Abstract: In May 2012, two moderate earthquakes (Mw = 6.1 and 5.9), associated with a noticeable aftershock sequence affected the eastern sector of the Po Plain, northern Italy. As far as the coseismic areal uplift events are crucial for better understanding the seismotectonics of the broader area and therefore for better assessing the seismic hazard of the region, in the present research, we analyze and compare the results of high precision levelling, DInSAR technique, the distribution of the liquefaction occurrences, the geomorphological map of the area and the structural model of the region. The DInSar technique points out a remarkable uplift of the ground (up to 17 cm), which was confirmed by high precision leveling. The results from both techniques are substantially in good agreement, even if some considerable discrepancies occur, probably due to a well documented and diffuse liquefaction phenomena.
High-precision levelling, DInSAR and geological effects in the 2012 Emilia epicentral area

Caputo R.¹*, Pellegrinelli A.², Bignami C.³, Bondesan A.⁴, Mantovani A.¹, Stramondo S.³, Russo P.²

¹) Dept. of Physics and Earth Sciences, University of Ferrara, Italy

²) Dept. of Engineering, University of Ferrara, Italy

³) Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy

⁴) Consorzio di Bonifica Pianura di Ferrara, Ferrara, Italy

*) corresponding author (+39.0532.974688; rcaputo@unife.it)

Abstract

In May 2012, two moderate earthquakes (Mw = 6.1 and 5.9), associated with a noticeable aftershock sequence affected the eastern sector of the Po Plain, northern Italy. As far as the coseismic areal uplift events are crucial for better understanding the seismotectonics of the broader area and therefore for better assessing the seismic hazard of the region, in the present research, we analyze and compare the results of high precision levelling, DInSAR technique, the distribution of the liquefaction occurrences, the geomorphological map of the area and the structural model of the region. The DInSAR technique points out a remarkable upflit of the ground (up to 17 cm), which was confirmed by high precision leveling. The results from both techniques are substantially in good agreement, even if some considerable discrepancies occur, probably due to a well documented and diffuse liquefaction phenomena.

keywords: geodetic data, coseismic deformation, SAR interferometry, levelling, site effects.
Introduction

In May 2012, two moderate ($M_w = 6.1$ and 5.9; *e.g.* Pondrelli *et al.*, 2012) earthquakes, associated with a noticeable aftershock sequence (*e.g.* Saraò and Peruzza, 2012; Scognamiglio *et al.*, 2012), affected the eastern sector of the Po Plain, Italy. The causative faults are two segments of the Ferrara Arc thrust system representing the frontal most portion of the buried Northern Apennines fold-and-thrust belt (Figure 1). In particular, the two major structures which were reactivated have a left-stepping largely overlapping geometry. Both seismogenic sources were associated with blind, mainly dip-slip reverse, faulting (*e.g.* Scognamiglio *et al.*, 2012; Pondrelli *et al.*, 2012), while the uppermost tip segment of the sliding planes has been estimated to reach a minimum depth of 3-4 km (Bignami *et al.*, 2012). As a consequence of the fault geometry and kinematics, the rock volume above the coseismic rupture tip was characterised by a typical fault-propagation folding process that eventually caused the bending of the topographic surface and the consequent uplift of the broader epicentral area (Bignami *et al.*, 2012; Salvi *et al.*, 2012).

Notwithstanding the high sedimentation rate characterizing the Po Plain, the repeating of similar 'areal morphogenic earthquakes' (Caputo, 2005) during Late Pleistocene and Holocene locally caused cumulative effects in the coeval stratigraphic succession, but also in the present-day morphology of the region. Although such stratigraphic lateral variations are relatively evident in the deeper geology (Pieri and Groppi, 1981; Boccaletti *et al.*, 2004), they are morphologically subtle in the otherwise flat topography of the alluvial plain and they could be emphasized only by a careful inspection of the hydrographic network, which however highlights the occurrence of several drainage anomalies (*e.g.* Burrato *et al.*, 2003; 2012). Indeed, such hydrographic anomalies were considered key features for documenting the recent tectonic activity of the underlying faults (Basili *et al.*, 2008; DISS WG, 2010) whose instrumental seismic record is generally poor likely due to the long recurrence intervals on these structures.

