = Idp. Note that ¢ € Homy (P, I Pi> and since P is finite we have
iel
that V (Hom (P, &;)),.; : [[ Homy (P, B;) — Homy (P, I Bi> is an isomorphism.

el i€l
Thus there exist n € N and i; € Homy (P, P,),...,1, € Homy (P, P,) such that

i =e¢eyiy + -+ Epiy. Hence Idp = poi =po(eyiy+---+epiy) : P— [P — P

il
and then P = ﬁ P; so that P is finitely generated.
Assume nov&je‘éhat P is finitely generated. Let us denote by ¢; : B; — [][ B;,
el B; — [] B; the canonical injections for every F' C I finite subset, and ZlEeIt us
prove that r

V (Hom (P, ;));¢; ¢ | [ Homa (P, B;) — Homyu <P, 1T BZ)

iel iel

(fz‘)z‘e[ = Zgi o f;

i€l

is an isomorphism. First of all we prove that it is epi. Since P is finitely generated, if
f: P — ][] B;is amorphism in A, by Lemma A.16, there exists a F' C [ finite subset

such tha’zellm (f) € X_&i(B;). Let us denote by f:P—Im(f) and s : Im(f) —
> €i(B;) the canoriiecgl inclusion. Let us consider h = V (&;);cr : [1 Bi — [1 B
Zse;tjisfying < !
(265) hoel =V (&),cpocei =¢; forevery i € F.

Then, by definition of the codiagonal morphism, we have that Im (h) = & (B;)
and thus, if we call h : I[I Bi — Im(h) = Z g; (B;) the canonical projeffion, we
can write < <

(266) h=toh

where t : 2& (B;) — ]_[I B; is the inclusion. Thus also f can be factorized through
Py )

(267) f—tosof.

With these notations we can rewrite (265) as follows

(268) gi=hoel =tohoel.



256

We will prove that h: [[ B; — >_ & (B;) is in fact an isomorphism. We define the
family (nj)jel by settinlgF <
n; = 0 for every j € I\F and n; = 55 for every j € F.
Then we can take V (1;),c; : ]_EBZ- — ]_LBi. Let us compute for every j € F
ic ic
\% (77i>ie1 oho 55 Y (ni)iel oV (5i>z’eF © 5? =) \ (ni)ieI O&j
= 5f = Ide B; ogf
i€F
and thus V (1;),c, 0 h =1d 11 B:- Therefore we deduce that h is mono and then h is
i€

an isomorphism. Let us consider (d;; : B; — B;),; the family defined by setting
d;i = Idp, and d;; = 0 for every j # 1.

Since [[ B; is a finite coproduct, we can view it as a product and call 7; : [[ B; =
i€F ieF

I[ B: = >§€F — B; the projections for every j € I satisfying

i€k

(269) mjoel =6; and ; efm=1d X,
Note that, by the universal property of the coproduct, there exist ¢; : [[ B; — B,
such that “
(270) q; 0 €; = 0ij.
Let us compute, for every ¢ € F' and for every j € I,
gjoho el = gj°€i (270) Oii (269) ;0 e
and thus
(271) gjoh=m,.
We define the family (f;),.; € [ Homu (P, B;) by setting

icl
f@-:ﬂioﬁfloso?for every i € F' and f; = 0 for every i € I\ F.
Note that
fimmol 050 T @ qohooso]
= %OtOEOEAOSOT:Qi0t0307(2§) giof
ie.
(272) fi=qol.

For such a family (f;),.,;, we have to prove that

f:Z%?iofi-

iel

i€l
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Since f; = 0 for every i € I\F we have
Z&sz‘ = ZEiofi
iel i€F
so that it is sufficient to prove that
f= Z g o fi
el
and by (267) and (268)
t0307:ZtoEo€onfi.
i€F
Since t is mono we only need to prove that
sof =Y hock o,
ieF
and thus, for every j € F| that
mjoh osof=moh oY hoelof

Let us compute

j 05_10307(2;1) qjohoﬁ_losof
(226) qjotoﬁoﬁ_losof

— (267) (272)
=gjotosof = gjof ="

