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Abstract

We measured benthic fluxes of dissolved inorganic carbon, ammonium, nitrate and coupled nitrification-denitrification
in fluvial sediments with benthic microalgae and submerged macrophytes (Vallisneria spiralis L.). Two sites with
different water column nitrate concentration and sediment organic content were investigated. We hypothesized that: a)
nitrate availability promotes water column nitrogen uptake and attenuates primary producers-bacteria competition; b)
coupled nitrification-denitrification is stimulated by radial oxygen loss; ¢) macrophyte meadows favour nitrogen
retention and permanent loss. In March, July and October 2008 microcosms containing sediments with benthic algae
and macrophytes were incubated in the light and in the dark for inorganic carbon and nitrogen flux measurement.
Coupled nitrification-denitrification rates were determined via *®NH,* injection in the pore water and quantification of

the produced ?°N; and *N,. Sediments with V. spiralis were mostly autotrophic, ammonium sink and displayed higher
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coupled nitrification-denitrification rates compared to sediments with microphytobenthos. Highest rates, up to 100 pumol
N m2h, were measured at the more eutrophic site and in the light.

Macrophyte theoretical nitrogen requirements and measured dissolved inorganic nitrogen fluxes suggest a shift from
root to leaf- uptake at the nitrate-rich site. We speculate that light-dependent radial oxygen loss by V. spiralis
counteracts the reduced chemical environment in organic-rich sediments and promotes the coupling of ammonification,
nitrification and denitrification in the rhizosphere. Higher leaf uptake of inorganic nitrogen at the nitrate-rich site may

attenuate roots-bacteria competition for nitrogen and favour nitrogen dissipation via denitrification.

Introduction

In illuminated sediments, the activity of primary producers may regulate various processes of benthic nitrogen (N)
cycling (Risgaard-Petersen et al. 2003; Tyler et al. 2003; McGlathery et al. 2007; Nizzoli et al. 2014; Soana et al. 2015;
Decleyre et al. 2015). Autotrophic sediments with microphytobenthos (MPB) are effective filters for inorganic N,
preventing its release to the water column mainly via uptake at the interface (Bartoli et al. 2003; Tyler et al. 2003;
Sundbdck et al. 2004). MPB may translocate and retain N within the mat and inhibit the activity of N-related microbial
communities (Risgaard-Petersen et al. 2003). Underlying mechanisms include pore water pH and O variations induced
by photosynthesis at the interface, removal of pore water ammonium from the upper sediment horizon and production
of specific inhibitors of bacterial activity (Risgaard-Petersen et al. 2003). MPB competes effectively for N in
oligotrophic environments and tends to minimize its net loss to the water, via recycling, or to the atmosphere, via
denitrification or anammox. Uptake processes are therefore quantitatively higher than microbial transformations leading
to net N2 losses, resulting in elevated uptake to denitrification ratios (Sundbéck et al. 2004).

Sediments with submersed aquatic vegetation (SAV) display similar traits, with root uptake as the major benthic N flux
(Caffrey and Kemp 1992; Risgaard-Petersen et al. 1998, Soana et al. 2015). The removal of substantial amounts of
inorganic N from pore waters regulates diffusive gradients to the water column as well as relevant microbial processes
as nitrification, denitrification and nitrogen fixation (Risgaard-Petersen et al. 1998; Sand-Jensen et al. 2005; Racchetti et
al. 2010; Soana et al. 2012). Rooted macrophytes may transfer variable oxygen amounts from the roots to the sediment
via radial oxygen loss (ROL), to allow cells respiration in an anoxic medium (Laskov et al. 2006; Lemoine et al. 2012).
ROL promotes oxic conditions in the rhizosphere that may stimulate the mineralization of organic matter, and therefore
ammonification and nitrification, as well as several redox-sensitive biogeochemical processes (Carpenter et al. 1983;
Caffrey and Kemp 1992; Risgaard-Petersen and Jensen 1997; Soana et al. 2012).

A high uptake to denitrification ratio is expected also for SAV, as elevated N requirement and assimilation may

stimulate N-fixation and outcompete other N-related microbial processes (Risgaard-Petersen and Jensen 1997;
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McGlathery et al. 1998). Coupled nitrification-denitrification in the rhizosphere for example is quantitatively small
compared to plant uptake and it tends to increase in the dark when assimilation decreases (Reddy et al. 1989; Risgaard-
Petersen and Jensen 1997; Risgaard-Petersen et al. 1998; Ottosen et al. 1999; Nicolaisen et al. 2004).

Most studies analysing N cycling in illuminated sediments have explored nutrient-poor lentic environments where
primary producers rely on pore water for their N requirements. An interesting question is to verify whether the large
dominance of uptake versus coupled nitrification-denitrification persists also under conditions of large inorganic N
supply in the water column. Nizzoli et al. (2014) have demonstrated similar rates of assimilation and denitrification in
freshwater sediments with benthic vegetation and elevated concentrations of nitrate (NO3’) in the water column but in
their study they did not considered coupled nitrification-denitrification occurring in the rhizosphere.

At N-rich sites, both MPB and SAV may perform N-assimilation from bottom water, due to much faster advective
compared to diffusive nutrient transfer (Stevens and Hurd 1997; Lorenzen et al. 1998; Madsen et al. 2001; Madsen and
Cedergreen 2002). Benthic algae are demonstrated to assimilate NO3™ from the water (Lorenzen et al. 1998) while some
freshwater plants are able to increase NOs™ reductase activity and assimilation by the leaves (Cedergreen and Madsen
2003; Konnerup and Brix 2010). Under such circumstances, roots would support relevant functions as hormone
production and plant anchorage (Agami and Waisel 1986; Schutten et al. 2005) and have probably a minor relevance for
assimilation. N uptake from the water may attenuate the competition between primary producers and N-related bacteria
and may lower the uptake to denitrification ratio. MPB and SAV may in fact stimulate coupled nitrification-
denitrification via augmenting the oxic sediment volume (Vartapetian and Jackson 1997; Pezeshki 2001; Racchetti et al.
2010; Soana et al. 2014). We speculate that the ratio between N assimilation and loss via denitrification may vary
differentially along eutrophication gradients in sediments with MBP and SAV. The plasticity of rooted plants may in
fact result in enhanced ROL to counteract chemically reduced pore water, resulting in much higher oxygen release in
deep, ammonium (NH4*) rich sediments. This would result in a much larger volume of oxic sediment where nitrification
may occur, within an anoxic bulk where the produced nitrate may be denitrified (Wang and Yu 2007; Yu et al. 2010;
Soana and Bartoli 2013; Soana et al., 2015).

The aim of the present work was to investigate N assimilation and loss in riverine sediments with MPB and SAV
(Vallisneria spiralis L., Hydrocharitaceae), under different inorganic N availability. The study area is a lowland sector
of the Mincio River (Northern Italy), characterized by illuminated sediments with MPB and SAV (Pinardi et al. 2009;
Ribaudo et al. 2011; Bartoli et al. 2012; Bolpagni et al. 2013). Two sites were compared, with the downstream one
having higher organic matter content in sediments and NOj3™ in water. We hypothesized that a) NO3 availability
promotes the uptake of water column N and attenuates primary producers-bacteria competition for N; b) denitrification

is more stimulated in sediment with SAV compared to sediments with MPB, in the light compared to dark conditions
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and in organic-rich compared to less enriched sediments due to higher ROL and NH,4* availability; c) organic-rich

riverine sediments with SAV are sites of N retention and permanent loss.