As far as these coseismic areal uplift events are crucial for better understanding the seismotectonics of the broader area and therefore for better assessing the seismic hazard of the region, in the present research we analyse in detail the geodetic available information relative to the May 2012 Emilia
earthquakes and compare the results from two different techniques, namely a high-precision levelling and Differential Synthetic Aperture Radar interferometry (DInSAR; Massonnet et al., 1993) technique. We will first briefly recall the principles of the two approaches, discuss the independently obtained results and then compare them in order to emphasize their pros and cons and the complementarity of the two methods.
Hydrographic and morphological evolution of the western Ferrara plain

The present-day morphology of the western Ferrara plain is a direct result of the competition between high depositional rates, tectonic activity and differential compaction, as well as the latest Pleistocene-Holocene climate variations. These natural phenomena basically caused differential vertical movements which governed the recent hydrographic evolution and a highly variable sedimentary distribution, both lateral and vertical. As a consequence, the alluvial plain is actually crossed by few major and minor water courses, but it is characterised by many abandoned river channels and widespread flooding deposits. All these sedimentary bodies generally represent distinct morphological features which altimetrically outstand from the otherwise flat territory. Their topographic evidence (up to several meters) is commonly proportional to the channel importance and to their age. However, since the last two millennia, anthropogenic activities also played a role in the territory evolution.

As a first approximation, the western sector of the Ferrara plain consists of an ENE gently dipping topographic surface ranging between 20 m a.s.l. in the Cento area and ca. 4 m East of Ferrara. The mean slope is about 0.5‰, but where local topographic 'anomalies' occur associated with active or abandoned levees or breaches, the topographic gradient could be as high as 5‰.

At ca 2500 years ago, the lowest sector of the Po River was flowing across the present-day Ficarolo, Bondeno, Ferrara and Cona, forming the socalled Po di Ferrara (a in Figure 2). In the same period, which was characterized by a generally warm climate, the Reno River was flowing across the present-day San Pietro and Poggio Renatico (b in Figure 2).

During the VI-VIII centuries A.D. the climate was particularly wet and the precipitations in the region were abundant (the socalled "deluge" as referred to by Paolo Diacono). This caused a hydrographic instability during which the Po di Ferrara splits into the Volano and Primaro (c and d in Figure 2, respectively) and at this bifurcation the first Ferrara settlement is established. In the same period (VI-VII centuries), the Reno River shifts westwards along a new course across Galliera (e in Figure 2), while after the XI century, it further jumps to the west flowing close to Pieve di Cento.

The restored warm conditions characterising the IX-XI centuries foster the farming expansion
within the plain, but during the XI century the eastern sector of the Po plain suffers the strongest
hydrographic rearrangement historically documented associated with several disastrous flooding
events near Ficarolo that induced the forming of a new major branch of the Po River (*Po Grande*)
flowing north of Ferrara (f in Figure 2), which is still active today. This important territory
reorganisation was likely caused by the reactivation of the Casaglia blind thrust, which is the
frontalmost segment of the Ferrara Arc, and the growing of the associated fault-propagation anticline.

During the following centuries, the water discharge of the southern branches of the Po River,
progressively decreased and hence the capacity of sediment transport. As a consequence, the river
channels were filled with time causing increasingly frequent the flooding events and the development
of a marsh area in the southern Ferrara territory. While the Panaro River continued to feed the Po of
Ferrara near Bondeno (g in Figure 2), to the south the Reno River began to split into several channels,
the major of which are that of Corpo Reno, Renazzo, Alberone and Bevilacqua (h, i, l and m in Figure
2, respectively), distributing water and sediments in a broad territory north of Cento (Bondesan *et al.*, 1992).

Following the disastrous flooding events of the 1451 and 1457 (Frizzi, 1848), the Reno River was
artificially channeled running between Cento and Pieve (n in Figure 2) and it soon started to rapidly
prograding several kilometers in just few years. Therefore, the course was more or less artificially
extended towards Sant’Agostino and Vigarano Mainarda (o in Figure 2), where it was left to freely
flood the area southwest of Ferrara and hence start filling these natural depressions. This hydrographic
setting persisted for ca. 300 years and geographical stability allowed the establishment of new
settlements like San Carlo and Mirabello. In 1526, this branch of the Reno River was connected to the
Po of Ferrara by digging a channel NE of Vigarano (p in Figure 2) and this intervention turned out to
be catastrophic for the Ferrara territory, due to the rapid sedimentary obstruction of the Po channel,
that caused as many as 40 flooding events in just 16 year and the diffuse swamping of the area
surrounding the town (Bottoni, 1873). Few decades later the Po di Ferrara was not able any more to
drain the water of the Panaro affluent and at the end of the XVI century the flowing direction along
this branch of the major river was reversed (*i.e.* from Bondeno to Ficarolo; Figure 2)

