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QUANTUM LINES FOR DUAL QUASI-BIALGEBRAS

ALESSANDRO ARDIZZONI, MARGARET BEATTIE, AND CLAUDIA MENINI

Abstract. In this paper, the theory to construct quantum lines for general dual quasi-bialgebras
is developed followed by some specific examples where the dual quasi-bialgebras are pointed with
cyclic group of points.
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1. Introduction

For H a bialgebra over a field k and R a bialgebra in the category of Yetter-Drinfeld modules
H
HYD, the Radford biproduct or bosonization R#H is a well-known construction giving a new
bialgebra. Similarly, if H is a dual quasi-bialgebra and R is a bialgebra in a suitably defined
category of Yetter-Drinfeld modules over H , then by [AP], a new dual quasi-bialgebra R#H can
be defined, called the bosonization of R and H .

Given a bialgebra H , however, finding R is nontrivial. For H = kG, a group algebra, finding
R is the key to constructing pointed bialgebras with G as the group of points and finding finite
dimensional R is crucial to the classification of pointed Hopf algebras of finite dimension. If R is
finite dimensional and is generated as an algebra by a one-dimensional vector space in H

HYD, then
R is called a quantum line. For various H semisimple of even dimension, not necessarily group
algebras, the question of the existence of a quantum line for H was completely settled in [CDMM]
as well as the question of liftings of the bosonizations.

In this paper, we adapt the methods and language of [CDMM] to dual quasi-bialgebras. We find
necessary and sufficient conditions for quantum lines to exist for a given dual quasi-bialgebra H
and we compute several examples for the dual quasi-bialgebra (H,ω) where H is the group algebra
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2 ALESSANDRO ARDIZZONI, MARGARET BEATTIE, AND CLAUDIA MENINI

of a cyclic group of any order and ω is a 3-cocycle. Finally we give an example of the existence of
a quantum line for a bosonization R#kCn where n is an even integer.

The duals of our examples will be quasi-bialgebras as studied in the papers of Angiono [An],
Gelaki [Ge], and Etingof and Gelaki [EGe1][EGe2][EGe3].

The first section of this paper is used for notation and some preliminary material. In the second
section, we define quasi-Yetter-Drinfeld data for dual quasi-bialgebras, and then in the next section
we construct quantum lines. Section 5 discusses conditions to construct a quantum line for a
bosonization and then the last section gives examples of these constructions. The examples are
based on knowledge of the dual quasi-bialgebra kCn with Drinfeld reassociator given by a nontrivial
3-cocycle.

2. Preliminaries

Throughout we work over k, an algebraically closed field of characteristic zero. The tensor
product over k will be denoted by ⊗. Vector spaces, algebras and coalgebras are all understood to
be over k and all maps are understood to be k-linear. The usual twist map from the tensor space
V ⊗W to W ⊗ V will be denoted τ , i.e., τ(v ⊗ w) = w ⊗ v. The multiplicative group of nonzero
elements of k is denoted by k×.

For any coalgebra C and algebra A, ∗ will denote the convolution product in Hom (C,A).
Composition of functions may be written as concatenation if the emphasis of the symbol ◦ is not
required. The tensor product of a map with itself will often be written exponentially, i.e., we will
write φ⊗3 to denote φ⊗ φ⊗ φ. Similarly H ⊗H is denoted H⊗2, etc.

The group algebra over a group G will be written kG. The set of grouplike elements of a
coalgebra C will be denoted G(C) and the subcoalgebra generated by G(C) will be denoted kG(C).

We make the convention that an empty product, for example, a product of the form
∏

1≤j≤a

with

a < 1, is defined to be 1.

2.1. Definitions. A coalgebra with multiplication and unit is a datum (H,∆, ε,m, u) where (H,∆, ε)
is a coalgebra, m : H ⊗H → H is a coalgebra homomorphism called multiplication and u : k → H
is a coalgebra homomorphism called unit [Ka, dual to page 368]. Denote u(1k) by 1H .

For H a coalgebra with multiplication and unit, a convolution invertible map ω : H⊗3 → k is
called a 3-cocycle if and only if

(1) (ε⊗ ω) ∗ ω (H ⊗m⊗H) ∗ (ω ⊗ ε) = ω (H ⊗H ⊗m) ∗ ω (m⊗H ⊗H) ,

and we say that a cocycle ω is unitary or normalized if for all h, h′ ∈ H ,

(2) ω(h⊗ 1H ⊗ h′), or equivalently either ω(1⊗ h⊗ h′) or ω(h⊗ h′ ⊗ 1), is ε(h)ε(h′).

If H,L are coalgebras with multiplication and unit, a coalgebra map φ : L → H is a morphism
of coalgebras with multiplication and unit, if

mH(φ ⊗ φ) = φmL, φuL = uH .

If φ : L → H is a morphism of coalgebras with multiplication and unit and ω is a (normalized)
3-cocycle for H , then ω ◦ φ⊗3 is a (normalized) 3-cocycle for L.

For H a coalgebra with unit, a convolution invertible map v : H⊗2 → k such that v(1 ⊗ h) =
v(h⊗ 1) = ε(h) for all h ∈ H , i.e., v is unitary or normalized, is called a gauge transformation.

Note that for H a cocommutative bialgebra and v : H ⊗ H → k a (normalized) convolution
invertible map then the map ∂2v : H ⊗H ⊗H → k, defined by

∂2v := (ε⊗ v) ∗ v−1(m⊗H) ∗ v(H ⊗m) ∗ (v−1 ⊗ ε),

is a (normalized) cocycle called a (normalized) coboundary. Conversely, if v is convolution invertible
and ∂2v is normalized then v(1 ⊗ h) = v(h⊗ 1) = ε(h)v(1 ⊗ 1) and so v(1 ⊗ 1)−1v is normalized.
(See also Lemma 2.3.)
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Now we define the objects of interest in this paper.

Definition 2.1. A dual quasi-bialgebra is a datum (H,∆, ε,m, u, ω) where (H,∆, ε,m, u) is a
coalgebra with multiplication and unit and ω : H⊗H⊗H → k is a normalized 3-cocycle such that

[m (H ⊗m)] ∗ (uω) = (uω) ∗ [m (m⊗H)];(3)

m(1H ⊗ h) = h = m(h⊗ 1H), for all h ∈ H.(4)

Unless it is needed to emphasis the structure of the coalgebraH with multiplication and unit, we
will write (H,ω) for a dual quasi-bialgebra. The map ω is called the (Drinfeld) reassociator of the
dual quasi-bialgebra. Note that if H is cocommutative, then (H,ω) has associative multiplication
for every reassociator ω.

Following [Sc, Section 2], we say that Φ : (H,ω) → (H ′, ω′) is amorphism of dual quasi-bialgebras
if Φ : H → H ′ is a morphism of coalgebras with multiplication and unit and ω′ ◦ Φ⊗3 = ω.

A bijective morphism of dual quasi-bialgebras is an isomorphism.

A dual quasi-subbialgebra of a dual quasi-bialgebra (H ′, ω′) is a dual quasi-bialgebra (H,ω)
such that H is a subcoalgebra of H ′ and the canonical inclusion σ : H → H ′ is a morphism of dual
quasi-bialgebras.

We note that by (3) multiplication in the dual quasi-subbialgebra kG(H) of H is associative.

Let (H,ω) be a dual quasi-bialgebra. It is well-known that the category H
M of left H-comodules

becomes a monoidal category as follows. Given a left H-comodule V , we denote the left coaction
of V by ρ = ρlV : V → H⊗V, ρ(v) = v−1⊗ v0. The tensor product of two left H -comodules V and
W is a comodule via diagonal coaction i.e. ρ (v ⊗ w) = v−1w−1 ⊗ v0 ⊗ w0. The unit is the trivial
left H-comodule k, i.e. ρ (k) = 1H ⊗ k. The associativity and unit constraints are defined, for all
U, V,W ∈ H

M and u ∈ U, v ∈ V,w ∈ W,k ∈ k, by

HaU,V,W (u ⊗ v ⊗ w) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0),(5)

lU (k ⊗ u) := ku and rU (u⊗ k) := uk.

The monoidal category we have just described will be denoted by (HM,⊗, k,Ha, l, r).
The monoidal categories (MH ,⊗, k, aH , l, r) and (HM

H ,⊗, k,HaH , l, r) are defined similarly.
We just point out that

aHU,V,W (u⊗ v ⊗ w) := u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1),

HaHU,V,W (u⊗ v ⊗ w) := ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0)ω(u1 ⊗ v1 ⊗ w1).

For (H,ω) a dual quasi-bialgebra and v : H⊗2 → k a convolution invertible map, define maps
mv : H⊗2 → H and ωv : H⊗3 → k by setting

mv : = v ∗m ∗ v−1(6)

ωv : = (ε⊗ v) ∗ v (H ⊗m) ∗ ω ∗ v−1 (m⊗H) ∗
(
v−1 ⊗ ε

)
.(7)

If v is a gauge transformation, then the datum

(H,ω)v = (Hv, ωv) = (H,mv, u,∆, ε, ωv)

is a dual quasi-bialgebra with reassociator ωv called the twisted dual quasi-bialgebra of H by v.

Remark 2.2. (i) If a ∈ k× and v is convolution invertible, then so is av, the composition of v with
multiplication by a, and av has inverse a−1v−1. Note that mv = mav and ωv = ωav.

(ii) Note that (mv)v
−1

= m. It is straightforward to verify that (ωv)v
−1

= ω, remembering that
the multiplication in (Hv, ωv) is mv. Thus, since v−1 is a gauge transformation for (Hv, ωv), we

have that (Hv, ωv)v
−1 ∼= (H,ω).

(iii) Note that if H is cocommutative then ωv = ∂2v ∗ ω so that (Hv, εv) = (H, ∂2v).
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Lemma 2.3. For (H,ω) a dual quasi-bialgebra, suppose v : H ⊗ H → k is a convolution invert-
ible map such that ωv as defined in (7) is normalized, i.e., satisfies (2). Then av is a gauge
transformation for a = v(1 ⊗ 1)−1 ∈ k

×.

Proof. For all h, h′ ∈ H ,

ε(h)ε(h′)
(2)
= ωv(h⊗ 1⊗ h′)

(7)
= v(1⊗ h′)v−1(h⊗ 1).

Setting h and h′ equal to 1 in turn, we obtain for all h ∈ H ,

ε(h) = v(1⊗ 1)v−1(h⊗ 1) = a−1v−1(h⊗ 1) and ε(h) = v(1 ⊗ h)v−1(1 ⊗ 1) = av(1⊗ h).

Since a−1v−1(h⊗ 1) = ε(h) and av is the inverse of a−1v−1 then av(h⊗ 1) = ε(h) also. �

Corollary 2.4. Let H be a cocommutative bialgebra. If v : H⊗H → k is a convolution invertible
map such that ∂2v is a normalized cocycle, then av is normalized for a = v(1 ⊗ 1)−1 ∈ k

×.

Proof. Take ω = ε in Lemma 2.3. Since H is cocommutative, ωv = ∂2v. �

Proposition 2.5. For σ : (H,ωH) → (A,ωA) a morphism of dual quasi-bialgebras and v : A⊗2 → k

a gauge transformation for A, then v ◦ (σ ⊗ σ) is a gauge transformation for H. Also

ωv
A◦σ

⊗3 = ωv◦σ⊗2

H and mv
A◦σ

⊗2 = σmv◦σ⊗2

H .

Thus σ : (Hv◦σ⊗2

, ωv◦σ⊗2

H ) → (Av, ωv
A) is also a morphism of dual quasi-bialgebras between the

twisted dual quasi-bialgebras obtained from (H,ωH) and (A,ωA).