Materials and Methods

The study was carried out in the Mincio River (Northern Italy) at two experimental areas, upstream (M1) and
downstream (M2) a wastewater treatment plant (nearly 600,000 equivalent inhabitants in summer). At both sites,
muddy sediments with an organic matter content of 6.4+0.2% and 10.6+0.3% at M1 and M2, respectively, hosted
monospecific meadows of the submerged macrophyte Vallisneria spiralis L. and patches devoid of macrophytic
vegetation (Pinardi et al., 2009; Racchetti et al. 2010; Ribaudo et al. 2011).

An approach based on the incubation of microcosms with MPB and SAV under controlled conditions after a 3 weeks
acclimatization period was adopted (Ribaudo et al. 2011; Soana et al. 2015). Water, sediments and plants were collected
from each site in 3 periods: March, July and October 2008, in order to analyse the whole vegetative period of V.
spiralis. Surface sediments were collected at M1 and M2 and for each site sediments were immediately sieved,
homogenized and transferred into cylindrical Plexiglas microcosms (i.d. 7.5 cm, height 10 cm, wall thickness 0.5 cm,
n=16 at each site)(Fig.1). Each microcosm was provided with four series of vertical holes filled with silicon glue and 1
cm spaced. Specimens of V. spiralis were carefully collected from the two sites in order to preserve intact the
rhizosphere for the transplant. Plants were washed with in situ water and transplanted in 8 microcosms per site while 8
microcosms contained bare sediments (Fig. 1). Experimental plant density (2-3 individuals per microcosm) reflected
that measured in situ (500-750 ind m™, by harvesting 3 replicate frames in each sampling period and at each site). Once
created all microcosms, with and without plants, were immediately transferred for 3 weeks on the riverbed under natural
temperature, light and flow conditions, half in patches devoid of plants and half within V. spiralis meadows. We
considered this period as sufficient for the development of microalgal mats on the surface of bare sediments, for the
plant to overcome the transplant stress and grow, for the roots to modify the pore water chemical environment, for the
bacteria communities adjacent to roots to develop and for the microgradients between pore and bottom water solutes to
establish (Racchetti et al. 2010; Ribaudo et al. 2011; Soana et al. 2012 and 2015). Moreover, all microcosms underwent
the same processes (i.e. sedimentation) as adjacent natural sediment with MPB or SAV and, once retrieved, they were
incubated in the laboratory avoiding root damage, lateral transport of biomass and destruction of sedimentary natural
gradients, drawbacks generally occurring during cores collection, in particular within SAV meadows.

During the acclimatization period, water temperature (YSI Multiple Probe, mod. 556) and PAR intensity at the
sediment-water interface (Delta OHM, HD9021 model) were measured. At the end of the acclimatization, all

microcosms were recovered and transferred underwater into Plexiglass liners (i.d. 8 cm, height 30 cm) provided with a

4
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rubber stopper at the bottom, with no plant and sediment disturbance (Fig. 1). The outer microcosm diameter perfectly
fitted the liner inner diameter and after the underwater procedure, intact cores with undisturbed MPB or SAV were
obtained. All cores were submerged in coolbags containing site water, and carried to the laboratory within two hours,
together with nearly 100 | of site water for preincubation and incubation procedures. In the laboratory, all cores were
submerged with the top open in two 50 | incubation tanks, containing vigorously aerated and mixed site water from M1
and M2. All cores were provided with a teflon-coated magnetic bar, driven by an external magnet rotating at 40 rpm.
Magnetic bars were fixed in the upper portion of each liner, to avoid sediment resuspension and fronds damage.

At day 2 and day 3 after their recover, all microcosms within the liners underwent two distinct incubations. The first
(day 2) targeted dissolved inorganic carbon and dissolved inorganic N fluxes and the second (day 3) targeted coupled
nitrification-denitrification rate (detailed methods are reported in the following paragraphs). For each site and for each
sampling period, 8 microcosms (4 with MPB and 4 with SAV) were incubated in the light and 8 microcosms (4 with

MPB and 4 with SAV) were incubated in the dark (Fig. 1).

Dissolved gas and nutrient fluxes

All flux measurements were performed as short-term batch incubation under continuous water stirring, reproducing in
situ temperature and average light conditions (Dalsgaard et al. 2000; Pinardi et al. 2009; Soana et al. 2015). The
incubation time (3-6 h) varied seasonally, in order to keep the concentration of dissolved oxygen within ~20-30% of the
initial value. Incubations in the light were performed at the average irradiance of each sampling period. Values,
measured at the sediment-water interface, were ~300, ~500 and ~200 UE m2st in spring, summer and autumn,
respectively. Incubations started when each core was closed at the top with a transparent lid provided with a sampling
port and a one-way valve. During the incubation, water samples (~40 ml, corresponding to ~4% of the water volume in
the core) were collected 3 times (initial, intermediate, final) at regular time intervals from each sampling port using
plastic syringes. An equivalent amount of water was replaced with water from the incubation tank through the one-way
valve.

Samples for dissolved inorganic carbon (TCO2) were transferred to 12 ml Exetainers (Labko, UK) and immediately
titrated with 0.1 N HCI (detection limit 1 uM, precision £5%)(Anderson et al. 1986). Samples for NHs* and NO3
determinations were filtered through Whatman GF/F glass fibre filters, transferred to plastic vials and frozen. Within
one week NH4* was determined spectrophotometrically using salicylate and hypochlorite in the presence of sodium
nitroprussiate (detection limit 0.4 uM, precision +3%) (Bower and Holm-Hansen 1980). NOs™ was determined after
reduction to nitrite (NOy") in the presence of cadmium and NO; was determined spectrophotometrically using

sulphanilamide and N-(1-naphtyl)ethylendiamine (detection limit 0.2 pM, precision +5%) (Golterman et al. 1978).
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Hourly fluxes of TCO,, NH4* and NO3™ were calculated by linear regression of concentrations versus incubation time
and expressed as rates per square meter (mmol or pmol m2 h%). Positive fluxes are directed from the sediment to the
water column while negative fluxes are from the water to the sediment. Daily fluxes were calculated by multiplying
light and dark rates by the corresponding number of light and dark hours in each sampling season.

The theoretical N requirement to sustain benthic microalgal and macrophytic primary production was calculated from
inorganic carbon fluxes assuming net production equal to TCO, fluxes measured in the light and gross production equal
to the difference between TCO; fluxes measured in the light and in the dark. To this purpose, TCO; fluxes measured in
the light (only negative values) were divided by C/N ratios of 9 and 13 for MPB and SAV, respectively (Sundback et al.

2004, Racchetti et al. 2010).