In the following century (XVII), the connection of Reno River into the Po di Ferrara was cut and
the former was diverted near Vigarano in a southeast direction (q in Figure 2) once more for inducing
a land reclamation by sedimentary infilling in the region between Ferrara and Poggio Renatico
(Roversi, 1989). At that time, the Po di Ferrara has completely lost its hydraulic dependence from the
present-day Po Grande and the worsening climatic conditions (i.e. increased precipitations, water
discharge and sediment transport) forced a progressive artificial elevation of the levees for many rivers
crossing the area and a hydrographic rearrangement. For example, in order to drain the swampy area
between Ferrara, Poggio Renatico and Malalbergo, in 1724-1742 was excavated the Cavo Benedettino
(r in Figure 2) partially exploiting older river channels. While in order to impede further disastrous
flooding events near Sant'Agostino (Franceschini, 1983), the Reno River was definitely diverted
southeastwards in 1771-1775 by excavating a direct connection with the Cavo Benedettino (s in Figure
2). Due to altimetric differences, the inlet of the Po di Primaro (d in Figure 2) into the Cavo
Benedettino near Traghetto was thus closed and this caused the hydraulic death of the former channel.

In the meantime, the Panaro River between Finale Emilia and Bondeno was flowing along two
courses, a natural branch and a partially artificial channel (g and t in Figure 2, respectively), of which
the first was definitely abandoned at the end of the XIX century.
DInSAR technique

DInSAR technique is based on the exploitation of the phase component from two SAR images of the same area. Each SAR image is composed of a real and an imaginary part, or equivalently, each pixel in a SAR image has an amplitude component and a phase component. The latter is related to the satellite-to-target distance, which is composed of a large number of integer wavelengths and the measured fractional phase component. The result of the application of DInSAR is the so-called “interferogram”, that is the pixel-to-pixel difference of the phase components of two SAR images covering the same area.

The interferometric phase Φ_{int} can be schematically split into five terms, the "flat Earth" component Φ_f, the topographic phase Φ_{topo}, the displacement phase Φ_{displ}, the atmospheric term Φ_{atm}, and the error phase Φ_{err} (Massonnet and Feigl, 1998). The first term deals with the SAR acquisition geometry and can be easily removed thanks to the very precise knowledge of the orbital position and trajectory. The topographic phase is related to the normal baseline that is the projection of the distance between the two positions of the satellite, looking at the same region at different times, onto the direction orthogonal to the Line Of Sight (hereafter LOS; i.e., the line from the sensor to the target on surface). Finally, displacements occurring on the ground surface and causing changes in the sensor-to-ground distance result in the phase variation (Φ_{displ}). In order to highlight this phase change due to displacement, the "flat Earth" and the topographic terms have to be removed (the latter in general using an independently determined Digital Elevation Model). Actually, the name DInSAR refers to the technique applied to generate such topographically corrected interferograms. This technique measures the projection of the displacement vectors (North, East and Up components of three-dimensional surface displacements) along the satellite LOS. The interferogram is calculated as the modulo 2π phase difference, because of the nature of complex numbers. In order to obtain a LOS displacement map, the result of DInSAR should be moved from the wrapped, discontinuous, interference signal, to the unwrapped, continuous phase difference. Phase unwrapping is often a critical step in the estimation of ground displacement, and if an interferogram is strongly affected by noise, the lack of signal continuity (decorrelation) may introduce errors in the displacement values (unwrapping errors).
errors can sometimes be mitigated using independent observations, such as GPS, leveling data, or other interferograms from different orbits or satellites.

In order to study the surface deformation caused by the May 20 and May 29 events, we applied the DInSAR technique to two pairs of SAR images. The first image pair has been acquired by the Canadian satellite RADARSAT-1, a C-band SAR, on descending orbit. The pre-event RADARSAT-1 image is dated May 12, 2012, few days before the first mainshock, while the second image has been acquired on June 5. Hence the time span covered thus embraces the two main shocks and several aftershocks including five events with M_w greater than 5. The RADARSAT-1 pair has a perpendicular (spatial) baseline of 309 m and a temporal baseline of 24 days. The topographic phase contribution has been removed by using the Shuttle Radar Topographic Mission (SRTM; Farr et al., 2007) DEM. In addition, aiming at increasing the signal-to-noise ratio to allow a more accurate unwrapping of the phase, the Goldstein filter (Goldstein and Werner, 1998) has been applied.

