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Abstract. The role of the microRNA miR-93-5p on the secre-
tome profile and the expression levels of vascular endothelial 
growth factor (VEGF) and interleukin-8 (IL-8) was investi-
gated in the neuroblastoma SK-N-AS cell line by Bio-Plex 
analysis and RT-qPCR. The results indicate that VEGF and 
IL-8 are the major miR-93-5p molecular targets. This conclu-
sion was based on in vitro transfection with pre-miR-93-5p 
and anti-miR-93-5p; these treatments inversely modulated 
both VEGF and IL-8 gene expression and protein release in 
the neuroblastoma SK-N-AS cell line. Computational analysis 
showed the presence of miR-93-5p consensus sequences in 
the 3'UTR region of both VEGF and IL-8 mRNAs, predicting 
possible interaction with miR-93-5p and confirming a poten-
tial regulatory role of this microRNA.

Introduction

Neuroblastoma is the most common heterogeneous extra-
cranial neoplastic disease of childhood, developing from 
immature nerve cells found in several areas of the body or 
where groups of nerve cells exist (1). The metastatic phenotype 
of neuroblastoma is associated to activation of several genes, 
some of which are deeply involved in angiogenesis  (2,3). 
Among these proteins, interleukin-8  (IL-8; or CXCL8) is 
known to be a major promoter of angiogenesis and invasive-

ness of human neuroblastomas (4). Another protein firmly 
involved in angiogenesis of neuroblastoma is vascular endo-
thelial growth factor (VEGF) (5,6). As expected, one of the 
control levels is transcription-related to the interaction between 
IL-8 and VEGF promoters and different transcription factors, 
such as NF-κB, AP-1 and C-EBP/NF-IL-6 (7-12). In addition, 
the expression of IL-8 and VEGF genes may be under the 
control of epigenetic mechanisms, such as those regulated 
by microRNAs in cancer, differentiation and inflammatory 
processes (13-23).

MicroRNAs (miRs) are endogenous non-protein coding 
RNA molecules, from 19 to 25 nucleotides long, that regulate 
specifically mRNAs (24) altering protein levels, by inhib-
iting the ability of the ribosome to ‘translate’ the mRNA. 
MicroRNAs can increase mRNA degradation or block the 
translation to protein with a mechanism depending on the level 
of complementarity to mRNAs within the RISC complex (25). 
Considering that a single miR has many mRNA targets and 
that a single mRNA may be targeted by several microRNAs, 
it is calculated that a broad segment of the protein-coding 
genome is under their regulation in any type of biological or 
pathophysiological process, including differentiation, cell cycle 
and apoptosis. Accordingly, alteration of miR regulation can 
be associated to different diseases, including cancer (26-28).

Among the microRNAs, miR-93-5p is clearly demon-
strated in a variety of cellular systems to be involved in 
post-transcriptional regulation of IL-8 and VEGF gene 
expression (15,29-31). For instance, we found that the effects 
of bacterial challenge activating IL-8 gene transcription in 
epithelial cells are downregulated by miR-93-5p (29). On the 
other hand, miR-93-5p has been found involved also in the 
downregulation of VEGF expression (30,31).

The aim of the present investigation was to study the effects 
of pre-miR-93-5p and anti-miR-93-5p on the secretome of a 
neuroblastoma cell line, in order to compare results studying 
IL-8 and VEGF expression with the data obtained on other 
chemokines, cytokines and growth factors.

Materials and methods

Neuroblastoma cell line and culture conditions. The SK-N-AS 
neuroblastoma cell line, obtained from bone marrow brain 
metastasis, was purchased from Sigma (Sigma-Aldrich, 
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St. Louis, MO, USA) and cultured in humidified atmosphere 
of 5% CO2/air in RPMI-1640 medium (Life Technologies, 
Monza, Italy) supplemented with 10% fetal bovine serum 
(FBS; Celbio, Milan, Italy), 10,000  U/ml penicillin and 
10  mg/ml streptomycin (Sigma-Aldrich)  (32). To verify 
possible effects on proliferation, cell growth was monitored 
determining the cell number/ml using a Z2 Coulter Counter 
(Coulter Electronics, Hialeah, FL, USA).

Transfection with pre-miR and anti-miR molecules. SK-N-AS 
cells were seeded at 2.5x105/500  µl into 12-wells plate 
and transfected with 200 nM anti-miR-93-5p (AM:10951), 
pre‑miR-93-5p (PM:10951) and miR-negative controls 
(AM:17110, AM:17010) (Ambion, Applied Biosystems, Foster 
City, CA, USA) complexed with Lipofectamine RNAiMAX 
(Invitrogen, Life Technologies, Carlsbad, CA, USA). After 
48 h, cell supernatants were collected and total RNA was 
isolated using TRI Reagent™ (Sigma Aldrich) and immedi-
ately converted to cDNA.