Coupled nitrification-denitrification rates

After flux measurements, the top lids were removed and all cores were left submerged in the tanks, renewing the water.
The following day, a second incubation was performed to measure coupled nitrification-denitrification rates (DNFy).
All microcosms were removed underwater from the liners and anoxic *®NH,* solution (10 mM, 98 atom % SN) was
injected into the sediments via glass syringes (Hamilton 725RN 250 pul, ga 22S/51mm/pst 2), through the silicon glue
lateral ports (Caffrey and Kemp 1992). The whole 10 cm sediment column was labelled, for a total of 40 injections per
microcosm. During each injection, the tracer was distributed homogeneously along the 4 cm needle path. The volume of
15NH,* solution added to each microcosm varied seasonally. It was calculated in order to enrich by nearly 30% the
sediment NH4* pool (pore water + exchangeable NH4*). Sediment NH4* pools were measured on in situ sediment
samples and varied from ~300 to ~600 uM at M1 and from ~400 to ~1000 uM at M2. Injected volumes of 10 mM
15NHg4* solution varied from 50 to 250 pl, corresponding to a total volume between 2 and 10 ml, over a sediment
volume of nearly 400 ml in each microcosm. This procedure took approximately 5 minutes per unit; thereafter each
microcosm was transferred into the tank and then underwater into a liner, that was immediately sealed with a bottom
stopper and a top lid to start the incubation. Incubation time varied seasonally: 7-9 hours in spring, 4-5 hours in summer
and 5-6 hours in autumn. The first (targeting fluxes) and second incubation (targeting coupled nitrification-
denitrification rates) were paired so that the same microcosms incubated in the light for fluxes were incubated in the
light for DNF.

At the end of the incubation 2 mL of 7M ZnCl, was added to the water phase of each liner and the sediment and water
phase were gently slurred. A subsample of the slurry was collected, transferred into 12 mL Exetainers and further

poisoned with 200 ul of 7M ZnCl; to stop bacterial activity. At the end of this procedure each microcosm with V.
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spiralis was sieved through a 0.2 cm mesh. Aboveground (leaves) and belowground (roots) biomass were separated,
gently rinsed with in situ water and desiccated at 50 °C until constant weight was reached.

14NSN and ®N'°N abundance in N, was analysed by mass spectrometry at the National Environmental Research
Institute, Department of Marine Ecology, Silkeborg (Denmark). DNFy rate was calculated as the sum of Dis and Dag,
which are the rates of denitrification of ®NO3 and ¥*NO3 produced within the sediments via >NH4* and “*NH,*
oxidation, respectively, according to Risgaard-Petersen and Jensen (1997) and Risgaard-Petersen et al. (1998) and the
assumptions of the isotope pairing technique (IPT) of Nielsen (1992):

D15 - p(15N14N)+2p(15N15N)

D14 - p(15N14N) + 2p(14N14N)

where:

Dss = rates of coupled nitrification-denitrification based on °®NOs generated by nitrification of added >NH,*

Da4 = rates of coupled nitrification-denitrification based on *NOs generated by nitrification of **NH,* originally
present or produced by ammonification process

p(**N¥N), p(**N**N) and p(**N**N) = rates of production of labelled and unlabelled N species.

The ®*NH,* injection method has the limit of the not-homogeneous pore water labelling, compared to the diffusion and
perfusion techniques used by Risgaard-Petersen and Jensen (1997), Risgaard-Petersen et al. (1998) and Ottosen et al.
(1999) for vegetated sandy sediments. However, these techniques are not suitable for fine grained, muddy sediments as
those at the two study sites. Another limit of the adopted method is the possible violation of the IPT assumptions and
the risk to underestimate DNFy due to the presence of multiple hotspots of nitrification and denitrification in the
rhizosphere that may determine variable ratios of *NO3 and ®*NOjs (Risgaard-Petersen and Jensen 1997; Soana et al.

2015).

Statistical analyses

Data analysis was done on seasonal fluxes and separately for light and dark conditions due to demonstrated effects of
illumination on primary producers-related processes (Reddy et al. 1989; Risgaard-Petersen and Jensen 1997; Caraco
and Cole 2002; Caraco et al. 2006; Lemoine et al. 2012). All comparisons among sampling sites (M1 and M2) and
primary producers (MPB and SAV) were done using a two-way analysis of variance (ANOVA). If the effect of the
considered factors was significant, pairwise comparisons were performed using the Holm-Sidak test. Sample size was
equal in all tests and data were not transformed as they met the assumptions of normality and equal variance (Shapiro-
Wilk and Levene’s tests). Statistical analyses were run using the program Sigma Plot 13.0 (Systat Software, Inc., CA,

USA); statistical significance was set at p<0.05. All average values are reported with associated standard error (SE).



Results

TCO:; fluxes in sediments with MPB and SAV

At M1 the total biomass of V. spiralis was rather constant along the three sampling periods, whilst that measured at M2
displayed a summer peak, mostly sustained by the aboveground portion (Table 1). At both sampling sites the minimum
root:shoot ratio (~0.17) was recorded in summer. After the transplant and acclimatization period, V. spiralis shoots
looked healthy, with significant production of new propagules and leaves. A number of ramified oxidized niches around
the roots were clearly visible across the microcosm walls (Fig. 1).

Benthic fluxes of TCO, measured in the light were always negative in sediments with SAV while they were both
negative and positive in sediments with MPB (Table 2). In the dark, sediments were always TCO, sources to the water
column (Table 2). On a daily basis, sediments with benthic microalgae were a TCO; sink only in spring, at M2 (-
12.8+8.4 mmol C m2d!). Sediments with V. spiralis were a net daily TCO, sink in spring and summer (M2) and in
summer and autumn (M1). In the summer, at both sites, TCO, uptake peaked with values of ~500 and ~1000 mmol C
m2d* at M1 and M2, respectively (Table 2).

The analysis of variance suggested that TCO; uptake during light incubation was significantly higher in sediments with
V. spiralis as compared to sediments with MPB, even if differences depended upon the sampling site. In spring, TCO-
fluxes measured in the light were significantly different between primary producers (two-way ANOVA, F11,=6.068,
p<0.05) and highest TCO- fixation was measured in vegetated sediments at M2 (Holm-Sidak, p<0.05). In summer,
differences between TCO; fluxes measured in the light depended upon the interaction between the factors site and
primary producer (two-way ANOVA, F112=83.113, p<0.001). Sediments with SAV, both in M1 and in M2, displayed
highest rates of TCO; fixation as compared with sediments with MPB (Holm-Sidak, p<0.001 for all comparisons) and
uptake by V. spiralis growing in M2 was higher than that in M1 (Holm-Sidak, p<0.001)(Table 2). Also in autumn TCO,
fluxes measured in the light were dependent on the interaction of the two factors site and primary producers (two-way
ANOVA, F1,1,=63.299, p<0.001). Highest TCO fixation was measured in sediment with V. spiralis as compared with
MPB, and within SAV they were higher in M1 than in M2 (Holm-Sidak, p<0.001).

Benthic respiration was significantly higher in sediments vegetated with V. spiralis even if such differences depended
also on sampling season and site. In spring, dark TCO; fluxes depended on the interaction of the factors site and
primary producer (2 way ANOVA, F11,=7.699, p<0.01) and the highest TCO; release was measured in vegetated
sediments of M1. In the summer, dark TCO- fluxes were different between sampling sites and primary producers (2
way ANOVA, F1,1,=7.004 and 73.637, respectively, p<0.01). Highest benthic respiration reflected highest plant

biomass and was measured at M2 in sediments with SAV (Holm-Sidak, p<0.001). In autumn dark TCO; production
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depended only upon the factor primary producer (2 way ANOVA, F11,=15.18, p<0.01) and rates were always higher in
SAV versus MPB sediments (Holm-Sidak, p<0.001) while within SAV, no significant differences were found between
M1 and M2 (Holm-Sidak, p=0.58).