Proof. We have

ωv
A◦σ

⊗3 (7)
=

[
(εA ⊗ v) ∗ v (A⊗mA) ∗ ωA ∗ v−1 (mA ⊗A) ∗

(
v−1 ⊗ εA

)]
◦σ⊗3

=
(
εH ⊗ vσ⊗2

)
∗ vσ⊗2 (H ⊗mH) ∗ ωH ∗ v−1σ⊗2 (mH ⊗H) ∗

(
v−1σ⊗2 ⊗ εH

)

(7)
= ωvσ⊗2

H .

Also

mv
Aσ

⊗2 (6)
=

[
v ∗mA ∗ v−1

] (
σ⊗2

)
= vσ⊗2 ∗mAσ

⊗2 ∗ v−1σ⊗2

= vσ⊗2 ∗ σmH ∗ [vσ⊗2]−1 = σmvσ⊗2

H .

�

Definition 2.6. Dual quasi-bialgebras A and B are called quasi-isomorphic (or equivalent) when-
ever (A,ωA) ∼= (Bv, ωv

B) as dual quasi-bialgebras for some gauge transformation v ∈ (B ⊗B)
∗
.

By Remark 2.2-ii., if (A,ωA) ∼= (Bv, ωv
B), then (B,ωB) ∼= (A,ωA)

v−1

.

Corollary 2.7. If σ : (H,ωH) → (A,ωA) is a morphism of dual quasi-bialgebras and (A,ωA) is
quasi-isomorphic to an ordinary bialgebra so is (H,ωH).

Proof. Suppose γA : A⊗ A → k is a gauge transformation such that AγA has trivial reassociator.
Then γH := γA (σ ⊗ σ) : H ⊗H → k is a gauge transformation, and, by Proposition 2.5, the map
σ : (HγH , ωγH

H ) → (AγA , ωγA

A = εA⊗3) is a morphism of dual quasi-bialgebras. Hence

ωHγH = ωγH

H = ωγA

A ◦ σ⊗3 = εA⊗3 ◦ σ⊗3 = εH⊗3

so that HγH has trivial reassociator. �
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3. Quasi-Yetter-Drinfeld data for dual quasi-bialgebras

3.1. Yetter-Drinfeld modules. In this subsection, we first recall some facts from [AP] about
the category of Yetter-Drinfeld modules for a dual quasi-bialgebra.

Definition 3.1 ([AP, Definition 3.1]). For (H,ω) a dual quasi-bialgebra, the category H
HYD of

Yetter-Drinfeld modules over H is defined as follows. An object is a tern (V, ρV ,⊲) , where
(V, ρ) is an object in H

M and µ : H ⊗ V → V is a k-linear map written h ⊗ v 7→ h ⊲ v such
that, for all h, l ∈ H and v ∈ V

(hl) ⊲ v =

[
ω−1 (h1 ⊗ l1 ⊗ v−1)ω

(
h2 ⊗ (l2 ⊲ v0)−1 ⊗ l3

)

ω−1 ((h3 ⊲ (l2 ⊲ v0)0)−1 ⊗ h4 ⊗ l4) (h3 ⊲ (l2 ⊲ v0)0)0

]
,(8)

1H ⊲ v = v and(9)

(h1 ⊲ v)−1 h2 ⊗ (h1 ⊲ v)0 = h1v−1 ⊗ (h2 ⊲ v0) .(10)

A morphism f : (V, ρ,⊲) → (V ′, ρ′,⊲′) in H
HYD is a morphism f : (V, ρ) → (V ′, ρ′) in H

M such
that

f(h ⊲ v) = h ⊲
′ f(v).

Remark 3.2. The category H
HYD is isomorphic to the weak right center of H

M, see [AP, Theorem
A.2.]. As a consequence H

HYD has a prebraided monoidal structure given as follows. The unit is
k regarded as an object in H

HYD via the trivial structures ρk (k) = 1H ⊗ k and h ⊲ k = εH (h) k.
The tensor product is defined by

(V, ρV ,⊲)⊗ (W,ρW ,⊲) = (V ⊗W,ρV ⊗W ,⊲)

where ρV⊗W (v ⊗ w) = v−1w−1 ⊗ v0 ⊗ w0 and

(11) h ⊲ (v ⊗ w) =

[
ω (h1 ⊗ v−1 ⊗ w−2)ω

−1
(
(h2 ⊲ v0)−2 ⊗ h3 ⊗ w−1

)

ω
(
(h2 ⊲ v0)−1 ⊗ (h4 ⊲ w0)−1 ⊗ h5

)
(h2 ⊲ v0)0 ⊗ (h4 ⊲ w0)0

]
.

The constraints are the same as H
M i.e.

HaU,V,W (u⊗ v ⊗ w) : = ω−1(u−1 ⊗ v−1 ⊗ w−1)u0 ⊗ (v0 ⊗ w0),

lU (k ⊗ u) : = ku and rU (u⊗ k) := uk.

viewed as morphisms in H
HYD. The prebraiding cV,W : V ⊗W → W ⊗ V is given by

(12) cV,W (v ⊗ w) = (v−1 ⊲ w) ⊗ v0.

Remark 3.3. The coproduct of a family
(
V i

)
i∈I

of objects in H
HYD is the vector space ⊕i∈IV

i

regarded as an object in H
HYD via the action and the coaction defined by

h ⊲
(
vi
)
i∈I

=
(
h ⊲ vi

)
i∈I

and ρ
((

vi
)
i∈I

)
=

∑
i∈I

vi−1 ⊗ ui

(
vi0
)

respectively, where ui : V
i → ⊕i∈IV

i is the canonical injection. Let W ∈ H
HYD. By the universal

property of the coproduct, the canonical morphisms W ⊗ ui : W ⊗ V i → W ⊗
(
⊕i∈IV

i
)
yield a

morphism in H
HYD

⊕i∈I

(
W ⊗ V i

)
→ W ⊗

(
⊕i∈IV

i
)
.

This is bijective because it is bijective at the level of vector spaces. This proves that the functor
W ⊗(−) : H

HYD → H
HYD commutes with coproducts. Similarly (−)⊗W : HHYD → H

HYD commutes
with coproducts.

Therefore we can apply [Mac, Theorem 2, page 172] to construct a left adjoint T : H
HYD →

Mon
(
H
HYD

)
of the forgetful functor. For every V ∈ H

HYD, the algebra T (V ) will be called the

tensor algebra of V in H
HYD. By standard arguments one can endow T := T (V ) with a bialgebra

structure in H
HYD where the comultiplication ∆T and the counit εT are uniquely defined by setting

∆T (v) = v ⊗ 1T + 1T ⊗ v and εT (v) = 0.
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The next theorem from [AP] gives the structure of a bosonization in this setting.

Theorem 3.4 ([AP, Theorem 5.2]). Let (H,ωH) be a dual quasi-bialgebra.
Let (R, µR, ρR,∆R, εR,mR, uR) be a bialgebra in H

HYD and use the following notations

h ⊲ r : = µR (h⊗ r) , r−1 ⊗ r0 := ρR (r) ,

r ·R s : = mR (r ⊗ s) , 1R := uR (1k) ,

r1 ⊗ r2 : = ∆R (r) .

Consider on B := R⊗H the following structures:

mB[(r ⊗ h)⊗ (s⊗ k)] =




ω−1
H (r−2 ⊗ h1 ⊗ s−2k1)ωH(h2 ⊗ s−1 ⊗ k2)

ω−1
H [(h3 ⊲ s0)−2 ⊗ h4 ⊗ k3]ωH(r−1 ⊗ (h3 ⊲ s0)−1 ⊗ h5k4)

r0 ·R (h3 ⊲ s0)0 ⊗ h6k5




uB(k) = k1R ⊗ 1H

∆B(r ⊗ h) = ω−1
H (r1−1 ⊗ r2−2 ⊗ h1)r

1
0 ⊗ r2−1h2 ⊗ r20 ⊗ h3

εB(r ⊗ h) = εR(r)εH(h)

ωB((r ⊗ h)⊗ (s⊗ k)⊗ (t⊗ l)) = εR(r)εR(s)εR(t)ωH(h⊗ k ⊗ l).

Then (B,∆B , εB,mB, uB, ωB) is a dual quasi-bialgebra.

Definition 3.5 ([AP, Definition 5.4]). For H,R,B as in Theorem 3.4, the dual quasi-bialgebra B
will be called the bosonization of R by H and denoted by R#H . Elements of B may be written
r#h instead of r ⊗ h to emphasize that we are working in the bosonization.

Remark 3.6. Let A := R#H,B := S#L where H,L are cosemisimple dual quasi-bialgebras and
R,S are bialgebras in the categories of Yetter-Drinfeld modules over H and L respectively such
that A0 = k#H and B0 = k#L. Then if A and B are quasi-isomorphic, so are H and L.

For suppose that there is an isomorphism ϕ : A → Bv of dual quasi-bialgebras. Since ϕ is a
coalgebra isomorphism, ϕ(A0) = (Bv)0 = B0.

Write ϕ(1 ⊗ h) as 1⊗ ϕ′(h) for some ϕ′(h) ∈ L. In this way we get the following commutative
diagram.

H
ϕ′

//

σH
��

Lv(σL⊗σL)

σL
��

R#H
ϕ

// (S#L)v

By the same argument using ϕ−1 we get an inverse for ϕ′. By Proposition 2.5, the right-hand side
vertical map is an injective morphism of dual quasi-bialgebras. Since σH and ϕ are also morphisms
of dual quasi-bialgebras we get that ϕ′ also is. Thus ϕ′ is an isomorphism of dual quasi-bialgebras
as required.

The proof of the next lemma is straightforward and so is left to the reader.

Lemma 3.7. Take the hypothesis and notations of Theorem 3.4. Let π : R#H → H be defined by
π (r#h) = εR (r) h. Then π is a morphism of dual quasi-bialgebras and

(13) π ((r#h)1)⊗ (r#h)2 #π ((r#h)3) = r−1h1 ⊗ (r0#h2)⊗ h3.

Remark 3.8. Note that for R#H as above, the map σ : H →֒ R#H defined by σ(h) = 1R#h is
also a morphism of dual quasi-bialgebras and, for π as defined in Lemma 3.7, πσ = IdH . Corollary
2.7 then implies that H is quasi-isomorphic to an ordinary bialgebra if and only if R#H is.
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3.2. Quasi-Yetter-Drinfeld data. Let (H,ω) be a dual quasi-bialgebra. In this subsection we
study one-dimensional vector spaces in H

HYD and the bialgebras in H
HYD generated by these.

Proposition 3.9. Let (H,ω) be a dual quasi-bialgebra and let V be a one-dimensional vector
space. Then V is an object in H

HYD if and only if for all v ∈ V , h, l ∈ H,

(i) V ∈ H
M and ρ(v) = g ⊗ v for some g ∈ G(H);

(ii) There is a unitary map χ ∈ H∗ such that for g the grouplike in (i),

(14) χ (hl) = ω−1 (h1 ⊗ l1 ⊗ g)χ (l2)ω (h2 ⊗ g ⊗ l3)χ (h3)ω
−1 (g ⊗ h4 ⊗ l4) ,

(iii) For g the grouplike from part (i),

(15) gχ(h1)h2 = h1χ(h2)g.

Proof. First let V ∈ H
HYD. Since V is one-dimensional, there is a grouplike element g ∈ H such

that ρ(v) = g ⊗ v for all v ∈ V , and also there is a map χ : H → k such that h ⊲ v = χ(h)v.
Equation (8) of the definition of Yetter-Drinfeld modules now translates to (14) and equation (9)
implies that χ is unitary. Finally here equation (10) of Definition 3.1 is equivalent to (15) above.