Quantification of IL-8 and VEGF mRNA content. Total RNA 
(300 ng) was reverse-transcribed to cDNA using random 
primers (Applied  Biosystems). IL-8 and VEGF mRNAs 
analyzed with RT-qPCR were quantified by iQ SYBR-Green 
Supermix (Bio-Rad Laboratories, Hercules, CA, US) using 
the IL-8 reverse (5'-TTA TGA ATT CTC AGC CCT CTT 
CAA AAA CTT CTC-3') and forward (5'-GTG CAG TTT 
TGC CAA GGA GT-3') primers and by VEGF TaqMan Gene 
Expression Assays (HS00173626_m1), and normalized to 
the calibrator genes RPL13A (code HS03043885_g1) and 18S  
rRNA (code 4310893E) (all from Applied Biosystems) 
according to the manufacturer's instructions. These assays 
were carried out with a CFX96 Touch™ Real-Time PCR 
Detection System (Bio-Rad Laboratories). Relative quantifica-
tion of gene expression was performed using the comparative 
threshold (CT) method. Changes in mRNA expression level 
were expressed as fold-change over Lipofectamine RNAiMAX 
treated samples.

Bio-Plex analysis. Cytokines, chemokines and growth factors 
in tissue culture supernatants released from the cells under 
analysis were measured by Bio-Plex Pro Human Cytokine 
27-Plex Assay (#M50-0KCAF0Y; Bio-Rad Laboratories) as 
described by the manufacturer (33,34). The Bio-Plex cytokine 
assay is designed for the multiplex quantitative measurement 
of multiple cytokines in a single well using as little as 50 µl 
of sample. Samples were analyzed on a Bio-Rad 96-well 
plate reader using the Bio-Plex Suspension Array System and 
Bio-Plex Manager software (Bio-Rad Laboratories) (33,34).

Analysis of apoptosis and cell cycle. SK-N-AS neuroblastoma 
cells were treated for 48 h with 200 nM pre-miR-93-5p, anti-
miR-93-5p and miR negative controls, then apoptosis was 
detected with Annexin V and Dead Cell and Caspase 3/7 Muse 
assays. Cell cycle was analyzed with the Muse Cell Cycle kit 
(EMD Millipore Corporation, Hayward, CA, USA) using 
the Muse Cell Analyzer instrument (Millipore Corporation), 
according to the instructions supplied by the manufacturer. 
Data from prepared samples were acquired and recorded 
utilizing dedicated programs (Millipore) (35).

Thermodynamic structure prediction and interaction. 
Analysis of RNA secondary structure was performed using 
ViennaRNA Web Services, RNA fold server, Institute of 
Theoretical Chemistry, University of Vienna (http://rna.tbi.
univie.ac.at/cgi-bin/RNAfold.cgi) (36). RNA sequences were 
obtained from UCSC Genome Bioinformatics (http://genome.
ucsc.edu/) (37) and microRNA sequence from miRBase, the 
microRNA database, University of Manchester (http://www.
mirbase.org/) (38,39). The interactions between mRNAs and 
miRNA were predicted with microrna.org, Memorial Sloan-
Kettering Cancer Center (http://www.microrna.org/microrna/
home.do) (40), with TargetScan 6.2, Whitehead Institute for 
Biomedical Research (http://www.targetscan.org/) (41) and 
miRWalk 2.0 Heidelberg University (http://www.umm.uni-
heidelberg.de/apps/zmf/mirwalk/) (42).

Statistical analysis. Results are expressed as mean ± standard 
deviation (SD). Comparisons between groups were made using 
paired Student's t-test. Statistical significance was defined as 
p<0.05 (statistically significant) and p<0.01 (highly statistically 
significant).