On the other hand
Wjoﬁ_loZEogfofi:Zﬂjoﬁ_loﬁogfofi:Zﬂ'jogfofi

i€l i€l i€l
) Z@j ofi=f;
i€F
so that we conclude that ]_[ Hom 4 (P, B;) V(HOHLP’Q))"EI Hom 4 (P, ]_[ Bi> is an epi-
morphism. Let now ( fz)ij S ]_[IHom A (P, B;) where f;’s are alrifést all zero, be
ic

such that V (Hom (P, &;)),c; ((fi)ie;) = Do &i0 fi = 0. Since f;’s are almost all zero,
i€l

let ' C I be a finite subset such that f; # 0 for every ¢ € F' and f; = 0 for every

i€ IN\F. Then 0 = Y ¢;0 f; (289) S>hoel of;. Since h is mono, we also have
i€l i€l
0= > el"of; € Homy (P, 11 Bi) so that, for every j € F,
ieF i€k
OZWjOZ&TZFOfi = Zﬁjoafofi (259 [
i€l il

and thus f; = 0 for every ¢ € I. O
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ProrosiTION A.19. Let (T, H) be an adjunction where T : A — B, H : B — A
and A, B are Grothendieck categories. If T is an equivalence of categories, then

1) if P is a generator of A then TP is a generator of B

2) if P is projective in A then TP is projective B

3) if P is finite in A then TP is finite B

4) if P is finitely generated in A then T'P is finitely generated in B

5) if P is finitely generated and projective in A then TP is finitely generated
and projective B

6) if P is finite projective in A then T'P is finite projective in B.

Proof. 1) Let f : Y — Y’ be a non zero morphism in B. Since T" is an equivalence,
there exists a non zero morphism ¢ : X — X’ in A such that f = T'(g). Since P
is a generator of A there exists a morphism p : P — X such that g o p # 0. Then
0#T (gop)=T(g)oT (p)=foT (p)and T (p) : TP — TX =Y so that TP is a
generator of B.

2) Let f:Y — Y’ be a morphism in 5. Since T is an equivalence, there exists
a morphism ¢g : X — X’ in A such that f =T (g), Y =TX and Y’ = TX'. Let
[: TP — Y amorphism in B, then [ : TP — TX then there exists h : P — X such
that [ = T'(h). Since P is projective A, there exists k : P — X’ such that goh = k.
By applying the functor T" we get T (go h) =T (g) o T (h) = fol =T (k) then TP
is projective in B.

3) Let (V;),.; be a family of objects in B. Since T is an equivalence, there exists

icl
a family (M;),., of objects in A such that (N;),., = (T'M;),.;- Denote by ¢; :
M; — ] M; and by Hom 4 (P, ¢;) : Homy (P, M;) — Hom 4 <P, [IM;|. Then we
i€l i€l

can consider the codiagonal morphism V (Homy (P, €;)),,

: Hom 4 (P, 1T Mz> —
i€l

[T Hom 4 (P, M;). Since P is finite in A we have that P preserves coproducts, i.e.

i€l

V (Homy (P, €;)),c; is an isomorphism. Let

QbX,X’ . HOIIlA (X, X’) — HOII]B (TX,TX,)
f=T()

Since T' is an equivalence ¢x x+ is bijective for every X, X’ € A and [[ (T'M;) =
i€l
T (]_[ ]\/[Z> . Then we can consider
i€l
Hompg (T'P,T (g;)) : Homg (T'P,T (M;)) — Homp (TP, T (H MZ)> = Homgpg (TP, 11 (TMl))
i€l iel

and their codiagonal morphism V (Homg (I'P, T (g;))),c; : Homp (TP, 1T (TMZ)) —

el
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[T Homg (TP, T (M;)). Then we have the following commutative diagram
iel

Hom 4 (P, 11 Mi) Voma(Peier 1] Homy (P, M;)

iel el
op, 11 IWZ-\L I ép,n;
il el
V(Homp(TPT(g:))); i
Homy (TP, 1T (TMi)) (Homs@RTE er [1 Homs (TP, T (M)
i€l v

where we observed that the first row is an isomorphism and also the ¢’s are isomor-
phism. Then we deduce that V (Homg (T'P,T (g;)));c; is an isomorphism, so that
TP preserves coproducts, i.e. TP is finite.