Rates of gross primary production varied between 0 and 5.31+0.72 mmol C m~2h* and between 8.54+1.14 and

131.21+3.04 mmol C m2h in sediments with MPB and SAV, respectively.

Theoretical inorganic nitrogen uptake in sediments with MPB and SAV

The inorganic nitrogen (DIN) requirements to sustain MPB or SAV primary production was calculated from net (UPTy,
light incubations) and gross (UPTg, light-dark) TCO- fluxes; only negative data, meaning TCO consumption from the
water column, were used (Table 2). As fluxes in the light include the community respiration of the benthic system, net
uptake from these data may underestimate true DIN uptake by both primary producers. The latter is probably within the
net and gross UPT, that set lower and upper limits of inorganic nitrogen incorporation, respectively. Calculated net DIN
uptake rates by sediments with MPB and SAV have the same pattern (and statistics) of TCO; fluxes as they are
calculated dividing net and gross TCO: fixation in the light by a C/N ratios of 9 and 13 for MPB and SAV, respectively
(Table 2).

Benthic microalgae had a scarce relevance as DIN sinks at station M1 in summer and autumn, with a significant uptake
calculated only in spring (from 222 to 590 pmol N m-ht). At M2, the activity of MPB was relevant in all seasons, with
calculated DIN uptake between 146 and 957 umol N m-2h1. Calculated DIN uptake by SAV varied between 287 and

5943 pmol N m2hat M1 and between 280 and 10094 umol N m2h at M2.

Inorganic nitrogen fluxes in sediments with MPB and SAV

In spring and autumn NH.* fluxes measured in the light were different between sites and primary producers but
differences depended upon the interaction between factors (two way ANOVA, F11,=16.96 and 192.12, respectively,
p<0.001). In spring ammonium uptake was similar in sediments with MPB while it was higher at M2 in sediments with
V. spiralis (Holm-Sidak, p<0.001). In autumn, NH4* uptake in sediments with MPB was higher at M2 while in
sediments with SAV it was higher in M1 (Holm-Sidak, p<0.001). When comparing sediments with MPB and SAV,
higher NH.* uptake was measured in SAV sediments only at M1 while rates were similar at M2 (Holm-Sidak,
p<0.001). In summer NH.* uptake was higher in V. spiralis vegetated sediments as compared to sediments with MPB
(two way ANOVA, F112=99.09, p<0.001) and, within SAV, in M2 than in M1 (Holm-Sidak, p<0.05). NH4*

consumption in the light peaked with over 1000 pmol N m-2h (Figs. 2 and 3).
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In the dark, differences between ammonium fluxes depended always upon the interaction between primary producers
and sampling site (two way ANOVA, F11,=22.09, 132.57 and 11.24 in spring, summer and autumn, respectively,
p<0.01) (Figs. 2 and 3). In spring dark ammonium fluxes were generally low (within £50 pmol N m-h1) and either
directed to the water column or to the sediments (Figs. 2 and 3). In the summer, sediments at M1 net regenerated
ammonium with a peak measured in the presence of V. spiralis (~2000 pmol N m-ht) (Holm-Sidak, p<0.001). At M2
ammonium was net retained in sediments with SAV and net regenerated in the presence of MPB (Figs. 2 and 3). In
autumn, at M1, sediments with V. spiralis net retained while sediments with MBP net released NH4* to the water
column (Holm-Sidak, p<0.01). At M2 on the contrary NH4* fluxes were not significantly different from zero and similar
in the presence of the two primary producer forms (Holm-Sidak, p=0.34).

On a daily basis sediments at M1 were a sink for NH4* in spring and autumn, due to MPB (-1.53+0.35 mmol N m2d?)
and to V. spiralis (-7.08+1.12 mmol N m-2d), respectively. They were net NH4* sources in the summer with
comparable rates (3.44+2.92 and 4.04+0.94 mmol N md-! for SAV and MPB, respectively). At M2, sediments with V.
spiralis were always retaining NH4*, with a summer maximum of -30.62+6.59 mmol N m-2d*. Sediments with benthic
algae were also a NH4* sink, but only in spring and autumn, while they were a source to the water column in summer
(2.20+0.23 mmol N m2dY).

Fluxes of NOs were mostly directed to the benthic system, with significant differences between sites and rates higher at
M2 due to larger availability of water column nitrate (two way ANOVA, F11,=10.78, 3.41 and 212.23 in spring,
p<0.05, summer, p=0.09 and autumn, p<0.001, respectively)(Table 1, Figs. 2 and 3). In autumn differences between
sites depended also upon the primary producer form (two way ANOVA, F1,1,=1090.06 p<0.001). In spring light fluxes
of NOs™ were all negative, and peaking at M2 in sediments with MPB (Holm-Sidak, p<0.01)(Figs. 2 and 3). In summer
the picture was similar, with NOs™ uptake prevailing in all conditions, higher at M2 as compared to M1 and, within M2,
similar between MPB and SAV (Holm-Sidak, p>0.05)(Figs. 2 and 3). In autumn light fluxes of NO3™ were negligible at
M1 in sediments with both primary producer forms while at M2 they were significantly different with net uptake in
SAV and net regeneration in MPB (Holm-Sidak, p<0.001)(Figs. 2 and 3).

Dark nitrate fluxes were significantly different between sites only in spring (two way ANOVA, F1,1,=10.36 p<0.01)
while in the summer and autumn differences depended upon the interactions between sites and primary producers (two
way ANOVA, F1,1,=47.0 and 3740.30, respectively, p<0.001). In spring dark NO3™ fluxes were different, within sites, in
the presence of MPB and SAV (Holm-Sidak, p<0.05). In the summer the benthic demand of NO3™ peaked at M2 in
sediments with V. spiralis (Holm-Sidak, p<0.001) with rates >1000 pmol N m-?h't while in autumn a similar uptake was
measured at the same station in sediments with benthic algae (Figs. 2 and 3). On a daily basis, nitrate production and

consumption processes at M1 were nearly balanced and varied between -0.72+1.40 and 1.13+0.86 mmol N m-2d!
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measured in spring and in summer in sediments with SAV. At M2, daily NO3™ fluxes were on the contrary always
negative, regardless the primary producer forms, suggesting the dominance of consumption processes. Rates varied
between -5.35+1.14 and -14.30+3.60 mmol N m2d-%, measured in spring and summer in sediments with SAV (Figs. 2
and 3).

On a daily basis, sediments with SAV were a net DIN sink in spring and autumn (-2.03+0.71 and -7.29+0.53 mmol N
m2 d1) and a net DIN source (4.57+2.28 mmol N m2 d) in summer at M1, while they were always a DIN sink at M2,
with a summer peak of -44.91+4.56 mmol N m2 d* (Figs. 2 and 3). Sediments with benthic algae were a net DIN
source in two out of three sampling periods at M1, with the highest regeneration measured in summer and driven by
NH4* recycling (4.00£1.05 mmol N m d%). At M2 on the contrary DIN fluxes were always negative and mostly driven
by NOs" uptake in all seasons. Similar spring and autumn DIN consumption (-7.16+1.28 and -7.65+0.58 mmol N m2 d2,
respectively) were attenuated in summer (-0.85+1.12 mmol N m2 d'). Overall, striking differences between daily
fluxes of DIN in sediments with MPB and SAV were measured only at M2, in the summer period. Here, N demand in

sediments with V. spiralis was nearly 50 times higher than that in sediments with benthic algae (Figs. 2 and 3).