Now suppose that V is a one-dimensional vector space satisfying (i) to (iii) above. Then it is
easy to see that V with coaction given by ρ(v) = g ⊗ v and action given by h⊲ v = χ(h)v for all
v ∈ V is an object in H

HYD. �

Definitions 3.10. Let (H,ω) be a dual quasi-bialgebra. For g ∈ G(H) and χ ∈ H∗, χ unitary,
the triple ((H,ω), g, χ) is called a quasi-Yetter-Drinfeld datum, abbreviated to quasi-YD datum,
whenever equations (14) and (15) above hold. If q := χ (g) , we also say that ((H,ω), g, χ) is a
quasi-Yetter-Drinfeld datum for q.

Remark 3.11. (i) When H is a Hopf algebra, ω is trivial and q 6= 1, then the previous definition
reduces to [CDMM, Definition 2.1].

(ii) Note that Proposition 3.9, roughly speaking, says that a one-dimensional vector space V
with action and coaction defined by χ and g, is an object in H

HYD if and only if ((H,ω), g, χ) is a
quasi-YD datum.

(iii) Equation (15) implies that if ((H,ω), g, χ) is a quasi-Y D datum and ℓ ∈ G(H) with χH(ℓ) 6=
0, then gℓ = ℓg.

Lemma 3.12. Let G be a group and let ω be a normalized 3-cocycle on G. Let g ∈ G and χ : kG → k.
The following are equivalent.

(i) ((kG,ω) , g, χ) is a quasi-Y D datum.
(ii) g ∈ Z (G), χ is unitary and (14) holds for all h, ℓ ∈ G.

Proof. It suffices to prove that (i) implies that g ∈ Z(G). Let h ∈ G. Then

1 = χ (1) = χ
(
h−1h

) (14)
= ω−1

(
h−1 ⊗ h⊗ g

)
χ (h)ω

(
h−1 ⊗ g ⊗ h

)
χ
(
h−1

)
ω−1

(
g ⊗ h−1 ⊗ h

)
,

so that χ (h) is invertible, and gh = hg by Remark 3.11. �

Definition 3.13. For ((H,ω) , g, χ) and ((L, α) , l, ξ) quasi-YD data, a dual quasi-bialgebra ho-
momorphism ϕ : (H,ω) → (L, α) such that ϕ (g) = l and ξϕ = χ is called a morphism of quasi-Y D
data.

Lemma 3.14. Let π : (A,ωA) → (H,ωH) be a morphism of dual quasi-bialgebras and ((H,ω), g, χ)
a quasi-Y D datum. If there exists a ∈ G (A) such that π (a) = g and aχπ (b1) b2 = b1χπ (b2) a,
for every b ∈ A, then ((A,ωA), a, χA := χπ) is also a quasi-Y D datum and π is a morphism of
quasi-Y D data.

Proof. We need only verify (14) for ((A,ω), a, χA). For h, l ∈ A, since (14) holds for χ, we have:

ω−1
A (h1 ⊗ l1 ⊗ a)χA (l2)ωA (h2 ⊗ a⊗ l3)χA (h3)ω

−1
A (a⊗ h4 ⊗ l4)

= ω−1
H (π (h)1 ⊗ π (l)1 ⊗ g)χ [π (l)2]ωH (π (h)2 ⊗ g ⊗ π (l)3)χ [π (h)3]ω

−1
H (g ⊗ π (h)4 ⊗ π (l)4)
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(14)
= χ (π (h)π (l)) = χπ (hl) = χA (hl) .

�

Lemma 3.15. Suppose (H,ω) is a dual quasi-bialgebra and ((H,ω), g, χ) is a quasi-Y D datum.
Then for c ∈ G(H) and 1 ≤ t,

χ
(
ct
)
= χ (c)

t
∏

0≤i≤t−1

[
ω−1

(
ci ⊗ c⊗ g

)
ω
(
ci ⊗ g ⊗ c

)
ω−1

(
g ⊗ ci ⊗ c

)]
,(16)

and, in particular,

χ
(
gt
)
= χ (g)

t
∏

0≤i≤t−1

ω−1
(
g ⊗ gi ⊗ g

)
.(17)

Proof. Let s > 1 and then by (14) we have

(18) χ
(
cs−1c

)
= ω−1

(
cs−1 ⊗ c⊗ g

)
χ (c)ω

(
cs−1 ⊗ g ⊗ c

)
χ
(
cs−1

)
ω−1

(
g ⊗ cs−1 ⊗ c

)
.

Equation (16) now follows by induction on t ≥ 1. For t = 1, there is nothing to prove. Let t > 1
and assume that the statement holds for t− 1. Then by (18),

χ
(
ct
)
= χ

(
ct−1

) [
χ (c)ω−1

(
ct−1 ⊗ c⊗ g

)
ω
(
ct−1 ⊗ g ⊗ c

)
ω−1

(
g ⊗ ct−1 ⊗ c

)]

and if we then expand χ(ct−1) using (16), the result is immediate. �

Remark 3.16. If ω = ω(H ⊗ τ), then equation (16) simplifies to:

(19) χ
(
ct
)
= χ (c)

t
∏

0≤i≤t−1

ω−1
(
g ⊗ ci ⊗ c

)
.

4. Quantum lines

Our first lemma will be useful in the computations to follow.

Lemma 4.1. Let (H,ω) be a dual quasi bialgebra and let g ∈ G(H). For all 0 ≤ a, b, c,

(20) ω−1
(
ga ⊗ gb ⊗ gc

)
=

∏

0≤j≤a−1

ω−1
(
g ⊗ gj+b ⊗ gc

)
ω−1

(
g ⊗ gj ⊗ gb

)
ω
(
g ⊗ gj ⊗ gb+c

)
.

Proof. Let Φ(j) := ω−1
(
g ⊗ gj+b ⊗ gc

)
ω−1

(
g ⊗ gj ⊗ gb

)
ω
(
g ⊗ gj ⊗ gb+c

)
. The proof is by in-

duction on a ≥ 1. For a = 0, 1 there is nothing to prove. Let a > 1 and assume the formula holds
for a− 1. By (1) evaluated on g ⊗ ga−1 ⊗ gb ⊗ gc, we have

ω
(
ga−1 ⊗ gb ⊗ gc

)
ω
(
g ⊗ ga+b−1 ⊗ gc

)
ω
(
g ⊗ ga−1 ⊗ gb

)
= ω

(
g ⊗ ga−1 ⊗ gb+c

)
ω
(
ga ⊗ gb ⊗ gc

)

so that
ω
(
ga−1 ⊗ gb ⊗ gc

)
ω−1

(
ga ⊗ gb ⊗ gc

)
= Φ(a− 1),

and the statement then follows from the induction assumption. �

Next we introduce some useful notation.

Notation 4.2. Let (H,ω) be a dual quasi-bialgebra. For U, V,W,Z in H
HYD, we define ΩU,V,W,Z :

(U ⊗ V )⊗ (W ⊗ Z) → (U ⊗W )⊗ (V ⊗ Z) by

(21) ΩU,V,W,Z := a−1
U,W,V ⊗Z(U ⊗ aW,V,Z)(U ⊗ cV,W ⊗ Z)(U ⊗ a−1

V,W,Z)aU,V,W⊗Z ,

where a := Ha is the associativity constraint (5) in H
M. If U = V = W = Z, we write ΩU in

place of ΩU,U,U,U .

As observed in Remark 3.3, we can consider the tensor algebra T (V ) of V in H
HYD for any

object V in H
HYD. Explicitly

T (V ) := ⊕n∈NT
n (V ) ,

where T 0 (V ) = k, T 1 (V ) = V and, for n > 1, T n (V ) := V ⊗ T n−1 (V ) . Thus, for instance,
T 2 (V ) = V ⊗V and T 3 (V ) = V ⊗ (V ⊗ V ) . Note that the order of the brackets is important here.
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Let ((H,ω), g, χ) be a quasi-YD datum for q. Let V = kv be a one-dimensional vector space
and then (V, ρ, µ) with ρ(v) = g ⊗ v and µ(h ⊗ v) = χ(h)v is an object in H

HYD by Remark 3.11.

Set v[0] := 1, v[1] := v and, for n > 1, v[n] := v ⊗ v[n−1]. As a vector space T (V ) may be identified
with the polynomial ring k [X ] via the correspondence v[n] ↔ Xn. However the multiplication is
different.

Proposition 4.3. With hypothesis and notations as above, the tensor algebra T (V ) has basis(
v[n]

)
n∈N

and has the following bialgebra structure in H
HYD.

(i) The left coaction of H on T (V ) is given by

(22) ρ
(
v[n]

)
= v

[n]
−1 ⊗ v

[n]
0 = gn ⊗ v[n].

The left action of H on T (V ) is given by

(23) h ⊲ v[n] = χ[n] (h) v
[n],

where χ[n] ∈ H∗ is defined iteratively by setting χ[0] := ε, and for n ≥ 1,

(24) χ[n] := ω
(
−⊗ g ⊗ gn−1

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−1

)
∗ χ[n−1] ∗ ω

(
g ⊗ gn−1 ⊗−

)
.

Furthermore, for n ≥ 1
(25)

χ[n] =




∗∏

0≤i≤n−1

ω
(
−⊗ g ⊗ gn−1−i

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−1−i

)

 ∗




∗∏

0≤i≤n−1

ω
(
g ⊗ gi ⊗−

)



and in particular

(26) χ[n] (g) =




∏

0≤i≤n−1

ω
(
g ⊗ gi ⊗ g

)

χ (g)

n
= qn

∏

0≤i≤n−1

ω
(
g ⊗ gi ⊗ g

)
.

(ii) The algebra structure on T (V ) is given by 1T (V ) = 1k ∈ T 0(V ) and

(27) v[a]v[b] =


 ∏

0≤i≤a−1

ω−1
(
g ⊗ gi ⊗ gb

)

 v[a+b], for a ≥ 1, b ∈ N,

(iii) The coalgebra structure is given by εT
(
v[n]

)
= δn,0, and

(28) ∆T

(
v[n]

)
=

∑
0≤i≤n

β(i, n)v[i] ⊗ v[n−i],

where we define

(29) β(i, n) =

(
n

i

)

q

∏

0≤j≤i−1

ω
(
g ⊗ gj ⊗ gn−i

)
for all 0 ≤ i ≤ n.

Note that β(0, n) = 1 = β(n, n) for all n ≥ 0.

Proof. Equation (22) follows from the definition of the comodule structure on the tensor product
in H

HYD in Remark 3.2 and the fact that ρ (v) = g ⊗ v.

Next we compute h ⊲ v[n] for h ∈ H . If n = 0, then χ[0] = ε satisfies (23). We prove, by
induction on n ≥ 1, that (23) holds for χ[n] ∈ H∗ defined inductively by equation (24). Equation
(24) gives χ[1] = χ, which satisfies (23). Let n > 1 and assume that the statement holds for n− 1.
Then using the induction assumption and (22), we have:

h ⊲ v[n] = h ⊲

(
v ⊗ v[n−1]

)

(11)
=




ω
(
h1 ⊗ v−1 ⊗ v

[n−1]
−2

)
ω−1

(
(h2 ⊲ v0)−2 ⊗ h3 ⊗ v

[n−1]
−1

)

ω

(
(h2 ⊲ v0)−1 ⊗

(
h4 ⊲ v

[n−1]
0

)
−1

⊗ h5

)
(h2 ⊲ v0)0 ⊗

(
h4 ⊲ v

[n−1]
0

)
0



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=

[
ω
(
h1 ⊗ g ⊗ gn−1

)
ω−1

(
g ⊗ h3 ⊗ gn−1

)

ω
(
g ⊗

(
h4 ⊲ v[n−1]

)
−1

⊗ h5

)
χ(h2)v ⊗

(
h4 ⊲ v[n−1]

)
0

]

=

[
ω
(
h1 ⊗ g ⊗ gn−1

)
ω−1

(
g ⊗ h3 ⊗ gn−1

)

ω
(
g ⊗ gn−1 ⊗ h5

)
χ (h2) v ⊗ χ[n−1] (h4) v

[n−1]

]

=
[
ω
(
−⊗ g ⊗ gn−1

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−1

)
∗ χ[n−1] ∗ ω

(
g ⊗ gn−1 ⊗−

)]
(h) v[n].