The resulting deformation map (Figure 3a) shows a region characterized by a movement toward the satellite (an uplift) that reaches a maximum displacement of about 17 cm in LOS direction, which in this case corresponds to 34° off nadir viewing angle. Two connected and partially overlapping sectors within the investigated area show a marked displacement which is a clear effect of the (mainly) coseismic activity of the two causative faults associated with the May 20 (eastern sector, $M_w = 6.1$) and May 29 (western sector, $M_w = 5.9$) mainshocks. A relative small subsidence (up to a peak value of about -3 cm) is also detected in the southern area close to the western sector.

A second SAR image pair, also on descending orbit, has been available from the Italian X-band SAR mission COSMO-SkyMed. The two images are respectively dated May 19 and May 23, 2012, hence with 4 days temporal separation and a perpendicular baseline of 366 m. It is noteworthy that the latter image pair encompasses only the first of the two main shocks.

Also for COSMO-SkyMed data, the interferometric phase component related to the topography has been removed by using the SRTM DEM, and the Goldstein filter has been applied to recover the loss of interferometric coherence due to local effects, such as the occurred liquefactions. With this approach we were able to keep the tectonic and large scale topographic deformation.

Figure 3b shows the displacement map obtained from the DinSAR processing of the COSMO-
SkyMed images. As observed in the RADARSAT-1 interferogram, a region with a maximum positive movement (toward the satellite) in LOS direction of about 13 cm is detected. The lower displacement with respect to the RADARSAT-1 interferogram is partly due to the fact that the COSMO-SkyMed data frame covers only the eastern sector of the epicentral area of the May 20 event, missing the sector characterised by the larger values. However, taking into account the different time span considered in the second interferogram, the larger surface displacement inferred from the RADARSAT-1 could be partly due to a prolonged post-seismic deformation effect.
High-precision levelling

The territory of the Ferrara Province is characterized by a low mean ground elevation a.s.l. and, for large sectors, even below the sea level. As above mentioned, for centuries human activities in this area have been guaranteed by carrying out several and continuous drainage works. Also today, an accurate knowledge of the topography of the area is a crucial information for a better drainage management.

For this purpose many years ago several permanent levelling networks were established in the whole province territory. The creation of a network of such points and their repeated measurements represent the principal 'mission' of the "Consorzio di Bonifica Pianura di Ferrara" (hereinafter: “Consortium“) which dedicated to these activities the Geographic Information Sistem Sector. Between 2005 and 2012 a "First order" geometric levelling network covering the whole area of duty has been realized. The network provides a local vertical datum of high accuracy and consists of about 1,200 km of levelling lines across the Ferrara Province with an average length of levelling sections of about 1 km.

For the survey of the network, we met the international standards for high-precision geometric levelling. In particular, it was established a maximum allowed discrepancy of $\pm 2.5 \sqrt{\ell} \text{ mm}$ in double-run levelling (where ℓ is the length of the levelling segment in km) and a maximum value for ring closure of $\pm 2.5 \sqrt{L} \text{ mm}$ (where L is the length of the ring in km).

Since the first results from DInSAR (Bignami et al., 2012; Salvi et al., 2012) relative to the two major 2012 Emilia earthquakes, a significant and wide uplift of the ground was recognised (Figure 3). The eastern sector of the area affected by uplift is crossed by the levelling network of the Consortium and for the purpose of this research we carried out a dedicated survey along selected lines for a total length of about 120 km (Figure 4) in the months following the seismic crisis (September 2012-June 2013).

The levelling network has been measured using two digital levels Topcon DL101C with INVAR staffs (standard deviations 0.4 mm/km in double-run levelling). The adjustment of the measurements is performed by the classical least squares method. The resulting standard error of the adjusted heights' difference is $\pm 1.14 \text{ mm/km}$, while the standard deviations of the adjusted heights is less than 5 mm.