Nitrification-coupled denitrification in sediments with MPB and SAV

In all seasons rates of DNFy measured in the light were higher at M2 as compared to M1, regardless the primary
producer form (two way ANOVA, F1,12,=11.50, 5.59 and 24.27 in spring p<0.01, summer p<0.05 and autumn p<0.001,
respectively) (Fig. 4). In spring and autumn DNFy in the light was higher in sediment with SAV (two way ANOVA,
F112=51.43 and 58.08, p<0.001), while in summer the differences between primary producer forms were almost
significant (two way ANOVA, F11,=3.86, p=0.07). In spring, light DNFy rates measured in sediment with SAV were
higher at M2 as compared to M1 (Holm-Sidak, p<0.01), while rates measured in sediment with MPB were similar
between sites (Holm-Sidak, p=0.324). In autumn, light DNFy rates were higher in sediment with SAV compared to
sediment with MPB for both sites (Holm-Sidak, p<0.001) and were higher at site M2 as compared to M1 for both
primary producers (Holm-Sidak, p<0.05).

In spring, differences between dark DNFy rates depended upon the interaction between primary producers and sampling
site (two way ANOVA, F11,=21.86, p<0.001). N removal measured in the dark was higher at M2 for both sediments
colonized by SAV and MPB (Holm-Sidak, p<0.001) and only at M2 rates were higher in sediment with SAV compared
to sediment with MPB (Holm-Sidak, p<0.001). In summer, DNFy varied from 16+2 up to 3145 pmol N m?2 ht in
sediment with MPB at M2 and in sediment with SAV at M2, respectively. Rates were similar between sites while

differences between primary producers were almost significant (two way ANOVA, F1,1.=4.14, p= 0.06). In autumn,
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DNFy rates depended only upon the factor primary producers (two way ANOVA, F11,=17.17, p<0.01) and N removal
measured in the dark was higher in sediment with SAV at both sites (Holm-Sidak, p<0.05).

On a daily basis, at both sites, DNFy removed more N in sediments with SAV than in sediments with MPB, with a peak
of 1.73% 0.23 mmol N m2d-* measured in spring at M2. At M1, daily N removal in sediment with SAV was similar
among seasons (0.73+0.07, 0.74+0.14 and 0.91+0.07 mmol N m2d! for spring, summer and autumn, respectively)
whilst in sediments with MPB they increased in the summer with 0.40+0.02 mmol N m2d-. Also at M2 N removal via
DNFy peaked in the summer in sediment with MPB (0.76+0.02 mmol N m2d-) whilst in the same season it was
minimum in sediments with SAV (1.06+0.23 mmol N md) if compared with daily rates measured in spring and

autumn (1.73+0.23 and 1.51+0.19 mmol N m2d, respectively).

Discussion

N cycling in riverine sediments

This study contributes to our understanding of benthic N pathways in illuminated riverine sediments. The relevance of
primary producers for benthic N cycling has been extensively studied in lentic and coastal waters, while there are
comparatively fewer studies in lotic systems (Pinardi et al. 2009; Desmet et al. 2011; Forshay and Dodson 2011; Soana
et al. 2015). Results suggest that across the whole vegetative period and under low and high inorganic nitrogen
availability sediments with SAV displayed higher N temporary or permanent removal as compared to sediments with
benthic MPB, due to higher rates of primary production, inorganic nitrogen uptake and loss via coupled nitrification-
denitrification.

Daily budgets of inorganic carbon revealed in the three sampling periods and at both sites a substantial equilibrium or a
net TCO- production in excess to fixation in sediments with MBP, suggesting that benthic respiration exceeded
photosynthesis by microalgae. Daily budgets of inorganic nitrogen were only partially coupled to those of inorganic
carbon as at M1 they were mostly positive, with the prevalence of DIN recycling, while at M2 they were negative,
suggesting the dominance of DIN-consuming processes. As at M2 calculated DIN uptake by benthic microalgae was
low and most of the DIN daily budget was driven by nitrate consumption, we speculate in these heterotrophic sediments
elevated rates of denitrification of water column nitrate (Pinardi et al. 2009; Racchetti et al. 2011; Soana et al. 2015).
Such results, for sediments with benthic microalgae, conform to the general finding that autotrophic systems display
DIN retention and limited N loss via denitrification while heterotrophic sediments display net DIN recycling and
elevated loss via denitrification (Risgaard-Pedersen 2003).

In sediments with SAV inorganic C budgets were negative in 2 out of 3 sampling periods at both sites, suggesting a

prevailing net autotrophy and elevated DIN requirements to sustain primary production, in particular in the summer
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period. At M1, sediments with V. spiralis displayed a reduced release or a net daily uptake of DIN as compared to
sediments with MPB, while at M2 V. spiralis primary production resulted in negative DIN budgets in all sampling
periods.

We analysed comparatively the fluxes of ammonium and nitrate measured during light incubations with calculated DIN
requirements by primary producers; calculations were possible only with negative TCO,, NH4* and NOz™ net fluxes
(Table 3). In particular, we calculated the percentage of theoretical net and gross DIN uptake accounted for by the net
NH4* and NOs™ fluxes measured in the light. With some limitations, such calculation may approximate the fraction of
DIN requirements by primary producers sustained by the water column, and by difference it allows to infer that
sustained by pore water. Reliable calculations, in sediments with MPB, were done only in spring at both sites. At M1
they suggested that water column supplied between 17 and 44% of the theoretical N demand, mostly as ammonium,
while nitrate uptake was irrelevant. At M2 on the contrary DIN fluxes were in large excess to benthic algael uptake;
ammonium fluxes satisfied from 33 to 55% of the N demand while nitrate fluxes from 100 to 158% (Table 3). At this
site, fluxes of nitrate higher than gross theoretical N demand suggest alternative paths of N consumption as
denitrification (Soana et al. 2015).

Similar outcomes resulted from calculations done in sediments with SAV, that were performed in all sampling periods.
At M1, DIN fluxes sustained from 12 to 40% of gross and net theoretical N uptake while at M2 such percentage
increased, from 19 to 96%. In the summer the share of water column inorganic nitrogen to the plant uptake was
minimum, suggesting a major assimilation from pore water. Nitrate contribution was always higher at M2, where
concentrations were higher, regardless the sampling period. These results suggest a major relevance of nitrate uptake by
the leaves at M2 as compared to M1, sustaining a major fraction of DIN demand by V. spiralis. They also suggest
higher rates of denitrification of water column nitrate at M2 (Pinardi et al. 2009).