4) Let {Q;},c; be a direct family of subobjects of T'P such that TP = ) Q;.

i€l
Then, since T" is an equivalence, there exists a direct family {P;},_; of subobjects of
P such that TP, = Q; for every i € I and P = ) _ P;. Since P is finitely generated,

i€l
there exists an index iy € I such that P = P;, and then TP =TPF,) = Q;,, i.e. TP
is finitely generated.

5) By Proposition A.18, P is finite and thus by 3) we deduce that T'P is also
finite. Since T'P is moreover projective, by Proposition A.18 we conclude that TP
is finitely generated.

6) By Proposition A.18, since P is finite projective, P is finitely generated and

projective. Then we conclude by 5). O

DEFINITION A.20. Let A be an abelian category. A finite projective generator P in
A is called progenerator.

COROLLARY A.21. Let A be a Grothendieck category. There exists an equivalence
F : A — Mod-B, where B is a ring, if and only if A contains a progenerator P.
Moreover

e If P is a progenerator of A, then Homy (P,—) : A — Mod-T where T =
Homy (P, P).

o [f F is an equivalence, there exists a progenerator P in A such that
Homy (P, P) ~ B and F ~ Homy (P, —).

Proof. Assume first that A contains a progenerator P. Let B = Hom 4 (P, P) and
consider the functor Homy4 (P, —) : A — Mod-B. Since P is a generator and A is a
Grothendieck category, by Proposition A.3 we deduce that Homy4 (P, —) is full and
faithful. Hence we only have to prove that Hom 4 (P, —) is surjective on the objects.
Let M € Mod-B. Then we have the following exact sequence in Mod-B

B® — B M 0.
Since B = Homy (P, P) we can rewrite is as

Homy (P, P)™) — Homy (P, P)™ — M — 0.
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Since P is finite Hom 4 (P, P)(X) ~ Hom 4 (P7 P(X)) and
Hom 4 (P, P)(M) ~ Hom 4 (P, P(M)) and then we have an exact sequence in Mod-B

(273) Hom 4 (P, PX)) L Hom 4 (P, PM) — Q — 0

where Q = Coker (f). Then @ ~ M. Since Hom 4 (P, —) is full (and faithful) we
have

Homy (A, A’) ~ Homyseq.p (Homy (P, A) ,Hom 4 (P, A")),
hence there exists a unique morphism ¢ : P — P®) in A such that f =
Hom 4 (P, —) (g). Let us consider in .4
(274) P2, pM s X — 0

where X = Coker (g). Since P is projective, Hom 4 (P, —) is exact, and applying it
to (274) we get the exact sequence

Hom (P, ) 77122459 o, (P, PO = Homy (P, X) — 0.
From this sequence and (273) we deduce that @ ~ Homy (P, X) where X =
Coker (g) € A.
Conversely, let us assume that F : A — Mod-B is an equivalence of categories. Let
G : Mod-B — A be its inverse equivalence. Since B is a progenerator and G is an
equivalence of categories, by Proposition A.19 1) and 6), we deduce that G (B) is a
progenerator in A. Moreover we have
B ~ Homyoq.5 (B, B) ~ Homy (G (B),G (B)).
Observe that G is a left adjoint to F and thus we have
Homy (G (B),—) ~ Homypea.p (B, F—).
Since Hom o4 (B, F—) ~ F as functors, we deduce that
F ~ HOII]A(Q(B),—)
where G (B) is a progenerator in .A. a
THEOREM A.22. Let A be an abelian category. There exists an equivalence F : A —
Mod-B, where B is a ring, if and only if A contains a progenerator P and arbitrary

coproducts of copies of P. If F is an equivalence, there exists a progenerator P in
A such that Hom 4 (P, P) ~ B and F ~ Hom4 (P, —).