The reference benchmark (point "A" in Figure 4) belongs to the Italian First Order Levelling
Network and were recently (2005) surveyed by IGM (Istituto Geografico Militare). Accordingly, all
the heights are referred to the national vertical datum. Considering that the Ferrara national
benchmark, which was precisely re-determined in 2005, is at an epicentral distance of ca. 25 km and
no permanent coseismic deformation has been never recorded for similar magnitude events at such
distances, we assumed its height as the vertical datum. On the other hand, also DInSAR technique
confirms the lack of detectable vertical deformation at the Ferrara site (see previous chapter and
Figure 3). The assumption of a 'stable' benchmark is likely further constrained by the fact that the
height of all secondary benchmarks of the levelling line closer to the reference benchmark (Ferrara)
remained almost unchanged comparing the measurements pre- and post-earthquakes (Figure 5).

In this datum, the heights of the benchmarks were compared obtaining the vertical movements of
the ground, occurred during the time interval between the two high-precision levelling campaigns
carried out before and after the seismic sequence.

The analysis of the vertical movements documented by high-precision levelling reveals the
occurrence of both uplifted and subsided benchmarks. The levelling lines which were re-measured
after the seismic sequence could be grouped into 3 main sets on the basis of their different orientation
and location as well as different behaviour in terms of vertical recorded movements. For example, the
three levelling lines closer to Ferrara (i.e. farest from the epicentre), with a mean E-W orientation
(Figure 5) show in practice a remarkable stability in time. Only the western part of the D-E line, which
is relatively closer to the epicentral area, suggests a slight, but systematic, uplift of 1-2 cm. Few
appreciable exceptions to this otherwise regular distribution of vertical movements occur near
Mirabello (Figure 5a,b) where a marked subsidence (up to ca. 10 cm) has been measured. The
behaviour of these benchmarks will be discussed in the following section.

A second set of levelling lines is represented in Figure 6 corresponding to three paths closer to the
epicentral area with a mean ESE-WNW orientation, threfore roughly parallel to the seismogenic fault's
strike associated with the areal morphogenic event of the 20th of May. Also in this case, we observe a
uniform behaviour of the single levelling lines, though variable from north to south. Indeed, the
northern line (C-B in Figure 6) documents no vertical movements, the southern one (G-H in Figure 6)
shows a slight subsidence of ca. 2 cm all along its length, while the intermediate one (F-D in Figure 6)
clearly indicates a general uplift ranging between 3 and 6 cm. This general picture characterised by vertical stability in an ESE-WNW direction and lateral variations in a NNE-SSW direction is also clearly emphasised by the levelling line G-F-C (Figure 7a), where the maximum uplift values have been observed. The vertical movement of the benchmarks gradually vary along this line showing a slight subsidence in the southern sector (1-2 cm), smoothly inverted in the central sector south of Finale Emilia becoming a positive vertical movement (i.e. uplift) that progressively increases up to the maximum value reached at about the km 15 (north of Finale Emilia). Farther northwards, the displacement of the benchmarks specularly decreases to a few centimeters of uplift at Bondeno (Figure 7a). If we project the obtained values along a NNE-SSW straight line, it is possible to estimate a wavelength of about 10 km for the fold deforming the topography.
Liquefaction and local subsidence

The May 2012 Emilia events have been characterized by spectacular and locally very intense liquefaction phenomena (e.g. Papathanassiou et al., 2012; Caputo and Papathanassiou, 2012) that possibly mobilized shallow, but somewhere important, sedimentary volumes. As a consequence, ground deformations were induced at different scales involving areas from the few meters to several hundred meters in size and causing either horizontal movements up to several centimeters (i.e. lateral spreading), either vertical movements, both positive and negative; the latter generally much more frequent and locally exceeding some tens of centimeters. Such effects and especially their consequences on the Earth surface have occurred with a jeopardized pattern therefore influencing both terrestrial and satellite-based techniques, though in different ways.

As concerns the high-precision levelling, this effect is particularly manifest along the levelling line H-D-B (Figure 7b). Indeed, it runs parallel to the line G-F-C previously described showing both similarities and marked differences. For example, similarities are observed in the southern and central sectors, where all the benchmarks from south to north are characterized by a quite constant subsidence value (ca. 2 cm), which progressively changes into positive vertical movements (up to 3 cm of uplift near Sant’Agostino). However, in contrast to the G-F-C line, instead of farther regularly uplifting northwards, as showed by SAR displacement, from Sant'Agostino (point D) onwards the benchmarks show highly variable amounts of vertical displacements with prevailing negative values (i.e. subsidence) locally as great as -11.4 cm between San Carlo and Mirabello (Figure 7b). It is worth noting that interferometric processing, as already discussed, has been done aiming at preserving the large-scale tectonic signal, therefore, these local subsidences were smoothed out. In order to explain i) these discrepancies with respect to the relatively close and parallel profile (G-F-C), ii) the locally high subsidence values observed (up to -11.4 cm) and iii) the very short wavelength of the vertical variations, we analysed different possible causes.