The ratio between coupled nitrification-denitrification and calculated net and gross N uptake was extremely variable in
sediments with benthic microalgae, ranging from 0 (when DNFy rates were undetectable) to incomputable (when
sediments were net heterotrophic and uptake was not calculated) (Table 4). In sediments with V. spiralis, DNFy
represented a fraction of net and gross N uptake varying from 0.5 to 26.4%. DNFy was quantitatively irrelevant
compared to uptake (<1%) in the summer and at both sampling sites, due to impressive rates of primary production
(nearly 520 and 1090 mmol C m2d at M1 and M2, respectively). In spring and autumn, on the contrary, the ration
between N lost and that assimilated was relevant and more at M2 than at M1 (Table 4). These results are in agreement
with our hypotheses, as at M2, in spring and autumn, water column DIN likely sustained a large fraction of the plant N

requirement (Table 3), slowing the competition for pore water N between plants and bacteria.
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At M1 and M2, N uptake by the macrophyte represented a major fraction of the total N retained and lost but despite
elevated rates of primary production N-related microbial activities in sediments was not depressed. Denitrification
associated with the rhizosphere was in fact relevant and nearly two-fold higher downstream as compared with upstream.
Furthermore, rates measured in the light, when assimilation peaked, were always higher than those measured in the
dark. These results are opposite to those reported in Risgaard Pedersen et al. (1997) for more oligotrophic sediments.
We discuss in the following paragraphs how coupled nitrification-denitrification was indirectly supported by V. spiralis,

an engineering species, through increased ROL and leaf N-uptake.

V. spiralis root and leaf N uptake

In oligotrophic systems, rooted plants rely primarily on sediments for assimilation, since benthic mineralization
enriches pore water with nutrients while the water column is generally nutrient-limited (Barko et al. 1991; Bedford et al.
1991; Carr and Chambers 1998). However, some macrophytes are demonstrated to maintain root nutrient uptake also
under conditions of high nutrient availability in the water column (Thursby and Harlin 1984; Cedergreen and Madsen
2003). Our results suggest a different response of V. spiralis to eutrophic conditions. At the downstream site in fact,
inorganic N uptake from the water column (leaf assimilation) represented a relevant fraction of inorganic N input to the
plant. Our calculations suggest a preferential NH4* uptake by V. spiralis, but with a relevant distinction between sites.
At the upstream site, water column and regenerated NH4* was the dominant form of inorganic N assimilated by the
leaves, while at the downstream site both NH.* and NO3 were likely assimilated. At the downstream site, higher
availability of water column NO3s™ may stimulate NOs™ reductase activity, enhancing leaf NOs™ uptake (Cedergreen and
Madsen 2003; Wang et al. 2008; Konnerup and Brix 2010; Takayanagi et al. 2012).

We cannot exclude at the more eutrophic downstream site an inhibitory effect of organic sediments and reduced
chemical conditions in the pore water on roots assimilative functions. When growing in organic-rich substrates,
submerged macrophyte roots maintain important physiological functions as hormone production and anchorage (Agami
and Waisel 1986; Schutten et al. 2005), while they progressively lose other functions as those related to nutrient uptake
(Denny 1972; Madsen and Cedergreen 2002). Studies addressing plant morphology suggest that macrophytes growing
in eutrophic sites with reduced sediments re-allocate their biomass reducing the belowground portion and augmenting
that aboveground. As a consequence, they have a lower root:shoot ratio (RSR) compared with macrophytes growing in
oligotrophic systems (Barko and Smart 1986; Van et al. 1999; Madsen and Cedergreen 2002; Xie et al. 2005; Wang and
Yu 2007; Li et al. 2012). For example, isoetid species suffer oxygen stress associated with increased sediment organic
matter content and they tend to reduce the root biomass, resulting in low RSR. In enriched sediments, isoetid roots

become shorter and thicker to minimize the time required by oxygen to reach the apical zones. These plants display low
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plasticity and, even under a moderate organic increase, roots may turn atrophic, lose their anchorage and assimilative
function and determine the death of the plant (Raun et al. 2010; Pulido et al. 2011). According to Hauxwell et al. (2007)
and Pinardi et al. (2009), RSRs measured for V. spiralis display a pronounced seasonal variation, with minimum values
in summer coinciding with more reduced and hostile chemical condition within sediments. Results from the present
study are in agreement with previous findings, as the highest ratio between above and belowground biomass, coinciding
with minimum RSR, was determined at both stations in the warmest period (Table 1). However, despite a biomass
reduction, the belowground portion of V. spiralis appeared healthy and active also in the summer, as suggested by thick
halos of light brown sediments all along the root hair length, a proxy of oxidised conditions. Our results, combined with
previous findings in the same study area (Ribaudo et al. 2011), suggest an adaptive response of V. spiralis to hostile
sediment conditions, resulting in root biomass reduction and enhanced radial oxygen loss.

At the upstream site, the flux of inorganic N to the plant was mostly from the pore water, suggesting that roots
maintained the assimilation capacity despite biomass reduction. At the NOz™-rich site, a major part of the inorganic N
flux was sustained by the water column, suggesting either a loss of assimilation capacity or enhanced leaf uptake.
Regardless the underlying mechanism, any shift from root to leaf uptake attenuates the competition between plants and

bacteria for N, with implications for microbially-mediated sediment N processes.

Coupled nitrification-denitrification in the rhizosphere of V. spiralis

Results from this study demonstrate that radial oxygen loss from the roots of V. spiralis stimulate coupled nitrification-
denitrification. DNFy rates measured in sediments with SAV were in fact 2 to 6 and 1.5 to 5 fold higher compared with
those measured in sediments with MPB at M1 and M2, respectively. Measurements of DNFy in the rhizosphere of
rooted plants were performed in a relatively few other works including marine, brackish and freshwater species (Table
3). Rates measured in the present study are in the range of those reported for submerged plants and the first available for
V. spiralis colonised sediments (Table 4). However, published studies differ for experimental designs, methods and
trophic status of the sites, so direct comparisons should be done with caution. For example, slurry incubations measure
potential activity and mass balances provide only indirect measurements, while the SNH,* perfusion technique permits
direct measurements of DNFy rates for sites characterized by sandy sediment but not for fine organic sediments
(Risgaard-Petersen et al. 1998; Ottosen et al. 1999).

Due to methodological constraints (i.e. not-homogeneous labelling of pore water with °NH,4*) and the occurrence of
multiple denitrification zones in the rhizosphere of V. spiralis, our estimates of DNFy are probably underestimated
(Reddy et al. 1989; Risgaard-Petersen and Jensen 1997). This suggests that true Dy rates in vegetated sediments are

higher than those reported in this work and thus many folds higher than those measured in sediments with benthic
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microalgae. The main reason for such large difference is the volume of oxic sediment where nitrification can take place,
which augments in the presence of roots because of radial oxygen loss (Hines 2006; Mgller and Sand-Jensen 2011;
Lemoine et al. 2012). For V. spiralis the diffusion of oxygen from the roots to the sediment is not confined to the root
tip but visibly occurs along the whole root surface (Fig. 1), resulting in a large net effect for microbial communities and
associated processes. DNFy rates measured in sediments with SAV were different in relation to the sampling period and
to the light regime. In a recent paper, Soana and Bartoli (2013) demonstrated that ROL by V. spiralis varies on a
seasonal basis, with maximum rates estimated in late summer. This was explained in terms of plant plasticity and
adaptations to progressively more reduced chemical conditions in the pore water, requiring more oxygen transfer to
allow root survival. Seasonal variations of DNFy are not evident at upstream site, while downstream we measured a
summer drop of the process, which is contrary to what described for ROL (Soana and Bartoli 2013). It is likely that in
summer the regulation of DNFy in organic-rich vegetated sediment is complex, with an array of microbial or chemical
processes competing with nitrifiers for oxygen and the plant competing with bacteria for nitrogen due to elevated
requirements to sustain growth (Sousa et al. 2012).