Now, using this formula, we prove by induction on n ≥ 1 that (25) holds. For n = 1, since ω is
a normalized cocycle and g0 = 1, then the right hand side of (25) is just χ = χ[1].

Let n > 1 and assume the formula holds for n− 1. Then

χ[n] = ω
(
−⊗ g ⊗ gn−1

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−1

)
∗ χ[n−1] ∗ ω

(
g ⊗ gn−1 ⊗−

)

=




[ω
(
−⊗ g ⊗ gn−1

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−1

)
]∗[

∗∏
0≤i≤n−2

ω
(
−⊗ g ⊗ gn−2−i

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−2−i

)
]
∗

[
∗∏

0≤i≤n−2

ω
(
g ⊗ gi ⊗−

)
]
∗

ω
(
g ⊗ gn−1 ⊗−

)




=




∗∏

0≤i≤n−1

ω
(
−⊗ g ⊗ gn−1−i

)
∗ χ ∗ ω−1

(
g ⊗−⊗ gn−1−i

)

 ∗




∗∏

0≤i≤n−1

ω
(
g ⊗ gi ⊗−

)

 ,

and so (25) holds for all n ≥ 1. We note that if (25) is applied to a cocommutative element, then
since the product for 0 ≤ i ≤ n− 1 is the same as taking the product over 0 ≤ n− 1− i ≤ n− 1,

(30) χ[n] = χn ∗




∗∏

0≤i≤n−1

ω
(
−⊗ g ⊗ gi

)
∗ ω−1

(
g ⊗−⊗ gi

)
∗ ω

(
g ⊗ gi ⊗−

)

 .

Equation (26) follows immediately.
(ii) Let b ∈ N and we prove by induction on a ≥ 1 that (27) holds. For a = 1, we have by

definition v[a]v[b] = vv[b] = v ⊗ v[b] = v[1+b] = v[a+b]. Let a > 1 and assume (27) for a− 1. Then

v[a]v[b] =
(
v ⊗ v[a−1]

)
v[b] =

(
vv[a−1]

)
v[b]

(5)
= ω−1

(
v−1 ⊗ v

[a−1]
−1 ⊗ v

[b]
−1

)
v0

(
v
[a−1]
0 v

[b]
0

)

(22)
= ω−1

(
g ⊗ ga−1 ⊗ gb

)
v
(
v[a−1]v[b]

)

= ω−1
(
g ⊗ ga−1 ⊗ gb

)
v


 ∏

0≤i≤a−2

ω−1
(
g ⊗ gi ⊗ gb

)

 v[a−1+b]

=


 ∏

0≤i≤a−1

ω−1
(
g ⊗ gi ⊗ gb

)

 vv[a−1+b] =


 ∏

0≤i≤a−1

ω−1
(
g ⊗ gi ⊗ gb

)

 v[a+b],

and so we have proved that (27) holds for a ≥ 1.
(iii) We wish to show that

∆T

(
v[n]

)
=

∑
0≤i≤n

(
n

i

)

q

∏

0≤j≤i−1

ω
(
g ⊗ gj ⊗ gn−i

)
v[i] ⊗ v[n−i],

where if i = 0, the empty product is defined to be 1. If n = 0 the formula holds since ∆T (v
[0]) =

1 ⊗ 1. If n = 1, the formula holds since ∆T

(
v[1]

)
= v ⊗ 1 + 1 ⊗ v,

(
1
0

)
q
=

(
1
1

)
q
= 1, and

ω(−⊗ 1⊗−) = 1. Let n > 1 and suppose that the formula holds for n− 1. Then

∆T

(
v[n]

)
= ∆TmT

(
v ⊗ v[n−1]

)
= (mT ⊗mT ) ΩT (∆T ⊗∆T )

(
v ⊗ v[n−1]

)

= (mT ⊗mT )ΩT

[
(v ⊗ 1 + 1⊗ v)⊗ (

∑
0≤i≤n−1

β(i, n− 1)v[i] ⊗ v[n−1−i])
]
.
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From the definition of ΩT , it is easily seen that:

ΩT ((v ⊗ 1)⊗ (v[i] ⊗ v[n−1−i])) = ω(g ⊗ gi ⊗ gn−1−i)((v ⊗ v[i])⊗ (1⊗ v[n−1−i]))

and

ΩT ((1⊗v)⊗(v[i]⊗v[n−1−i]) = χ[i](g)ω(g⊗gi⊗gn−1−i)ω−1(gi⊗g⊗gn−1−i)(1⊗v[i])⊗(v⊗v[n−1−i]).

Then

∆T

(
v[n]

)

=
∑

0≤i≤n−1
β(i, n− 1)

[
ω(g ⊗ gi ⊗ gn−1−i)v[i+1] ⊗ v[n−1−i]

+χ[i](g)ω(g ⊗ gi ⊗ gn−1−i)ω−1(gi ⊗ g ⊗ gn−1−i)v[i] ⊗ v[n−i]]

]
.

The coefficient of v[0]⊗v[n] in the expression above is χ[0](g)ω(g⊗1⊗gn−1)ω−1(1⊗g⊗gn−1) =

1 = β(0, n) and similarly the coefficient of v[n] ⊗ v[0] is β(n− 1, n− 1) = 1. For 1 ≤ j ≤ n− 1, we
compute the coefficient of v[j] ⊗ v[n−j] in this expression to be:

β(j − 1, n− 1)ω(g ⊗ gj−1 ⊗ gn−j) + β(j, n− 1)ω(g ⊗ gj ⊗ gn−1−j)χ[j](g)ω
−1(gj ⊗ g ⊗ gn−1−j)

=

[(
n− 1

j − 1

)

q

∏
0≤k≤j−2

ω(g ⊗ gk ⊗ gn−j)

]
ω(g ⊗ gj−1 ⊗ gn−j)

+

[(
n− 1

j

)

q

∏
0≤i≤j−1

ω(g ⊗ gi ⊗ gn−1−j)

]
ω(g ⊗ gj ⊗ gn−1−j)χ[j](g)ω

−1(gj ⊗ g ⊗ gn−1−j)

=

(
n− 1

j − 1

)

q

∏
0≤k≤j−1

ω(g ⊗ gk ⊗ gn−j)

+

(
n− 1

j

)

q

[∏
0≤i≤j

ω(g ⊗ gi ⊗ gn−1−j)
]
χ[j](g)ω

−1(gj ⊗ g ⊗ gn−1−j)

=

(
n− 1

j − 1

)

q

∏
0≤k≤j−1

ω(g ⊗ gk ⊗ gn−j)

+

(
n− 1

j

)

q

[∏
0≤s≤j−1

ω(g ⊗ gs+1 ⊗ gn−1−j)
]
χ[j](g)ω

−1(gj ⊗ g ⊗ gn−1−j).

By Lemma 4.1

ω−1
(
gj ⊗ g ⊗ gn−1−j

)
=

∏

0≤s≤j−1

ω−1
(
g ⊗ gs+1 ⊗ gn−1−j

)
ω−1 (g ⊗ gs ⊗ g)ω

(
g ⊗ gs ⊗ gn−j

)

so that the last summand in the expression above becomes:
(
n− 1

j

)

q

χ[j](g)
∏

0≤s≤j−1
ω−1(g ⊗ gs ⊗ g)

∏
0≤t≤j−1

ω(g ⊗ gt ⊗ gn−j)

(26)
=

(
n− 1

j

)

q

qj
∏

0≤s≤j−1

(
ω(g ⊗ gs ⊗ g)ω−1(g ⊗ gs ⊗ g)

)∏
0≤t≤j−1

ω(g ⊗ gt ⊗ gn−j)

=

(
n− 1

j

)

q

qj
∏

0≤t≤j−1
ω(g ⊗ gt ⊗ gn−j).

Thus the coefficient of v[j] ⊗ v[n−j] in ∆T

(
v[n]

)
is

[(
n− 1

j − 1

)

q

+

(
n− 1

j

)

q

qj

]
∏

0≤t≤j−1
ω(g ⊗ gt ⊗ gn−j) =

(
n

j

)

q

∏
0≤t≤j−1

ω(g ⊗ gt ⊗ gn−j),

and this is indeed β(j, n) as required. It is then straightforward to see that εT (v
[n]) = δn,0. �

The next technical results allow us to construct a bialgebra quotient of the tensor algebra.
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Proposition 4.4. Let (A,mA, uA,∆A, εA) be a bialgebra in an abelian prebraided monoidal cate-
gory (M,⊗,1, a, l, r, c) where the tensor functors are additive and right exact. Let (I, iI : I → A)
be a subobject of A in M such that

(pR ⊗ pR) ◦∆A ◦ iI = 0,(31)

εA ◦ iI = 0,(32)

pR ◦mA ◦ iK = 0.(33)

where R := A/I, pR : A → R denotes the canonical projection and (K, iK : K → A⊗ A) :=
Ker (pR ⊗ pR). Then there are maps mR, uR,∆R, εR such that (R,mR, uR,∆R, εR) is a bialgebra
in (M,⊗,1, a, l, r, c) and pR is a bialgebra morphism.

Proof. In this proof we omit the constraints as in view of the coherence theorem they take care of
themselves. By (31) and (32), there are morphisms

∆R : R → R⊗R and εR : R → k

defined by ∆RpR = (pR ⊗ pR)∆A and εR(pR) = εA. The first equality yields

(∆R ⊗R)∆RpR = ((pR ⊗ pR)⊗ pR) (∆A ⊗A)∆A

= (pR ⊗ (pR ⊗ pR)) (A⊗∆A)∆A = (R⊗∆R)∆RpR

so that (∆R ⊗R)∆R = (R⊗∆R)∆R. The other equality leads to counitarity of ∆R. Since the ten-
sor functors are right exact, we have that pR⊗pR is an epimorphism and hence (R ⊗R, pR ⊗ pR) =
Coker (iK) . Thus, by (33), we have that there is a unique map mR : R ⊗ R → R such that
mR(pR) = (pR ⊗ pR)mA. Set uR := pR(uA). The first equality yields

mR (mR ⊗R) p⊗3
R = mR (R⊗mR) p

⊗3
R

so that, by right exactness of tensor functors, we get mR (mR ⊗R) = mR (R⊗mR) . Similarly one
gets mR (uR ⊗R) = lR and mR (R⊗ uR) = rR. Finally, we have

(mR ⊗mR) (R⊗ cR,R ⊗R) (∆R ⊗∆R) (pR ⊗ pR)

= (pR ⊗ pR) (mA ⊗mA) (A⊗ cA,A ⊗A) (∆A ⊗∆A)

= (pR ⊗ pR)∆AmA = ∆RmR (pR ⊗ pR) .

Since pR ⊗ pR is an epimorphism, we get (mR ⊗mR) (R⊗ cR,R ⊗R) (∆R ⊗∆R) = ∆RmR. Thus
(R,mR, uR,∆R, εR) is a bialgebra in (M,⊗,1, a, l, r, c) . Clearly pR is a bialgebra morphism. �

Lemma 4.5. Let (H,ω) be a dual quasi-bialgebra and let I be an ideal of a bialgebra A in H
HYD.

Let z, u ∈ A and assume ∆A (u) ∈ A⊗ I + I ⊗A. Then ∆A (zu) ∈ A⊗ I + I ⊗A.