Proof. Assume first that A contains a progenerator P and arbitrary coproducts of
copies of P. Let B = Homy (P, P) and consider the functor Hom4 (P, —) : A — Ab.
Let us endow any abelian group Hom 4 (P, A), for every A € A, with a right B-
module structure given by the composition with morphisms of Hom 4 (P, P) = B.
This means we have the following map

Homy (P, A) x Homy (P, P) — Homy (P, A)
(h,§) — hot.
For every morphism f: A — B in A we define a morphism in Mod-B as follows
Homy (P, f) : Hom 4 (P, A) — Homy (P, B)
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= fod.

Then it is well-defined a functor Hom 4 (P, —) : A — Mod-B. We want to prove that
Homy (P, —) is an equivalence of category. To be full and faithful for Hom 4 (P, —)
means that the map

daa : Homy (A, A") — Hompsoqp (Homy (P, A) ,Homy (P, A"))
Hom (P, f) : Homy (P, A) — Homy (P, A')
I ( E fog )

is bijective for every A, A’ € A. Note that Hom 4 (P, —) induces an isomorphism
¢P,P : HOHIA (Pa P) — Homysoa-B (HOHlA (P7 P) ,HOIHA (Pv P)) :

In fact, for every ( € Homy (P, P) such that Hom4 (P,{) = 0 we have that, for
every £ € Homy (P, P), 0 = Homy (P,{)(§) = ( o &. Since P is a generator, we
deduce that ( = 0. Now, let f : Homy4 (P, P) — Homy (P, P) be a morphism in
Mod-B and set f (Idp) = x. Then, for every £ € Hom 4 (P, P), we have

f()=fdpof f(Idp) 0§ = xo0&=Homy (P x) (&)
and thus

) feMod-B

f =Homy (P, x) = Homy (P, —) (x)
so that ¢pp is an epimorphism. Let us consider families (F;),.; and (F), ., where
P, ~ P ~ Pj for every i € [ and j € J. Set B; = Homyu (P, P,) and B; =
Hom (P, P;). Then B; = Homy (P, P;) ~ Homy (P, P) = B and similarly B; ~ B.
Let us compute

Hom 4 (H Pj,]_[R) R T Hom.a (Pj,]_[ﬂ> PR T [T Homa (P, P,
jeJ i€l jedJ el jed el

¢PPHHHomMOdB(HomA(P Py) ,Homy (P, P,)) = [ [ [ Homasoas (B, B:)

jeJ el jeJ el
B;~ Bfinite coprod
= H Homysoa-5 (Bj, H Bi) ~ Homyoa-B <H B;, H Bi)
jeJ i€l jeJ il
hence
(275) Hom 4 (H P ] 3) ~ Hom/oa5 (H B, 11 BZ-)
jeJ iel jeJ il

which says that Hom 4 (P, —) induces a bijection between the full subcategory of the
coproducts of copies of P in A and the full subcategory of coproducts of copies of
B in Mod-B, i.e. Homy (P, —) is full and faithful on the full subcategory of the
coproducts of copies of P in A. Let us denote by e/’ : P — P pP . PU) — P and
e; : B =Homy (P, P) — B = Homy (P, P)", p; : BY) = Homy (P, P)P) — B =
Hom 4 (P, P) the canonical maps. Now, let A, A" € A. Since P is a generator, we
have

P L p A = Coker (h) —0
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and -
P L pah M A = Coker (B) — 0.
Let z : Homy (P, A) — Hom 4 (P, A’) be a morphism in Mod-B. We have to prove

that there exists a morphism a : A — A’ such that z = Hom4 (P, a). Since P is
projective, Hom 4 (P, —) is exact so that we get the exact sequences

Hom 4 ( P, f om
Hom 4 (P, P\") a(2) Hom (P, P "4 Hom 4 (P, A) — 0
and
/ Hom 4 ( P, f’ / om
Hom 4 (P,P(J)> ) Hom, <P P ) Homall) Hom (P, A) — 0

Then we can consider

Hom 4 ( P, f om :
Hom 4 (P, P)) AP Homy (P, P) 220 pom (P, A) —— 0
, Hom P,f’ , om l
Hom 4 (P, P") Al )HomA(p,pU)) HomA®M) Homy (P, A') —= 0

Since Homy (P, PY) ~ B it is projective, so that there exists a morphism
y : Homyu (P,PY) — Homy (P, PY)) and a morphism z : Homu (P, PY)) —
Hom (P, PVY"). Thus we have the following diagram