Higher DNFy rates in light compared to dark incubations are in agreement with higher ROL during the photosynthetic
period, which is expected, but are opposite to what reported in other studies (Risgaard-Petersen and Jensen 1997). Most
brackish and marine plants have limited capacity of oxygen transport toward the rhizosphere (Sand-Jensen et al. 1982;
Caffrey and Kemp 1991). In marine environments, it is generally believed that oxygen available in the pore water is
mostly used to detoxify sediments from the extremely toxic sulphides at the expense of other microbial processes as
nitrification, which could explain low rates of DNFy. In freshwater habitats, studies on coupled nitrification-
denitrification were performed on both emergent and submerged plants. Obtained rates are generally higher for
emergent macrophytes, likely due to higher ROL, which is in turn dependent upon direct contact of the plant with the
atmosphere. Aerenchyma allows the oxygen transport towards the rhizosphere and the oxidation of sediment
surrounding roots where aerobic processes can occur. Reddy et al. (1989) measured extremely elevated DNFy rates in
three emergent macrophytes, among the highest reported in the literature (Table 4). Indeed, rates measured in
submerged freshwater macrophytes are usually higher for those plants, such as isoetids, that evolve most of the oxygen
produced during photosynthesis downwards (Risgaard Pedersen and Jensen 1997; Sand-Jensen et al. 2005; Mgller and
Sand-Jensen 2012). At oligotrophic sites, nitrogen loss via DNFy is quantitatively small compared to plant uptake, and
it tends to increase in the dark when assimilation decreases (Risgaard-Petersen and Jensen 1997; Risgaard-Petersen et
al. 1998). For example, Risgaard-Pedersen and Jensen (1997) reported a ~30% increase of DNFy rates in sediments
with Lobelia dortmanna incubated in the dark, suggesting a strong competition between plants and bacteria for N

during the photosynthetic period. An interesting outcome of this study is that rates of DNFy in sediments with V.
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spiralis were higher in the light (by 7 to 88% and by 29 to 44% at M1 and M2, respectively) compared to dark
conditions regardless the sampling season. We speculate that both oxygen and N availability in subsurface sediments
can be potentially relevant interrelated factors regulating DNFy. We address our findings to the increase of oxic volume
of sediments where nitrification can occur due to higher ROL in the light, combined with a limited competition between
plant and bacteria in a N-rich system. The increasing relevance of leaf to total N uptake and the adaptations that allow
V. spiralis growth in organic-rich sediments may have a stimulatory effect on subsurface coupled nitrification-
denitrification. Leaf uptake weakens root-bacteria competition for inorganic N, while enhanced ROL in a chemically
reduced sediment may promote the coupling between ammonification, nitrification and denitrification at the interfaces
between the oxic rhizosphere and the surrounding anoxic sediment (Carpenter 1983; Risgaard-Petersen and Jensen
1997; Soana and Bartoli 2013). These results may be plant-specific, as other macrophytes can be less tolerant towards
organic enrichment and negatively affected by reduced chemical conditions (Barko and Smart 1986; Raun et al. 2010).
Future studies should be extended to other plant species, include other potentially relevant processes for benthic N
cycling as N; fixation and develop new methodological approaches to measure more precisely DNFy rates in muddy,

organic sediments.
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Table 1 In situ and incubation temperature, N-NOs™ and N-NH,* concentrations (average + standard deviation, n=3) and

V. spiralis biomass (g of dry weight per m?, average + standard error, n=8) at the two sites M1 and M2 during spring,

summer and autumn experiments

Site  Season ;ecrf;perature N-NO3 (M) (N|,f|\'>||)H4+ gk;:lVﬁggJund biomass (BgeDI\(,\),V:r?g))und biomass
Spring 12 13.6+34 49+0.2 303.4 +28.9 193.9+14.3
M1 Summer 24 3.6+0.2 3.0+0.1 3243727 55.6+9.8
Autumn 17 63.7+3.1 6.2+0.2 243.5+37.9 119.8+£25.5
Spring 12 75.3+3.6 8.9+0.1 154.7+14.4 126.9+17.2
M2 Summer 24 66.7£2.1 29+0.1 503.4 +65.4 85.8+ 134
Autumn 17 3105+0.1 2.3+0.6 1975+ 334 81.4+11.2
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Table 2 Benthic fluxes of TCO, measured seasonally in the dark (R=community respiration) and in the light (NP=net community production) in microcosms with benthic
microalgae (MPB) and submerged aquatic vegetation (SAV). Gross rates (GP=gross community production) were calculated from NP and R. Daily fluxes were calculated by

multiplying hourly fluxes by the number of light and dark hours in the different sampling periods and summing the obtained values.

Net (UPTy) and gross (UPTg) theoretical nitrogen uptake were calculated dividing NP and GP by the C:N ratios of MPB (9 for benthic microalgae) and SAV (13 for V. spiralis),

reported by Pinardi et al. (2009) and Racchetti et al. (2010)

. 690
TCO: fluxes Igf;krst'ca' DIN gg%
. . . 693
Site  Season Primary Dark (R) Light (NP) Gross (GP=NP-R) Daily Net (UPTn) Gross (UPTg) 694
producer mmol m2h?  mmol m2h? mmol m?2h? mmol m2d? umol m2 h't pumol m2 ht 695
bY0o
MPB 3.31+£0.48 -1.99+ 0.89 -5.31+£0.72 5.50+17.98 222.0+99.9 589.5+ 79.9 697

Spring D
SAV 11.83+£182 -374+£153 -1557+1.68 34.87+31.79 287.5+ 117.7 1198.0+ 527.8 ggg
MPB 2.45+0.47 1.76 £0.74 -0.70 £ 0.62 0 77.3+69.0 700
M1 Summer 48.41+9.86 701
SAV 26.80+£6.61 -50.46+2.68 -77.26+5.04 _515.73+68.69 3881.7 £ 206.5 5943.3+15845 702
. b . wiate)
rUo
MPB 090+£031 092+024 0.02+0.28 21.8045.41 0 0 704
Autumn 705
SAV 4.25+0.38 -1149+1.06 -15.78%0.79 _55.38+15.69 883.7+81.4 1210.6 + 249.7 706
MPB 084010 -143+056 -2.27+0.40 12.78+8.45 159.1+ 62.4 252.3+ 44.9 707

Spring T
SAV 3.95+0.52 -493+1.03 -888+0.81 -33.94+17.30 379.3x79.1 683.4+ 255.9 708
MPB 4.38 £ 0.97 0.35+0.60 -4.03£0.81 38.65+12.37 0 447.6 + 89.6 709

M2 Summer T
SAV 44.87+350 -86.36£2.68 -131.23+3.04 -1088.40+34.59 6643.0 £ 191.6 10094.4£955.5 710
MPB 1.90+0.31 -1.32+041 -3.21+£0.36 6.95+6.58 146.3£45.9 356.9 +40.5 711

Autumn DA

SAV 491+152 -3.64+051 -854+1.14 15.23+19.54 279.7+£39.4 657.1 £357.4 219
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Table 3 The fraction of the net (UPT\) and gross (UPTg) theoretical nitrogen uptake represented by the benthic fluxes of DIN, N-NH4*, N-NOjs™ and by the rates of coupled

nitrification-denitrification (DNFy) is reported. All calculations were performed on processes and rates measured in the light incubations and were limited to negative TCO,, N-

NH.* and N-NOjs™ net fluxes (otherwise the symbol “-* is reported). Calculations were not possible in heterotrophic sediments where N uptake by primary producers was null

while DNFy was measurable; in this case “i” (incomputable) is reported.