Proof. Since ∆A(u) ∈ A⊗ I + I ⊗A, then

∆A (zu) = ∆AmA (z ⊗ u) = (mA ⊗mA)ΩA (∆A ⊗∆A) (z ⊗ u)

∈ (mA ⊗mA)ΩA[(A⊗A)⊗ (A⊗ I) + (A⊗A)⊗ (I ⊗A)]

⊆ (mA ⊗mA) [(A⊗A)⊗ (A⊗ I) + (A⊗ I)⊗ (A⊗A)] ⊆ A⊗ I + I ⊗A.

�

Let (H, g, χ) be a quasi-YD datum for q with q a primitive N -th root of unity with N > 0. Let
V = kv ∈ H

HYD with coaction and action defined by g and χ as in Remark 3.11. Let
(
v[n]

)
n∈N

be

the basis of T := T (V ) considered at the beginning of this section.
Let I be the two-sided ideal of T generated by v[N ] , i.e, I =: T (IT ). Since vv[n] = v[n+1],

by (27), I is the vector space with basis
(
v[n]

)
n≥N

. Thus, T/I identifies with K [X ] /
(
XN

)
. By

formulas (23) and (22), we deduce that I is a subobject of T in H
HYD. Hence I is a two-sided ideal

of T in H
HYD. Moreover R := T/I with the induced structures is in H

HYD so that the canonical
projection pR : T → R is in H

HYD.
To check (31) for I we must show that

∆T

(
v[n]

)
∈ T ⊗ I + I ⊗ T, for every n ≥ N.
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For n = N , this follows from (28) and the fact that, since q has order N , then
(
N
i

)
q
= 0 for

i 6= 0, N . For n ≥ N + 1, in view of (27) we have

v[n] =
∏

0≤i≤n−N−1

ω
(
g ⊗ gi ⊗ gN

)
v[n−N ]v[N ].

Hence, Lemma 4.5 implies that ∆T

(
v[n]

)
∈ T ⊗ I + I ⊗ T .

Since by Proposition 4.3, εT (v
[n]) = δn,0 and N 6= 0, it is clear that εT (I) = 0. Since I is a two-

sided ideal of T = T (V ), we have thatmT (T ⊗ I + I ⊗ T ) ⊆ I. Since Ker (pR ⊗ pR) = T⊗I+I⊗T,
we deduce that mT (Ker (pR ⊗ pR)) ⊆ I. By Proposition 4.4, there are maps mR, uR,∆R, εR such
that (R,mR, uR,∆R, εR) is a bialgebra in

(
H
HYD,⊗, k,Ha, l, r, c

)
and pR is a bialgebra morphism.

Recall that the Iverson bracket [[P ]] is a notation that denotes a number that is 1 if the condition
P in double square brackets is satisfied, and 0 otherwise.

By the above we have the following result.

Theorem 4.6. Let ((H,ω) , g, χ) be a quasi-Y D datum for q > 1, a primitive N th root of unity.
(i) There is a bialgebra R = R ((H,ω) , g, χ) in H

HYD with basis
(
x[n]

)
0≤n≤N−1

and structure

given as follows:

ρ
(
x[n]

)
: = gn ⊗ x[n],

h ⊲ x[n] : = χ[n] (h)x
[n], where χ[n] ∈ H∗ is defined in (25) ,

1R : = x[0],

mR

(
x[a] ⊗ x[b]

)
= [[a+ b ≤ N − 1]]


 ∏

0≤i≤a−1

ω−1
(
g ⊗ gi ⊗ gb

)

x[a+b] when a, b ≥ 0,

∆R

(
x[n]

)
=

∑
0≤i≤n

β(i, n)x[i] ⊗ x[n−i], where β(i, n) is defined in (29),

εR

(
x[n]

)
: = δn,0.

(ii) For R the bialgebra in H
HYD from (i), let B := R#H, the bosonization of R by H. Then

B0 ⊆ k1R ⊗H.

Proof. (i) Take R := T (V ) /I as above and set x[n] := v[n] + I.
(ii) For 0 ≤ n < N , let R[n] := ⊕0≤a≤nkx

[a]. Then, by the structure maps for R in (i), R[n] is a

subobject of R in H
HYD such that

∆R

(
R[n]

)
⊆

∑
0≤i≤n

R[i] ⊗R[n−i].

Set B[n] := R[n] ⊗H. By the structure maps for B in Theorem 3.4, we see

∆B

(
B[n]

)
⊆

∑
0≤i≤n

B[i] ⊗B[n−i].

Since B = ∪n∈NB[n], we have proved that B is a filtered coalgebra so that, by [Sw2, Proposition
11.1.1, page 226],

B0 ⊆ B[0] = R[0] ⊗H = kx[0] ⊗H = k1R ⊗H.

�

Note that the result in the previous theorem still holds formally if q = 1 but is not so interesting,
since, in this case R collapses to the base field k.

Definition 4.7. Let ((H,ω) , g, χ) be a quasi-YD datum for q 6= 1, a primitive N -th root of unity.
The bialgebra R = R ((H,ω) , g, χ) of the previous theorem will be called a quantum line for the
given datum.
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Proposition 4.8. The bialgebra R from Theorem 4.6 is a Hopf algebra in H
HYD with bijective

antipode SR : R → R defined by

SR

(
x[n]

)
= (−1)

n
χ (g)

n(n−1)
2 x[n] for 0 ≤ n ≤ N − 1.

Proof. Consider the basis
(
x[n]

)
0≤n≤N−1

of the bialgebraR = R ((H,ω) , g, χ) in H
HYD. We want to

define a linear map SR : R → R on the basis which a posteriori is expected to be antimultiplicative
in H

HYD. Set SR

(
x[1]

)
= −x[1]. Then, for 1 < n ≤ N − 1, we have

SR

(
x[n]

)
= SRmR

(
x[1] ⊗ x[n−1]

)
= mR (SR ⊗ SR) cR,R

(
x[1] ⊗ x[n−1]

)

= mR (SR ⊗ SR)
(
x
[1]
−1 ⊲ x[n−1] ⊗ x

[1]
0

)

= mR (SR ⊗ SR)
(
g ⊲ x[n−1] ⊗ x[1]

)
= χ[n−1] (g)mR (SR ⊗ SR)

(
x[n−1] ⊗ x[1]

)

= χ[n−1] (g)SR

(
x[n−1]

)
SR

(
x[1]

)
= −χ[n−1] (g)SR

(
x[n−1]

)
x[1],

where cR,R : R⊗R → R⊗R denotes the braiding of H
HYD evaluated in R. Let us check that this

forces

SR

(
x[n]

)
= (−1)

n
χ (g)

n(n−1)
2 x[n] for 0 ≤ n ≤ N − 1.

For n = 0, 1 the formula trivially holds. Let n with 1 < n ≤ N − 1 such that the formula holds for
n− 1. Then

SR

(
x[n]

)
= −χ[n−1] (g)SR

(
x[n−1]

)
x[1]

= −




∏

0≤i≤n−2

ω
(
g ⊗ gi ⊗ g

)

χ (g)

n−1
(−1)

n−1
χ (g)

(n−1)(n−2)
2 x[n−1]x[1]

=




∏

0≤i≤n−2

ω
(
g ⊗ gi ⊗ g

)

 (−1)

n
χ (g)

n(n−1)
2 x[n−1]x[1]

=




∏

0≤i≤n−2

ω
(
g ⊗ gi ⊗ g

)

 (−1)

n
χ (g)

n(n−1)
2

∏

0≤i≤n−2

ω−1
(
g ⊗ gi ⊗ g

)
x[n]

= (−1)
n
χ (g)

n(n−1)
2 x[n].

We have

SR

((
x[n]

)1
)(

x[n]
)2

=
∑

0≤i≤n
β(i, n)SR

(
x[i]

)
x[n−i]

=
∑

0≤i≤n
β(i, n) (−1)

i
χ (g)

i(i−1)
2 x[i]x[n−i]

=
∑

0≤i≤n
β(i, n) (−1)i χ (g)

i(i−1)
2

∏

0≤j≤i−1

ω−1
(
g ⊗ gj ⊗ gn−i

)
x[n].

But

(34) β(i, n)
∏

0≤j≤i−1

ω−1
(
g ⊗ gj ⊗ gn−i

)
=

(
n

i

)

q

so that

SR

((
x[n]

)1
)(

x[n]
)2

=

[
∑

0≤i≤n

(
n

i

)

q

(−1)
i
q

i(i−1)
2

]
x[n].
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By [Ka, Proposition IV.2.7] we have that

∑
0≤i≤n

(
n

i

)

q

(−1)
i
q

i(i−1)
2 an−iX i =

∏

0≤i≤n−1

(
a− qiX

)

for any scalar a and variable X. If we take a = 1 and evaluate this polynomial in X = 1, we get∑
0≤i≤n

(
n
i

)
q
(−1)

i
q

i(i−1)
2 = δn,0. Hence

SR

((
x[n]

)1
)(

x[n]
)2

= δn,0x
[n] = δn,0x

[0] = εR

(
x[n]

)
1R.

On the other hand we have
(
x[n]

)1

SR

((
x[n]

)2
)

=
∑

0≤i≤n
β(i, n)x[i]SR

(
x[n−i]

)

=
∑

0≤w≤n
β(n− w, n)x[n−w]SR

(
x[w]

)

=
∑

0≤w≤n
β(n− w, n) (−1)

w
χ (g)

w(w−1)
2 x[n−w]x[w]

(34)
=

∑
0≤w≤n

(
n

w

)

q

(−1)
w
q

w(w−1)
2 x[n] = δn,0x

[n] = δn,0x
[0] = εR

(
x[n]

)
1R.

We note that SR : R → R is trivially bijective. �

Recall the definition of a morphism of quasi-Y D data from Definition 3.13. Note that if ϕ :
((H,ω), g, χ) → ((L, α), ℓ, ξ) is a morphism of quasi-Y D data, with ((H,ω), g, χ) a quasi-Y D
datum for q then ((L, α), ℓ, ξ) is also a quasi-YD datum for q since ξ(ℓ) = ξϕ(g) = χ(g). It follows
easily from equation (25) that ξ[n]ϕ = χ[n] for all n ≥ 1. The proof of the next proposition is
straightforward and so the details are left to the reader.

Proposition 4.9. Let ϕ : ((H,ω) , g, χ) → ((L, α) , l, ξ) be a morphism of quasi-Y D data with
q := χ (g) a primitive N -th root of unity , N > 0. Let

(
x[n]

)
0≤n≤N−1

be the canonical basis for

RH := R ((H,ω) , g, χ) and
(
y[n]

)
0≤n≤N−1

the canonical basis for RL := R ((L, α) , l, ξ) . Consider

the k-linear isomorphism f : RH → RL mapping x[n] to y[n] for all n ∈ {0, . . . , N − 1} . Then

ρRL
f = (ϕ⊗ f) ρRH

, µRL
(ϕ⊗ f) = fµRH

,

1RL
= f (1RH

) , mRL
(f ⊗ f) = fmRH

,

∆RL
f = (f ⊗ f)∆R, εRL

f = εRH
.

Moreover f ⊗ ϕ : RH#H → RL#L is a dual quasi-bialgebra homomorphism.

5. Quasi-Yetter-Drinfeld data for bosonizations

In this section we consider quasi-Y D data for bosonizations R#H . In the next lemma, we
assume that we have a bosonization B = R#H with a quasi-YD datum and we find that this
yields a quasi-Y D datum for H .