Firstly, it must be remarked that the benchmarks displacement could include the effect of possible long-term vertical movements occurred in the time span between the two campaigns (2005-2012). However, the available data (http://www.arpa.emr.it/dettaglio_notizia.asp?id=4801&idlivello=1414, in
Italian, last visited April 28, 2014) suggest that the 'regional' subsidence affecting the broader region of the lower Po Plain occurred during this time span, and also recorded at the reference benchmark of Ferrara, should be less than 1 to 2 cm. Above all, for the concern of this paper, no significant gradients have been documented so far within the investigated area. We could thus exclude a long-term effect as the causative phenomenon for the observed local, but strongly, subsided benchmarks and the difference between high-precision levelling and satellite interferometry results.

Secondly, we analysed in detail the geological setting of the sites where the 'anomalous' benchmarks have been installed. Indeed, immediate post-event surveys following the May 20 earthquake largely documented diffuse liquefaction phenomena in this sector of the plain (Figure 2; e.g. Papathanassiou et al., 2012; Caputo and Papathanassiou, 2012).

Data providing information on the shallow subsoil close to each benchmark derive from drill cores, penetration tests and water wells. Although we performed a similar analysis for all controversial benchmarks, we will show and discuss here only few remarkable examples allowing to understand the above mentioned 'anomalous' behaviour observed along the levelling line. For example, the benchmark 78020 (yellow star in Figure 8a), located at the entrance of the Mirabello cemetery, was affected by a subsidence of 11.4 cm (Figure 7b). The cemeterial area is located along a palaeo-branch of the Reno River (location o in Figure 2) and particularly at the base of the southeastern slope of the left levee (Figure 8a). The shallow stratigraphy observed in some drill cores carried out in the surroundings of the benchmark (black stars in Figure 8a) consists of alternating fine silty sand and saturated sandy silt in the first 5 to 6 m overlying a thick body of medium-grained sand. These represent typical conditions prone to liquefaction in case of seismic shaking. As a matter of fact, during the May 20 event, the cemetery broader area was affected by several ground effects associated with, and induced by, widespread liquefaction phenomena. In particular, at few meters from the benchmark 78020, several ground deformations were coseismically formed (red squares in Figures 8a and Figure 8d) clearly documenting the local loss of shear resistance within the subsoil that certainly reacted differentially as a function of the vertical loads. At this regard, it is noteworthy that the benchmark is cemented next to the heavy entrance pillar of the cemetery boundary wall, which very likely suffered some amount of settling, therefore displacing also the benchmark. Moreover, large
amounts of liquefied sand was ejected within the broader area (blu dots in Figure 8a) and this necessarily caused further subsidence due to the consequent compaction and volumetric reduction of the underlying sandy layer(s). In addition to the 'local' effects, the whole southeastern slope of the levee suffered a large-scale lateral spreading phenomenon (Figures 8a,b); the sliding surface has likely exploited gently dipping sandy foresets well documented within the same levee body few kilometers to the south within a palaeoseismological trench (Caputo et al., 2012). Accordingly, the lateral spreading also induced a vertical component of motion (Figure 8c), which certainly contributed to the subsidence of benchmark 78020 (-11.4 cm). Similar phenomena have been also documented by Pizzi and Scisciani (2012).

A second example is represented by the benchmark 78060, located on the base of a tall lamppost installed at the center of the roundabout at the northern entrance of San Carlo village (Figures 9a and b). Drill-cores and cone penetration tests carried out few tens meters away from the benchmark clearly show the presence of saturated fine silty sands between 4 to 6 m depth. Based on the CPTs, it is also possible to calculate a Potential Liquefaction Index LPI (Iwasaki, 1978), with the approach proposed by Idriss and Boulanger (2008), of 10.5 which corresponds to a high liquefaction risk (Sonmez, 2003). Moreover, widespread sand ejections were observed in the surroundings by the immediate post-event survey (Figure 9c; Caputo and Papathanassiou, 2012). Taking into account that the fundation consists of roughly 1 m3 of concrete and adding the weight of the metal pole to this punctual load, some amount of permanent settling induced by the coseismic liquefaction would be expected and could reasonably explain the 2.8 cm of subsidence measured at this benchmark (Figure 7b).