Results

Secretomic profile in SK-N-AS neuroblastoma cells treated 
with pre-miR-93-5p and anti-miR-93-5p: miR-93-5p depen-
dency in genes involved in inflammation. In order to verify 
whether miR-93-5p regulates pro-inflammatory genes, a 
27-plex cytokine assay was carried out using supernatants 
collected from 2-days cultured SK-N-AS neuroblastoma cells 
seeded at the initial concentration of 5x105 cells/ml. A prelimi-
nary analysis of the secretome of SK-N-AS cells demonstrates 
a strong difference with respect to protein release. Proteins 
released with highest efficiency (>10 pg/ml) were IL-7, IL-8, 
IL-15, GM-CSF, G-CSF, IP-10, MCP-1 and VEGF (data not 
shown) and were considered in our analysis. To study miR-
93-5p dependency, SK-N-AS cells were cultured in the absence 
or in the presence of pre-miR-93-5p and anti-miR-93-5p. 
Fig. 1 shows the first set of data firmly demonstrating that 
these treatments have no major effects on SK-N-AS cellular 
apoptosis  (Fig.  1A  and  B), cell growth  (Fig.  1C) and cell 
cycle (Fig. 1D). As far as the effects of pre-miR-93-5p and 
anti-miR-93-5p treatments on secretome, in some cases we 
found a relevant inverse correlation between relative content of 
secreted proteins in cells pre-transfected with pre-miR-93-5p 
and the fold increase of secretion following anti-miR-93-5p 
treatment (Fig. 2A). We applied an algorithm for determining 
the miR-93-5p dependency index (miR-93INDEX) of SK-N-AS 
cells, based on the determination of the treated/untreated fold 
values as follows: miR-93INDEX = 1 - [fold (pre-miR-93 treat-
ment)/fold (anti-miR-93 treatment)]. Following this algorithm 
we expected high values of miR-93INDEX for the genes whose 
expression was regulated by miR-93. The miR-93INDEX values 
for the different cytokines/chemokines/growth factors studied 
are indicated in Fig. 2B. Taken together, these results strongly 
suggest that the two genes displaying the highest levels of sensi-
tivity to miR-93-5p are IL-8 and VEGF. Interestingly, IL-8 and 
VEGF are demonstrated to play a significant role in the late 
stages of neuroblastoma progression, including interaction with 
the microenvironment leading to angiogenesis (2-6,8).
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IL-8 and VEGF mRNAs are putative targets of miR-93-5p. 
Figs.  3  and  4 show the possible interactions between 
miR‑93-5p and miR-93-5p binding sites located within the 
IL-8 mRNA (Fig. 3) and VEGF mRNA (Fig. 4) sequences. 

The miR-93-5p target sequences of IL-8 and VEGF mRNAs 
are shown, indicating possible base-pairing with miR-93-5p. 
These predicted analyses support the hypothesis that both 
IL-8 and VEGF mRNAs are targets of miR-93-5p.

Figure 1. Effects of treatment of SK-N-AS cells with anti-miR-93-5p and pre-miR-93-5p on apoptosis, cell growth and cell cycle. SK-N-AS cells were treated 
with Lipofectamine RNAiMAX (the transfection reagent), anti-miR-93-5p and pre-miR-93-5p and apoptosis was analyzed using the Annexin V (A) and the 
Caspase 3/7 (B) kits. The effects of the treatments on cell growth and distribution of the cells through the G0/G1, S and G2/M cell cycle phases are shown in 
panels C and D, respectively.

Figure 2. Secretome profile of SK-N-AS cells. (A) Fold expression after treating SK-N-AS cells with anti-miR-93-5p and pre-miR‑93-5p. The data generating 
this panel were obtained by Bio-Plex analysis. Dotted circles identify proteins released with high efficiency after treatment with anti-miR-93-5p (IL-8 and 
VEGF) and pre-miR-93-5p (MCP-1, IL-15, GM-CSF, IL-7). (B) miR‑93INDEX calculated for IL-7, -8 and -15, GM-CSF, G-CSF, IP-10, MCP-1 and VEGF. The 
algorithm used to calculate the miR-93INDEX is shown in the upper part of the panel.
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Figure 3. Interactions of miR-93-5p with IL-8 mRNA. Predicted secondary structures of IL-8 mRNA and of hsa-miR-93-5p was based on ViennaRNA web 
Service (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi). The miRNA-target interaction is predicted by databases available online (http://www.microrna.org/
microrna/home.do; http://www.targetscan.org; http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/). Magnification is also shown of the portion of IL-8 
mRNA involved in possible interactions with the seed region of the lowest energy hsa-miR-93-5p potential stem loops.

Figure 4. Interactions of miR-93-5p with VEGF mRNA. Predicted secondary structures of VEGF mRNA and their interactions with hsa-miR-93-5p (for details 
see legend to Fig. 3). Magnification is also shown of the two portions of VEGF mRNA involved in possible interactions with the seed region of the lowest energy 
hsa-miR-93-5p potential stem loops.
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Alteration of IL-8 gene and VEGF gene expression in SK-N-AS 
cells transfected with pre-miR-93-5p and anti-miR-93-5p. 
Fig. 5 shows experiments in which pre-miR-93-5p and anti-
miR-93-5p have been transfected to SK-N-AS cells and gene 
expression of IL-8 (Fig. 5A and B) and VEGF (Fig. 5C and D) 
gene expression was determined by RT-qPCR (Fig. 5A and C) 
and Bio-Plex analysis of released proteins (Fig. 5B and D).