Lemma 5.1. For (H,ω) a dual quasi-bialgebra and R a bialgebra in H
HYD, consider the dual quasi-

bialgebra B := R#H, the bosonization of R by H, defined in Theorem 3.4. Assume that B0 ⊆
k1R ⊗ H and let ((B,ωB), g, χB) be a quasi-Y D datum. Then there exists c ∈ G (H) such that
g = 1R#c, and ((H,ω), c, χBσ) is a quasi-Y D datum where σ : H →֒ B is the inclusion. Moreover,
for every r ∈ R, h ∈ H we have

χB (r#h) = ω−1
H (r−2 ⊗ h1 ⊗ c)χB (1#h2)ωH (r−1 ⊗ c⊗ h3)χB (r0#1) ,(35)

χB (r ·R s#1) = ω−1
H (r−1 ⊗ s−1 ⊗ c)χB (s0#1H)χB (r0#1) ,(36)

χB (r#h1) ch2 = (r−1h1)χB (r0#h2) c,(37)

χB

(
r1#r2−1

)
c ⊲ r20 = ω−1

H (r1−1 ⊗ r2−1 ⊗ c)r10χB

(
r20#1H

)
.(38)
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Proof. Since g ∈ G (B) ⊆ B0 ⊆ k⊗H , then g = 1R#c = σ(c) for some c ∈ H . Thus c = (πσ)(c) =
π(g) and since the maps π, σ from Section 3.1 are coalgebra maps and g is grouplike, then c is
grouplike.

In order to apply Lemma 3.14 to conclude that ((H,ω), c, χBσ) is a quasi-Y D datum, we must
show that cχBσ(h1)h2 = h1χBσ(h2)c for all h ∈ H . Since ((B,ωB), g, χB) is a quasi-Y D datum,
and so satisfies (15), then for every r ∈ R, h ∈ H ,

gχB ((r#h)1) (r#h)2 = (r#h)1 χB ((r#h)2) g.

If we let r = 1R in the equation above, and apply π to both sides, we obtain

cχB(σ(h)1)π(σ(h)2) = π(σ(h)1)χB(σ(h)2)c,

and since σ, π are coalgebra maps with πσ the identity, then (15) holds for ((H,ω), c, χBσ) and by
Lemma 3.14, ((H,ω), c, χBσ) is a quasi-YD datum.

Since ωB = ωH ◦ π⊗3 then for all x, y ∈ B, by (14) for the quasi-YD datum for B, we have that
χB (xy) is:

ω−1
B (x1 ⊗ y1 ⊗ g)χB (y2)ωB (x2 ⊗ g ⊗ y3)χB (x3)ω

−1
B (g ⊗ x4 ⊗ y4)(39)

= ω−1
H (π (x1)⊗ π (y1)⊗ c)χB (y2)ωH (π (x2)⊗ c⊗ π (y3))χB (x3)ω

−1
H (c⊗ π (x4)⊗ π (y4))

By (13),

(π ⊗ π ⊗B ⊗ π)∆3
B(r#1) = r−2 ⊗ r−1 ⊗ (r0#1)⊗ 1H ;(40)

(π ⊗B ⊗ π ⊗ π)∆3
B(1#h) = h1 ⊗ (1#h2)⊗ h3 ⊗ h4,(41)

and so, letting x = r#1 and y = 1#h, we have that χB(r#h) is:

(42) ω−1
H (r−2 ⊗ h1 ⊗ c)χB (1#h2)ωH (r−1 ⊗ c⊗ h3)χB (r0#1)ω−1

H (c⊗ 1⊗ h4) ,

and since ωH is normalized, (35) holds.
Similarly χB(r ·R s#1) = χB((r#1)(s#1)) and then, using (40) and (39), along with

(π ⊗B ⊗ π ⊗ π)∆3
B(s#1H) = s−1 ⊗ (s0#1)⊗ 1H ⊗ 1H ,

it is straightforward to verify (36).
Now we prove (37). Since ((B,ωB), g, χB) satisfies (15), we have,

gχB ((r#h)1) (r#h)2 = (r#h)1 χB ((r#h)2) g, for every r ∈ R, h ∈ H.

Recall from Theorem 3.4 that

∆B(r#h) = ω−1
H (r1−1 ⊗ r2−2 ⊗ h1)r

1
0#r2−1h2 ⊗ r20#h3,

so that applying π to the left hand side of (15) for B we obtain:

cχB(r
1
0#r2−1h2)ω

−1
H (r1−1 ⊗ r2−2 ⊗ h1)ε(r

2
0)h3 = χB(r#h1)ch2.

Applying π to the right hand side yields

ω−1
H (r1−1 ⊗ r2−2 ⊗ h1)ε(r

1
0)r

2
−1h2χB(r

2
0#h3)c = χB(r0#h2)r−1h1c,

and thus (37) holds.
Equation (38) is verified in a similar fashion. Let h = 1 in the left hand side of equation (15)

for B and then apply R ⊗ εH to obtain

χB((r#1)1)(R ⊗ εH)[(1#c)(r#1)2] = χB(r
1
0#r2−1)(R ⊗ εH)[c ⊲ r20#c] = χB(r

1 ⊗ r2−1)c ⊲ r
2
0 .

Now let h = 1 in the right hand side of (15) for B and apply R⊗ εH to obtain

χB((r#1)2)(R ⊗ εH)[(r#1)1(1#c)] = χB(r
2
0#1)(R⊗ εH)[(r10#r2−1)(1#c)]

= χB(r
2
0#1)ω−1

H ((r10)−1 ⊗ (r2−1)1 ⊗ c)(r10)0εH((r2−1)2c)

= χB(r
2
0#1)ω−1

H (r1−1 ⊗ r2−1 ⊗ c)r10 ,

and this finishes the proof of (38). �

In the next proposition we show how an arbitrary quasi-YD datum on a bosonization R#H
where R := R((H,ωH), gH , χH) is related to gH and χH .
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Proposition 5.2. Let ((H,ωH) , gH , χH) be a quasi-Y D datum for a primitive N -th root of unity
q and let R = R ((H,ωH) , gH , χH) be the bialgebra in H

HYD introduced in Theorem 4.6. Let
B = R#H, the bosonization of R by H and suppose that ((B,ωB), gB, χB) is a quasi-Y D datum.
Then there exists d ∈ G (H) such that gB = 1R#d. If d 6= gHd, then

(i) χB (r#h) = εR (r)χB (1R#h) , for every r ∈ R, h ∈ H,
(ii) χB (1R#gH)χH (d) = 1,
(iii) dgH = gHd.

Proof. Theorem 4.6 implies that B0 ⊆ k1R ⊗ H . Then Lemma 5.1 implies that there exists
d ∈ G (H) such that gB = 1R#d. By (37) with r = x[1] and h = 1H ,

χB

(
x[1]#1H

)
d = χB

(
x[1]#1H

)
gHd.

If χB

(
x[1]#1H

)
6= 0, then d = gHd, contrary to our assumption and so χB

(
x[1]#1H

)
= 0.

Now, let 2 ≤ n ≤ N − 1 and assume χB

(
x[n−1]#1H

)
= 0. Then

χB

(
x[n]#1H

)
= χB

(
x[1] ·R x[n−1]#1H

)

(36)
= ω−1

H

(
gH ⊗ gn−1

H ⊗ d
)
χB

(
x[n−1]#1H

)
χB

(
x[1]#1H

)
= 0,

so that

χB

(
x[n]#1H

)
= δn,0, for 0 ≤ n ≤ N − 1.

Now

χB

(
x[n]#h

)
(35)
= ω−1

H (gnH ⊗ h1 ⊗ d)χB (1R#h2)ωH (gnH ⊗ d⊗ h3)χB

(
x[n]#1H

)

= δn,0χB (1R#h) ,

and so

χB (r#h) = εR (r)χB (1R#h) , for every r ∈ R, h ∈ H.

Next we consider equation (38) with r = x[1].
The left hand side is

χB

((
x[1]

)1

#
(
x[1]

)2

−1

)
d ⊲

(
x[1]

)2

0

= χB

(
x[1]#1H

)
d ⊲ 1R + χB (1R#gH) d ⊲ x[1]

= χB (1R#gH) d ⊲ x[1] = χB (1R#gH)χH (d)x[1]

and the right hand side is

ω−1
H (

(
x[1]

)1

−1
⊗
(
x[1]

)2

−1
⊗ d)

(
x[1]

)1

0
χB

((
x[1]

)2

0
#1H

)

= ω−1
H (1H ⊗ gH ⊗ d)χB(x

[1]#1H) + ω−1
H (gH ⊗ 1H ⊗ d)x[1]χB(1R#1H)

= x[1] + 1RχB

(
x[1]#1H

)
= x[1].

and we can conclude that

χB (1R#gH)χH (d) = 1.

Now we apply (15) for the quasi-YD datum (H, d, χB (1R ⊗−)) from Lemma 5.1 with h = gH
to obtain

χB (1R#gH) dgH = gHdχB (1R#gH) ,

and since χB(1R#gH) is invertible, we obtain

dgH = gHd.

�
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6. Examples

In this section, we present examples illustrating the theory in the previous sections. The problem
of course is to find the reassociator explicitly. Our examples are based on the coalgebra kCn where
the cocycles are well-known.

6.1. Group cohomology. First we set some notation. Our examples will involve cyclic groups
of order n and n2, n > 1. We will denote Cn = 〈c〉 and Cn2 = 〈c〉. We will always denote by q a
primitive n2-rd root of unity and set ζ := qn . Let φ : Cn2 → Cn be the canonical projection with
φ(c) = c and denote by the same symbol the corresponding map kCn2 → kCn. For every a ∈ Z,
let a′ ∈ {0, . . . , n− 1} be congruent to a modulo n.

Since k is an algebraically closed field of characteristic zero, by [Sw1, Theorem 3.1], the Sweedler
cohomology can be computed through an isomorphism

Ht
sw (kCn, k) ∼= Ht

(
Cn, k

×
)
,

where the latter is the group cohomology computed as in [We, page 167].
For 0 ≤ i ≤ n− 1 and 0 ≤ a, b, d, define ωζi : (kCn)

⊗3 → k by

(43) ωζi

(
ca ⊗ cb ⊗ cd

)
= ωζi

(
ca ⊗ cd ⊗ cb

)
= ζia[[b

′+d′>n−1]].

Since ζ = qn, it is easy to check that

(44) ωζi

(
ca ⊗ cb ⊗ cd

)
= ζia[[b

′+d′>n−1]] = qina[[b
′+d′>n−1]] = qia(b

′+d′−(b+d)′).

One can prove that the set of Sweedler 3-cocycles is given by
(45)

Z3
sw (kCn, k) =

{(
ωζi

)v
= ωζi ∗ ∂2v | 0 ≤ i ≤ n− 1, v : kC⊗2

n → k is convolution invertible
}
.

This follows from the fact (see e.g. [MS, formulas (E.13) and (E.14)] over C) that the map

(46)
{
k ∈ k

× | kn = 1
}
→ H3

sw (kCn, k) : k 7→ [ωk]

is a group isomorphism.

Proposition 6.1. Let kCn be the group algebra with its standard bialgebra structure and ω a
normalized 3-cocycle. Then (kCn, ω) is a dual quasi-bialgebra and there is a gauge transformation
α : (kCn)

⊗2 → k, and 0 ≤ i ≤ n− 1 such that (kCn, ω) = (kCn, ωζi)α = (kCn, ωζi ∗ ∂2α).