Again at San Carlo, the benchmark 78080 located on the bikes lane along the provincial road (Figure 9a), was affected by 4.4 cm of subsidence (Figure 7b). Here also, CPTs carried out close to the benchmark clearly document the occurrence of a saturated sandy silt layer between 4.5 to 5.5 m depth and a moderate LPI value. Interestingly, few tens of meters away from the benchmark, a water well has apparently been uplifted of ca. 8 cm, therefore coming out from its case (Figure 9e); considering that the metal rod is rooted at 30 m-depth, more likely it was the nearby ground that has permanently subsided as a consequence of the important amount of dewatering, sand ejection and hence compation observed in the surroundings.
A final example is from the benchmark 78090 that suffered a subsidence of 5.3 cm (Figure 7b). Similar to the Mirabello case previously discussed (Figure 8), the benchmark is fixed at the entrance of a cemeterial area located along the same palaeo-branch of the Reno River (location o in Figure 2) though in this case at the base of the right levee external slope (Figure 9a). Here also lateral spreading and diffuse sand ejection phenomena have occurred in concomitance with the May 20 event (respectively white arrows and blu dots in Figure 9a), while geotechnical results and palaeoseismological excavations (Caputo et al., 2012) confirm the presence of a thick layer of saturated fine-medium sands between 4 to 8-8.5 m depth. As a consequence both horizontal and vertical movements were induced (Figures 9d and 7b), therefore justifying the measured subsidence and allowing to classify this as a local effect.
Concluding remarks

In order to better exploit all available information on the ground motion, we compare the results of i) the high-precision levelling, ii) the DInSAR analyses, iii) the distribution of the 2012 liquefaction occurrences; iv) the geomorphological map of the area and v) the structural model of the region providing information about the depth of the bedrock.

The interferograms clearly define a large sector of the alluvial plain characterized by an elliptical geometry affected by a marked uplift. This occurs in correspondence with the crest of a fault-propagation fold associated with the causative source of the Emilia May 20 event. Satellite analyses also show two broad areas affected by a slight subsidence north and south of the anticline (Figure 3) in perfect agreement with elastic deformation models (e.g. Okada, 1985; Burrato et al., 2003). By calculating the vertical movement from the LOS values, the maximum observed uplift is ca. 17 cm near Casumaro, while the amount of subsidence is everywhere smaller than 3 cm. Although the pair of RADARSAT-1 images embraces a time span including both major earthquakes, the area uplifted by the May 20 event is clearly recognisable and measures about 27 km in length and almost 10 km in width (ESE-WNW and NNE-SSW, respectively). This surface deformation has been also described and modelled by Pezzo et al. (2013).

As far as the Cosmo-SkyMed 'captures' only the first earthquakes while the RADARSAT-1 both events, we also attempted to analyse the possible effects accumulated during the post-seismic deformation of the first major shock. Taking into account the different quality of the imageries and characteristics of the two satellites, a comparison does not show the occurrence of post-seismic effects or at least the induced LOS variations were below the resolution of the two methods.

As stated above, one of the major aims of this research is represented by the comparison of the results of the high-precision levelling with those obtained from the satellite DInSAR. At this regard, it is possible to observe the perfect agreement in Figures 5, 6 and particularly 7a, where the pattern of vertical movements obtained from the two approaches nicely mimic each other. It is also noteworthy that locally the two techniques are almost complementary. For example, along the profile G-F-C (Figure 7a) between Finale Emilia and Bondeno the satellite information is missing because the results
show no coherence. Conversely, along the profile H-D-B (Figure 7b), north of Sant’Agostino, several benchmarks of the levelling have been affected by local coseismic effects showing anomalous subsidence values which do not reflect the general, large-scale tectonically induced, surface deformation. In this case the satellite data fullfill the information gap.

A second major goal of this work is the comparison of our results with the tectonic setting of the region corresponding to the central-western part of the complex Ferrara Arc representing the frontal and buried sector of the Northern Apennines orogenic wedge. The uplifted areas documented in this paper clearly reflect the re-activation of blind thrusts representing distinct seismogenic segments and contribute constraining their geometry and kinematics. On the other hand, the cumulative Quaternary effects are also emphasized by the important lateral variations in thickness of the coeval deposits (e.g. Martelli and Molinari, 2008), while the most recent activity is suggested by the several hydrographic anomalies observed in the epicentral area (e.g. Burrato et al., 2012), like the divergence of two palaeochannels near Finale Emilia (g and l in Figure 2), the progressive infilling and abandonment of the Sant’Agostino to Mirabello branch of the Reno River (o in Figure 2) and its older paths (b and e in Figure 2) as well as the recent avulsion (s in Figure 2), though anthropogenically forced.