[133)

. Primary DIN flux N-NH4* flux N-NOs™ flux DNFn
Site Season roducer
P % UPTn % UPTg % UPTn % UPTg % UPTn % UPTg % UPTn % UPTg
. MPB 44 17 42 16 2 1 0.0 0.0
Spring
SAV 49 12 20 5 29 7 15.0 3.6
M1 Summer MPB - - - - - - 1 21.3
SAV 28 18 27 17 1 0.5 0.9 0.6
Autumn MPB ) ) ) ) ) ) ! !
SAV 55 40 55 40 0.3 0.2 4.5 3.3
. MPB 211 133 53 33 158 100 7.5 4.8
Spring
SAV 105 59 60 34 45 22 23.0 12.8
M2 Summer MPB 7 - - - - 35 1 8.7
SAV 28 19 24 16 4 3 0.8 0.5
MPB - - 1 - - 17. 2.7
Autumn 66 0 8
SAV 237 96 35 15 202 86 26.4 11.2

25



Table 4 Coupled nitrification-denitrification rates (DNFy) measured in freshwater and marine vegetated sediments.

Employed methods include: A) ®NHg4* injection, B) >NH,* perfusion, C) slurry incubation, D) diffusion technique, E)

N2 flux technique, E*) N2 flux technique with urea injection in the rhyzosphere and F) mass balance. Light (L) or dark

(D) incubation conditions are reported. Note: nd indicates values below the detection limit

Incubation

DNFy rate

Macrophyte Technique Location Site Season conditions (umol m? h) References
Italy River Spring L g’? f ie(lz/lMl)Z)
Italy River Spring D 29i+25('2/||\i)2)
Vallisneria spiralis . 36 £7 (M1) .
(submerged) A Italy River Summer L 50 + 14 (M2) This study
Italy River Summer D gi f g Emg
Italy River Autumn L ‘7"2 f g Emg
Italy River Autumn D g; Jir 1'6('2/&)2)
Littorella uniflora Ottosen et al.
(submerged) B Denmark Lake - L 30+8 (1999)
Potamogeton
pectinatus B Denmark Lake - L 6+£3 E)lt;gsge)n etal
(submerged)
Maryland Estuarine .
(USA) pond Spring D 638 £ 110
Potamogeton
. i Caffrey &
perfoliatus C Maryland Estuarine o .0 D 10+1
(submerged) (USA) pond Kemp (1990)
Maryland Estuarine
(USA) pond Autumn D 262 = 15
D Denmark  Lake Spring L 25+1 Risgaard-
Petersen &
Jensen
_ D Denmark Lake Spring D 3H+6 (1997)
Lobelia dortmanna
(submerged)
Denmark Lake - L 25+0.5 o |
ttosen et al.
(1999)
C Denmark Lake - D 93
Pontederia cordata Florida Reddy et al.
(emergent) A (USA) Lake i L 2417+ 36 (1989)
Juncus effusus Florida Reddy et al.
(emergent) A (USA) Lake i L 238+ 105 (1989)
Oryza sativa Lousiana Rice Reddy et al.
(emergent) A (USA) paddy i 28474 (1989)
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Philippines

Lagoon

Autumn

117+159

Nicolaisen et

al. (2004)
Rice
E Ital - - nd
y paddy Arth, Frenzel
& Conrad
Rice (1998)
* - -
E Italy paddy 343 +38
Ottosen et al.
B Denmark Estuary - L 2+05 (1999)
B Denmark Estuary Spring L 140 + 100
B Denmark Estuary Spring D nd Risgaard-
Petersen et
al. (1998)
B Denmark Estuary Summer L nd
B Denmark Estuary Summer D nd
Zostera marina
(submerged) ) Ottosen et al.
0 C Denmark Estuary D 77 (1999)
Virginia Coastal .
Cc (USA) s0ne Spring D 209 + 22
o Caffrey &
Virginia Coastal
C (USA) s0ne Summer D 67 + 27 Kemp (1990)
Virginia Coastal
C (USA) sone Autumn D 99+ 16
F - - - - 64.5 Flindt (1994)
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Figure captions

Fig. 1 At each site and sampling period 16 cylindrical microcosms were created with in situ sieved and homogenized
sediments with (SAV, n=8) or without (MPB) shoots of V. spiralis (a). Microcosms were conditioned in situ for 3
weeks to allow plant growth and the development of microphytonbenthos and thereafter transferred underwater in
transparent liners. After the conditioning period, the microcosms were transferred underwater in liners. Brownish halos
were evident around root hair along the microcosm walls (b). For each site, the day after the recover, half microcosms
were incubated in the light and half in the dark for TCO,, N-NH4* and N-NOs" flux measurements (c). Thereafter,
another incubation was performed after injection of *®NH,* within sediments, to measure coupled nitrification-

denitrification rates (see the text for more details)

Fig. 2 Light, dark and daily fluxes of N-NH4*, N-NO3™ and DIN (dissolved inorganic N) measured seasonally in

microcosms with SAV (V. spiralis) at M1 and M2 (average + standard error, n=4)

Fig. 3 Light, dark and daily fluxes of N-NH4*, N-NOs" and DIN (dissolved inorganic N) measured seasonally in

microcosms with MPB at M1 and M2 (average + standard error, n=4)

Fig. 4 Light, dark and daily fluxes of coupled nitrification-denitrification rates (DNFx) measured seasonally in

microcosms with MPB at M1 and M2 (average + standard error, n=4)

28



757

SAV

|
\
MPB

1stincubation: gas and nutrient fluxes
2" incubation: coupled nitrification-denitrification rates

Fig. 1 At each site and sampling period 16 cylindrical microcosms were created with in situ sieved and homogenized
sediments with (SAV, n=8) or without (MPB) shoots of V. spiralis (a). Microcosms were conditioned in situ for 3
weeks to allow plant growth and the development of microphytonbenthos and thereafter transferred underwater in
transparent liners. After the conditioning period, the microcosms were transferred underwater in liners. Brownish halos
were evident around root hair along the microcosm walls (b). For each site, the day after the recover, half microcosms
were incubated in the light and half in the dark for TCO2, N-NH4* and N-NOs" flux measurements (c). Thereafter,
another incubation was performed after injection of *>NH,* within sediments, to measure coupled nitrification-

denitrification rates (see the text for more details)
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Fig. 4 Light, dark and daily fluxes of coupled nitrification-denitrification rates (DFNn) measured seasonally in

microcosms with MPB at M1 and M2 (average + standard error, n=4)
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