HomA(P,]?) Hom 4 (P,h)

Hom 4 (P, P))

Hom (P, PY)) Homy (P, A) —= 0

, Hom P,f’ , om h!
Homg (P, P07) 2T o, (P, ) om0 o Pty

Since Hom 4 (P, —) is full and faithful on coproducts of copies of P, every morphism
x : Homy (P, P(J)) — Homy (P, P(J')) is of the form z = Homy (P, ) for T :
PY) — PU) g0 that we can rewrite the diagram as follows

Homy ( P, f om ' h
Hom4 (P, P") A Homa (P, Py A o (P, A) —— 0
iHomA(P,i) \LHomA(P,Z]) J{z
, Hom P,j?/ , Hom 4 (P,h’
Hom 4 (P, PU)) A(27) Homy (P, PU0) 22240 pom , (P, A') —

Thus we have
Hom 4 <P, ]A{’ ) 5) = Hom 4 (P, f’) o Homy (P, 7)
= Homy (P, y) o Homy (P,f) = Hom4 (P,’g]of) )

Since P is a generator we already now that Homy (P, —) is faithful, so that we
deduce that
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1.e.

p) Lo p g

.

pU) ;> P LN A ——=0

Since A = Coker (f) and by the commutative of the diagram, we deduce that there

exists a unique morphism a : A — A’ in A such that the diagram

p) L piy s f

Pl
p) L pay

is commutative. By applying the exact functor Homy4 (P, —) thus we get

Homg (P, PO) "0 o o (P, p0) om0 o (PA) —— 0
iHom A(PF) ) iHom A(PF) 2 u Hom_4(P,a)
Hom 4 (P, P") Homa(P1) Hom 4 (P, PU)) om A Homu (P, A') —= 0
which says

zoHomy (P, h) = Homy (P, h') o Homy (P, y)
= Homy (P, a) o Hom 4 (P, h)
and since Hom 4 (P, h) is epi we deduce that
z =Homy (P, a).

This proves that Hom 4 (P, —) is full. Since P is a generator, Hom 4 (P, —) is faithful.
Then we only need to prove that Homy (P, —) is surjective on objects. Let M €
Mod-B. Then we have the following exact sequence in Mod-B

BX) — BM) A1 0.
Since B = Homy (P, P) we can rewrite is as
Hom 4 (P, P)*X) — Homy (P, P)* — M — 0.
Since P is finite Hom 4 (P, P)(X) ~ Hom 4 (P, P(X)) and
Hom 4 (P, P)(M) ~ Hom 4 (P, P(M)) and then we have an exact sequence in Mod-B
(276) Hom 4 (P, PX)) -1 Hom (P, PM) — Q — 0

where @) = Coker (f). Then @Q ~ M. Since Hom 4 (P, —) is full (and faithful) we
have

Homy (A, A") ~ Hom g5 (Homy (P, A) ,Homy (P, A')),
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hence there exists a unique morphism ¢ : P& — PMM) in A such that f =
Hom (P, —) (g). Let us consider in A4

P& L, pM) X 0
where X = Coker (g). Since P is projective, Hom 4 (P, —) is exact, and applying it
we get the exact sequence

Hom 4 (P, P)) 77122459 oy 4 (P, PMD) — Homy (P, X) — 0,

From this sequence and (276) we deduce that @ ~ Homy (P, X) where X =
Coker (g) € A.

Conversely, let us assume that F : A — Mod-B is an equivalence of categories.
Let G : Mod-B — A be its inverse equivalence. Since B is a progenerator and G is
an equivalence of categories, by Proposition A.19 1) and 6), we deduce that G (B)
is a progenerator in A. Moreover we have

B ~ Homyoq.5 (B, B) ~ Homy (G (B),G (B)).
Observe that G is a left adjoint to F and thus we have
Homy (G (B),—) ~ Homppqp (B, F—).
Since Hom yypq.5 (B, F—) ~ F as functors, we deduce that
F ~Homyu (G (B),—)
where G (B) is a progenerator in A. Moreover, since G is an equivalence, G (B (X ))
G (B)(X) .

O R
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