Proof. The first statement follows from the fact that kCn is cocommutative. Since ω is a normalized
Sweedler 3-cocycle, by (45) there exists a convolution invertible map v : kC⊗2

n → k and i ∈

{0, . . . , n− 1} such that ω =
(
ωζi

)v
= ∂2v ∗ ωζi and (kCn, ω) = (kCn, ω

v
ζi) = (kCn, ωζi)v. Since

ω and ωζi are normalized, so is ∂2v. Thus, by Corollary 2.4, av is a gauge transformation for
a = v(1 ⊗ 1)−1. Since (kCn, ωζi)v = (kCn, ωζi)av, the statement is proved. �

Remark 6.2. In fact, (kCn, ωζi) is a dual quasi-Hopf algebra, meaning that there exists an antipode
S and maps α, β from kCn to k such that for all h ∈ kCn:

S(h1)α(h2)h3 = α(h)1 and h1β(h2)S(h3) = β(h)1;(47)

ωζi(h1β(h2)⊗ S(h3)⊗ α(h4)h5) = ω−1
ζi (S(h1)⊗ α(h2)h3 ⊗ β(h4)S(h5)) = ε(h).(48)

In this case, S is the usual antipode for kCn, α and β are both equal to the counit ε and then
since ωζi(cj ⊗ c−j ⊗ cj) = 1, the statement follows.

Since by the above discussion the maps ωζi are not coboundaries, we have the following:

Corollary 6.3. The dual quasi-bialgebra (kCn, ωζi) is not quasi-isomorphic to an ordinary bial-
gebra, i.e., one with reassociator ε

kC⊗3
n

.

On the other hand kCn2 with dual quasi-bialgebra structure via the bialgebra epimorphism
φ : kCn2 → kCn, φ(c) = c, is quasi-isomorphic to an ordinary bialgebra since if ω is a normalized
3-cocycle for kCn, then ωφ⊗3 is a coboundary. In fact, one can see by direct computation that
ωζiφ⊗3 = ∂2vi where vi : (kCn2)⊗2 → k is defined by vi(c

a ⊗ c
b) = qia(b−b′).
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6.2. Quasi-Y D data for kCn. To find quasi-YD data for (kCn, ωζw), we apply the results of
Section 3.2. For 0 ≤ z ≤ n− 1, from (19) we will be able to show that if ((kCn, ωζw), g := cz, χ) is
a quasi-YD datum then

(49) χ(ct) = χ(c)t for 0 ≤ t ≤ n− 1 and χ(c)n = ζwz,

and thus, unless χ(c)n = 1, i.e., ζwz = 1, then χ is not a character.
We show (49) as follows. From (19) and the definition of ωζw , we deduce that χ(ct) = χ(c)t for

1 ≤ t ≤ n− 1. By unitarity of χ, this equality also holds for t = 0. By unitarity of χ and the fact
that cn = 1, we get 1 = χ(1) = χ(cn). On the other hand a direct computation of χ(cn) using (19)
and the definition of ωζw yields χ(cn) = χ(c)nζ−wz and so (49) is proved.

Take t ∈ N. Then, since cn = 1, we have χ(ct) = χ(ct
′

)
(49)
= χ(c)t

′

. Thus (49) is equivalent to

(50) χ(ct) = χ(c)t
′

for t ∈ N and χ(c)n = ζwz.

Proposition 6.4. Consider the dual quasi-bialgebra (kCn, ωζw). Let cz ∈ Cn, 0 ≤ z ≤ n − 1
and χ ∈ kC∗

n. If ((kCn, ωζw), cz, χ) is a quasi-Y D datum, then (50), or equivalently (49), holds.
Conversely if χ is a unitary map satisfying (50), or equivalently (49), for some 0 ≤ z ≤ n − 1
then ((kCn, ωζw), cz , χ) is a quasi-Y D datum.

Proof. The first assertion follows immediately from Lemma 3.15 and Remark 3.16.
Since cz ∈ G (kCn), since χ ∈ kC∗

n is unitary by assumption, and since (15) holds because
kCn is both commutative and cocommutative, it remains only to check (14) . We check (14) on
generators. The equality holds trivially for h = 1kCn

or k = 1kCn
. Hence we can assume that

h = ca and k = cb for 1 ≤ a, b ≤ n− 1. Then the left side of (14) is

χ
(
cacb

)
= χ

(
ca+b

) (50)
= χ (c)

(a+b)′
= χ (c)

a+b−[[a+b≥n]]n (50)
= χ (c)

a+b
ζ−[[a+b≥n]]wz.

Since ωζw = ωζw(kCn ⊗ τ) and kCn is cocommutative, the right hand side of (14) is:

ω−1
ζw

(
cz ⊗ ca ⊗ cb

)
χ (ca)χ

(
cb
) (50)

= χ (c)
a+b

ω−1
ζw

(
cz ⊗ ca ⊗ cb

) (43)
= χ (c)

a+b
ζ−[[a+b≥n]]wz.

Thus (14) holds and the proof is complete. �

Example 6.5. Consider the dual quasi-bialgebra (kCn, ωζi) with i > 0. Let cz ∈ Cn with 1 ≤ z ≤

n− 1, and then for χ ∈ (kCn)
∗ to satisfy (49), we must have that χ(c)n = ζiz = qniz. Thus if we

define χ(ct) = qizt for 0 ≤ t ≤ n− 1, then ((kCn, ωζi), cz, χ) is a quasi Y D-datum for χ(cz) = qiz
2

.

Note that qiz
2

is a primitive rth root of unity where r = n2

(n2,iz2) .

More generally, for 0 ≤ j ≤ n−1, let χj : kCn → k be defined by χj(c
t) = ζjtqizt if 0 ≤ t ≤ n−1.

Since χj(c)
n = (ζj)nqizn = ζiz , so that (49) holds, ((kCn, ωζi), cz , χj) is a quasi-Y D datum for

χj(c
z) = ζjzqiz

2

and the order of ζjzqiz
2

is n2

(njz+iz2,n2) .

Example 6.6. Let n = p, a prime. For the quasi-Y D datum ((kCp, ωζi), cz, χj) in Example 6.5

with χj(c
t) = ζjzqizt, there are p − 1 choices for i and also for z that give quasi-YD data for a

primitive p2rd root of unity and since j = 0, . . . , p − 1, there are p choices for j. Thus one may
form p(p− 1)2 bosonizations R#kCp where R has dimension p2. Below we discuss which of these
can be isomorphic or quasi-isomorphic.

Suppose that H := (kCp, ωζi) and L := (kCp, ωζi′ ). Then by the discussion in Section 6.1, H

and L are quasi-isomorphic if and only if i = i′. If R#H is quasi-isomorphic to S#L for some R,S
as in Theorem 4.6, then, by Remark 3.6, H is quasi-isomorphic to L and thus i = i′. Thus if two
bosonizations as constructed above are quasi-isomorphic, then i = i′, i.e., H = L.

Now fix H := (kCp, ωζi), and consider the quasi-YD data D := (H, cz, χj) and E := (H, cw, χk).

Let R (respectively S) be the Hopf algebra in H
HYD constructed from D (E respectively) with

basis x[n] (respectively y[n]). Set x = x[1], y = y[1]. Suppose that there is a dual quasi-bialgebra
isomorphism Φ : R#H → S#H . By the formula for ∆R in Theorem 4.6, the comultiplication
formula from Theorem 3.4 and the fact that the coefficients β(i, n) are nonzero, we have that
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P1#1,1#ci (R#H) = k1#
(
1− ci

)
+ δi,zk (x#1) (respectively P1#1,1#ci (S#H) = k1#

(
1− ci

)
+

δi,wk (y#1)).
Since Φ is a morphism of dual quasi-bialgebras, by Remark 3.6, we get that Φ(1#cz) = 1#Φ′(cz).

Write Φ′(cz) = ca with 0 ≤ a ≤ p − 1. Since x#1 ∈ P1#1,1#cz (R#H), we get that Φ(x#1) ∈
P1#1,1#ca (S#H) = k1# (1− ca) + δa,wk (y#1). If a 6= w, then Φ(x#1) ∈ k1# (1− ca) and hence
x#1 ∈ kΦ−1(1# (1− ca)) ⊆ k#H , a contradiction. Thus a = w and hence Φ(1#cz) = 1#cw, and
Φ(x#1) = αy#1 + β1#(1 − cw). Since Φ−1(1#H) = 1#H then α 6= 0.

Then we have

Φ[(1#cz)(x#1)] = Φ[χj(c
z)x#cz ]

= Φ[χj(c
z)(x#1)(1#cz)]

= χj(c
z)[αy#1 + β1#(1 − cw)][1#cw]

= χj(c
z)[αy#cw + β1#(1− cw)cw].

However,

Φ(1#cz)Φ(x#1) = (1#cw)(αy#1 + β1#(1− cw))

= χk(c
w)αy#cw + β1#(1− cw)cw.

Thus β = 0 and χj(c
z) = χk(c

w), i.e., ζjzqiz
2

= ζkwqiw
2

. Thus p2 divides p(jz − kw) + i(z2 −w2)
so that p divides i(z − w)(z + w). Then either z = w or z + w = p.

Suppose that z = w. Then p divides z(j − k). This is impossible unless j = k and then the two
quasi-YD data are the same.

Suppose that z +w = p. Then p divides jz − kw + i(z −w) = jz − k(p− z) + i(2z − p) so that
p divides z(j + k + 2i), i.e., p|(j + k + 2i).

In any case, there are at least p(p− 1) nonisomorphic bosonizations. Fix z = 1. Then there are
p choices for j and p− 1 choices for i giving nonisomorphic bosonizations.

In the next example, for a change, we consider the group algebra of a nonabelian group and
find a quasi-YD datum.

Example 6.7. Let G := Dicp, the dicyclic group of order 4p for p an odd prime. Then Dicp =
Cp ⋊ C4 = 〈x, y|x4 = 1 = yp, xyx−1 = y−1〉 and Z(G) = {1, x2}. Since Cp is a normal subgroup
of G then there is a bialgebra projection π from kG to kC4 = k〈c〉 by π(yixj) = cj . Let ω := ωζ

be the cocycle defined in Subsection 6.1 for kC4 with q a primitive 16th root of unity and ζ = q4.
Let ωG : kG⊗3 → k be defined by ωG := ωπ⊗3 and thus (kG,ωG) is a dual quasi-bialgebra and π
is a dual quasi-bialgebra morphism. By Corollary 2.7, since (kC4, ωζ) is nontrivial and since there
is an inclusion σ : kC4 →֒ kG such that πσ is the identity, then (kG,ωG) is also nontrivial.

By Example 6.5 with n = 4, ((kC4, ωζ), c
2, χ) with χ(ct) = q2t is a quasi-YD datum for

χ(c2) = q4 = ζ, a primitive 4th root of unity. By Lemma 3.14, since π(x2) = c2 and x2 ∈ Z(G),
then ((G,ωG), x

2, χG := χπ) is a quasi-Y D datum for (kG,ωG).

Note that for a nonabelian group with trivial centre, the construction in the example above can
only yield a trivial Y D datum for q = 1. On the other hand, the same construction is possible
for any nonabelian group G with a projection onto a cyclic group such that the kernel does not
contain the centre of G.

The next example shows that (49) need not hold for a quasi-Y D datum for kCN if ω 6= ωζw , in
particular it can happen that χ(ct) 6= χ(c)t for some 0 < t < N .

Example 6.8. Let φ : kCn2 = k〈c〉 → kCn = k〈c〉 be the surjection of bialgebras from Section 6.1
given by φ(c) = c. Then φ induces a morphism of dual quasi-bialgebras from (kCn2 , ωζφ

⊗3 = ∂2v)

to (kCn, ωζ) where, by Section 6.1, v(ca ⊗ c
b) = qa(b−b′).