The results reported regarding the effects on IL-8 gene 
expression, demonstrate that when SK-N-AS neuroblastoma 
cells are transfected with a pre-miR-93-5p RNA a decrease 
of IL-8 mRNA occurs (Fig. 5A). This is confirmed by the 
Bio-Plex analysis performed on cell growth medium, in which 
a sharp decrease of released IL-8 protein was found in pre-
miR-93-5p treated SK-N-AS cell cultures (Fig. 5B). Despite 
the fact that pre-miR-93-5p effects on VEGF mRNA were 
minor (Fig. 5C), the same trend was found for VEGF release, 
as shown in Fig. 5D, demonstrating that VEGF secretion is 
sharply decreased in pre-miR-93-5p treated SK-N-AS cells.

In order to further sustain the possible involvement of miR-
93-5p on IL-8 and VEGF expression, we determined whether 
treatment of the SK-N-AS neuroblastoma cell line with anti-
miR against miR-93-5p led to increased IL-8 and VEGF. 
The SK-N-AS neuroblastoma cells were transfected with 

anti-miR-93-5p and the expression of IL-8 and VEGF mRNA 
content and protein secretion were analyzed by RT-qPCR and 
Bio-Plex assays, respectively. The anti-miR-93-5p was admini
strated at the concentration of 200 nM with the Lipofectamine 
RNAiMAX transfection reagent. We first demonstrated a 
65.2±5.8 reduction of the miR-93-5p accumulation in SK-N-AS 
neuroblastoma cells treated with anti-miR-93-5p (data not 
shown). Fig. 5 (panels A and B) demonstrates that the forced 
downregulation of miR-93-5p is accompanied by a slight 
increase of IL-8 mRNA (Fig. 5A) and a significantly higher 
release of IL-8 (Fig. 5B). In addition increased expression of 
VEGF mRNA (Fig. 5C) and VEGF release (Fig. 5D) was found 
in anti-miR-93-5p treated SK-N-AS cells. Altogether, the data 
shown in Fig. 5 are fully in agreement with the hypothesis of an 
involvement of miR-93-5p in IL-8 and VEGF gene expression 
in this tumor cell line.

Discussion

A first conclusion of the present study is that treatment of 
SK-N-AS cells with pre-miR-93-5p and anti-miR-93-5p leads 
to different effects on expressed cytokines/chemokines/growth 
factors. The data obtained are shown in Fig. 2, which demon-

Figure 5. Effects of the treatments of neuroblastoma SK-N-AS cells with pre-miR-93-5p and anti-miR-93-5p. (A) IL-8 and (C) VEGF mRNAs were quantified 
by RT-qPCR analysis; (B) IL-8 and (D) VEGF released proteins were quantified by Bio-Plex analysis. RNA was isolated from cultures after 48 h in vitro treat-
ment and analyzed by RT-qPCR. Internal RT-qPCR controls were RPL13A and 18S for IL-8 and VEGF mRNAs. Data are in all cases reported in comparison 
to SK-N-AS cells treated with control scrambled sequences. Results represent the average ± SD of at least three independent experiments. *p<0.05; **p<0.01. 
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strates that miR-93-5p dependency was found for G-CSF and 
IP-10, but is particularly evident for IL-8 (index, 0.65) and 
VEGF (index, 0.85). As expected from data in Fig. 2, we found 
miR-93-5p binding sites in IL-8 and VEGF mRNAs (see the 
prediction analysis of interactions shown in Figs. 3 and 4), in 
agreement with the found miR-93INDEX.

The final conclusion of the present study is that the 
microRNA miR-93-5p is involved in the control of the 
expression of the IL-8 and VEGF genes in the neuroblastoma 
SK-N-AS cell line on the basis of the effects of different trans-
fections with pre-miR-93-5p or anti-miR-93-5p.

The effects of these treatments, showed in Fig. 5, were 
analyzed by RT-qPCR (looking at the IL-8 and VEGF mRNA 
content) and by Bio-Plex analysis (looking at IL-8 and VEGF 
protein secretion).

In addition to basic science implications, our data may be of 
interest in applied biomedicine (43,44), since we demonstrated 
that forced expression of miR-93-5p is able to reduce IL-8 
and VEGF gene expression; therefore, molecules mimicking 
pre-miR-93-5p activity may be proposed to reduce IL-8 and 
VEGF dependent angiogenesis in neuroblastomas.
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