By Example 6.5, ((kCn, ωζ), c, χ) is a quasi Y D-datum, with χ(ct) = qt for 0 ≤ t ≤ n− 1, and
so by Lemma 3.14, ((kCn2 , ∂2v), c, χφ) is a quasi-YD datum also. However, taking t = n < n2 − 1
and checking (49), we find that χφ(cn) = χ(cn) = χ(1) = 1 while (χφ(c))n = χ(c)n = qn = ζ.
Thus in this case (49) is not satisfied. Note that ωζφ

⊗3 = ωζφ
⊗3(kCn2 ⊗ τ) so that (19) still holds.
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Example 6.9. Let ((H,ω) , g, χ) be a quasi-Y D datum for some primitive N -th root of unity
q, N > 0. Let L = k 〈g〉 and let ϕ : (L, ωL) →֒ (H,ωH) be the canonical inclusion where
ωL = ω|L⊗3 . Note that ϕ :

(
(L, ωL) , g, χ|L

)
→ ((H,ω) , g, χ) is a morphism of quasi-YD data. By

Proposition 4.9, we have a dual quasi-bialgebra homomorphism f ⊗ ϕ : RL#L → RH#H where
RL := R

(
(L, ωL) , g, χ|L

)
, RH := R ((H,ω) , g, χ) and f : RL → RH is a k-linear isomorphism.

Note that, since ϕ is injective, so is f ⊗ ϕ so that RL#L identifies with a dual quasi-subbialgebra
of RH#H.

We point out that the following example is dual to one given by Gelaki in [Ge, subsection 3.1].
There a quasi-Hopf algebra is given which is quasi-isomorphic to an ordinary Hopf algebra but
contains a sub-quasi-Hopf algebra which is not.

Example 6.10. Recall the setting of Example 6.8 where we have a morphism of quasi-YD data
from ((kCn2 , ωn2 := ∂2v), c, χφ) to ((kCn, ωζ), c, χ) with χ(ct) = qt, 0 ≤ t ≤ n− 1, induced by the
bialgebra surjection φ : kCn2 → kCn with φ(c) = c. Note that both are quasi-Y D-data for q where
q is a primitive n2-rd root of unity.

The isomorphism f : Rn2 → Rn from Proposition 4.9 yields a dual quasi-bialgebra surjection
f ⊗φ : Rn2#kCn2 → Rn#kCn where Rn2 := R ((kCn2 , ωn2) , c, χφ), Rn := R ((kCn, ωζ) , c, χ). Set

A := Rn2#kCn2 and B := Rn#kCn,

so that B is a quotient of the dual quasi-bialgebra A. Since (kCn2 , ∂2v) can be twisted by v−1

to (kCn2 , ε(kCn2)⊗3), then by Remark 3.8, A is also quasi-isomorphic to an ordinary bialgebra. In

fact, it is easy to check that A should be deformed by the gauge transformation µ := v−1(π⊗π) to
obtain an ordinary bialgebra. On the other hand, since ωζ is not trivial in H3(kCn, k), (kCn, ωζ)
cannot be quasi-isomorphic to an ordinary bialgebra and thus by Remark 3.8, neither can B.

We can say more about Aµ. Since Aµ is finite dimensional with coradical kCn2 , which is a Hopf
algebra, then Aµ is also a Hopf algebra [Ta, Remark 36]. Now, let

(
x[n]

)
0≤n≤N−1

be the canonical

basis for Rn2 . Then X := x[1]#1kCn2 is a nontrivial skew-primitive element since

∆A(x
[1]#1kCn2 ) =

(
x[1]

)1

#
(
x[1]

)2

−1
⊗
(
x[1]

)2

0
#1kCn2

=
(
1R

n2#c
)
⊗
(
x[1]#1kC

n2

)
+
(
x[1]#1kC

n2

)
⊗
(
1R

n2#1kC
n2

)

=
(
1Rn2#c

)
⊗
(
x[1]#1kCn2

)
+
(
x[1]#1kCn2

)
⊗ 1A

so that, if we set Γ := 1Rn2#c, we get

∆A(X) = X ⊗ 1A + Γ⊗X.

Since A and Aµ have the same coalgebra structure, X is a (1A,Γ)-primitive element also in Aµ.
Consider the sub-Hopf algebra of Aµ generated by X and Γ. This is a Taft algebra of dimension
o (Γ)2 = n4. Hence Aµ = Tq.

6.3. Quasi-Y D data for R#kCn. Now we apply Proposition 5.2 to a quasi-YD datum used in
our examples.

Proposition 6.11. Let H := ((kCn, ωζ), c, χ) with χ(ct) = qt for 0 ≤ t ≤ n− 1, be the quasi-Y D
datum from Example 6.5, let R := R((kCn, ωζ), c, χ), and let B := R#H. Suppose that there is
a quasi-Y D datum for B, ((B,ωB), gB, χB) as in Proposition 5.2. Then gB = 1R#cw for some
0 ≤ w ≤ n− 1, and for 0 ≤ t ≤ n− 1 and r ∈ R,

(51) χB

(
r#ct

)
= εR (r) q−wt

∏

0≤i≤t−1

ω−1
ζ

(
cw ⊗ ci ⊗ c

)
= εR(r)q

−wt.

In particular gB and χB are uniquely determined by w and ((kCn, ωζ) , c, χ) .

Proof. By Proposition 5.2 there exists d = cw such that gB = 1R#d. Since cw 6= ccw, Proposition
5.2(ii) may be applied to get that,

χB(1R#c) = χ(cw)−1 = q−w.
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Since by Lemma 5.1 ((kCn, ωζ), c
w, χB(1R#−)) is a quasi-Y D datum, then χB(1R#−) must satisfy

(19), i.e.,

χB(1R#ct) = χB(1R#c)t
∏

0≤i≤t−1

ω−1
ζ (cw ⊗ ci ⊗ c) = q−wt

∏

0≤i≤t−1

ω−1
ζ (cw ⊗ ci ⊗ c).

The statement now follows from (i) of Proposition 5.2. �

Corollary 6.12. Let H,R,B be as in the proposition with n = 2m. If ((B,ωB), gB = 1#cw, χB)
is a quasi-Y D datum for B with cw 6= 1, then w = m.

Proof. By Lemma 5.1, if ((B,ωB), gB = 1#cw, χB) is a quasi-YD datum, then ((kC2m, ωζ), c
w, χBσ)

is also a quasi-YD datum where σ is the inclusion map. Then by (49), χBσ(c)
n = ζw. By (51),

χB(1#c)n = q−wn = ζ−w,

so that ζ2w = 1 and we must have that w = m. �

We are now able to construct a quasi-Y D datum on a dual quasi-bialgebra which is a bosoniza-
tion of a group algebra. We begin with a useful lemma.

Lemma 6.13. Let n, a ∈ N with 0 ≤ a ≤ n2 − 1. Then

|{i | 0 ≤ i ≤ a− 1, i′ = n− 1}| =
a− a′

n

Proof. Note that the left hand side of the equation above is the number of nonnegative integers
congruent to n − 1 mod n and strictly less than a. For t ≥ 1, define an interval It of n integers
by It = {j ∈ N|(t− 1)n ≤ j ≤ tn− 1}. Then the left hand side is the number of intervals It whose
entries are less than a. If a = a′ + sn, then a ∈ Is+1 and this number is clearly s. �

In the next example, we find a quasi-YD datum for B := R#kCn where n is even. As always,
q denotes a primitive n2-rd root of unity and ζ := qn.

Example 6.14. Let n = 2m and let (B := R#kCn, ωB = ωζπ) be the dual quasi-bialgebra
of dimension n3 constructed via the quasi-Y D datum ((kCn, ωζ), c, χ) for q with χ(ct) = qt,

0 ≤ t ≤ n − 1, as in Example 6.5. We will construct a quasi-Y D datum for B for ι := q−m2

, a
primitive 4-th root of unity.

First note that ((kCn, ωζ), c
m, χ̃) with χ̃(ct) = q−mt for 0 ≤ t ≤ n− 1 is a quasi-YD datum by

Proposition 6.4 since χ̃(c)n = q−mn = ζ−m = ζm since ζ has order 2m. Also ((kCn, ωζ), c
m, χ̃) is

a quasi-YD datum for ι since χ̃(cm) = q−m2

.
We will now show that ((B,ωB := ωζπ

⊗3), gB := σ(cm), χB := χ̃π), where π, σ are the usual
projection and inclusion maps from Remark 3.8, is a quasi-Y D datum. Since π is a surjection of
dual quasi-bialgebras from (B,ωB) to (kCn, ωζ) with πσ(cm) = cm, it remains to show that for all
b ∈ B,

σ(cm)χ̃π(b1)b2 = b1χ̃π(b2)σ(c
m)

in order to apply Lemma 3.14 and conclude that ((B,ωB := ωζπ), gB := σ(cm), χB := χ̃π) is a
quasi-YD datum for ι.

Let b = x[a]#cℓ for 0 ≤ a ≤ n2 − 1 and 0 ≤ ℓ ≤ n − 1. Since by Theorem 4.6, ∆R(x
[a]) =∑

0≤i≤a β(i, a)x
[i] ⊗ x[a−i] and since β(0, a) = β(a, a) = 1, by applying εH on the left and on the

right of (13),

(52) π(b1)⊗ b2 = cacℓ ⊗ x[a]#cℓ = cacℓ ⊗ b and b1 ⊗ π(b2) = x[a]#cℓ ⊗ cℓ = b⊗ cℓ.

By the formula for multiplication in B = R#kCn in Theorem 3.4, we have that

(1#cm)(x[a]#cℓ) = ωζ(c
m ⊗ ca ⊗ cℓ)ω−1

ζ (ca ⊗ cm ⊗ cℓ)cm ⊲ x[a]#cmcℓ,

and

(x[a]#cℓ)(1#cm) = ω−1
ζ (ca ⊗ cℓ ⊗ cm)x[a]#cℓcm = ω−1

ζ (ca ⊗ cm ⊗ cℓ)x[a]#cℓcm.
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Since cm ⊲ x[a] = χ[a](c
m)x[a] where χ[a] is defined in Proposition 4.3, it remains to show that

ωζ(c
m ⊗ ca ⊗ cℓ)χ[a](c

m)χ̃(cacℓ) = χ̃(cℓ).

By (14) for the quasi-YD datum ((kCn, ωζ), c
m, χ̃),

χ̃
(
cacℓ

)
= ω−1

ζ (cm ⊗ ca ⊗ cℓ)χ̃(ca)χ̃(cℓ),

and thus it suffices to prove that χ̃ (ca)χ[a] (c
m) = 1. Since χ̃ (ca) = χ̃

(
ca

′
)
= q−ma′

, this is

equivalent to showing that

χ[a] (c
m) = qma′

.

Since cm is a cocommutative element, by equation (30)

χ[a] (c
m) = χ(cm)a

∏

0≤i≤a−1

ωζ(c
m ⊗ c⊗ ci) = qma

∏

0≤i≤a−1

ωζ(c
m ⊗ c⊗ ci

′

)

= qma
∏

0≤i≤a−1

ζm[[1+i′≥n]] = qma
∏

0≤i≤a−1

ζmδi′,n−1 .

Thus we have to prove that

qma
∏

0≤i≤a−1

ζmδi′,n−1 = qma′

.

But qms = q−ms for every s ∈ nZ since, writing s = nŝ, q2mnŝ = qn
2 ŝ = 1. Thus it suffices to

prove that ∏

0≤i≤a−1

ζmδi′,n−1 = q−m(a−a′) = qm(a−a′).

By Lemma 6.13, we have

|{i | 0 ≤ i ≤ a− 1, i′ = n− 1}| =
a− a′

n
,

so that
∏

0≤i≤a−1

ζmδi′,n−1 =
∏

0≤i≤a−1

qnmδi′,n−1 = qmn
∑

0≤i≤a−1 δi′,n−1 = qmn a−a′

n = qm(a−a′).

This shows that ((B,ωB), gB := σ(cm), χB := χ̃π) is a quasi-Y D datum for q−m2

and thus one
can form the bosonization S#B of dimension 4n3 = 32m3 where S has basis y[i] for 0 ≤ i ≤ 3. �
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