As a final comment, we want to stress the lesson learned relative to the topology of high-precision levelling networks and particularly concerning the location of the benchmarks. Indeed, it is obvious that such monitoring systems must be located for practical reasons along major road axes, which however in alluvial plains have the disadvantage to commonly run on top of artificial embankments or natural levees. As a consequence, both earthworks and sedimentary bodies easily suffer diffuse settling and liquefaction effects in case of moderate-to-strong seismic shaking. If no alternative siting is available for locating high-precision levelling lines, network planners should be aware of the intrinsic risk of 'loosing' some benchmarks.

Acknowledgments
References

DISS Working Group (2010). Database of Individual Seismogenic Sources (DISS), Version 3.1.1: A compilation of potential sources for earthquakes larger than M 5.5 in Italy and surrounding areas. http://diss.rm.ingv.it/diss/, © INGV 2010 - Istituto Nazionale di Geofisica e Vulcanologia - All rights reserved; doi:10.6092/INGV.IT-DISS3.1.1

Figure captions

Figure 1: Tectonic framework of northern Italy, showing the buried Northern Apennines fold-and-thrust belt underlying the Po Plain and the major tectonic structures. Stars indicate the epicenters of two principal earthquakes of the May-June 2012 seismic sequence (May 20, \(M_L=5.9\) and May 29, \(M_L=5.8\)). The box indicates the location of Figure 2.

Figure 2: Morphological map of the broader epicentral area showing the complex hydrographic drainage developed in historical times as a consequence of the tectonic activity, climate changes and anthropogenic management. See Figure 1 for location. Letters indicate distinct branches of the Po, Reno and Panaro rivers referred to in the text. Legend: 1) palaeo- and active levees associated with a morphological relief; 2) palaeo-channels entrenched in the alluvial plain; 3) flooding areas characterised by sandy deposits; 4) surface evidence of liquefaction phenomena caused by the May 20, 2012 event; 5) major breaches and associated fan deposits.

Figure 3: a) DInSAR results applied to the Canadian RADARSAT-1 satellite data (C-band SAR on descending orbit). The paired imageries analysed are respectively dated May 12 and June 5, 2012 and hence document the deformation associated with both mainshocks (May 20 and 29). Note the clear and distinct (though partially overlapping) effects of the two principal morphogenic earthquakes. b) DInSAR results applied to the European COSMO-SkyMed -1 satellite data (X-band SAR on descending orbit). The paired imageries analysed are respectively dated May 19 and May 23, 2012 and hence document the deformation associated only to the first mainshock (May 20). The high-precision levelling lines discussed in this paper are also shown.

Figure 4: The first order levelling network belonging to the “Consorzio Pianura di Ferrara”, Province of Ferrara, which has been re-measured following the 2012 seismic sequence. Small dots represent the benchmarks of the Consortium, the exagons represent the labelled benchmarks discriminating
the levelling lines, while the triangle is the reference benchmark belonging to the Italian First Order Levelling Network, recently (2005) re-surveyed by IGM (Istituto Geografico Militare).

Figure 5: Vertical movements measured along the three levelling lines closer to Ferrara (i.e. farest from the epicentre), with a mean E-W orientation and showing a remarkable stability. The error bar at each benchmark calculated on the basis of the standard deviations of the differences in elevation (pre- to post-earthquake) is smaller than the symbol size. Capital letters refer to the benchmarks labelled in Figure 4. HPL: high-precision levelling; RS1: RADARSAT-1; CSM: COSMO-SkyMed.

Figure 6. Vertical movements measured along the three levelling lines closer to the epicentral area with a mean ESE-WNW orientation showing a uniform behaviour of the single levelling lines, though variable from north to south. The error bar at each benchmark calculated on the basis of the standard deviations of the differences in elevation (pre- to post-earthquake) is smaller than the symbol size. Capital letters refer to the benchmarks labelled in Figure 4. HPL: high-precision levelling; RS1: RADARSAT-1; CSM: COSMO-SkyMed.

Figure 7: Vertical movements measured along the two levelling lines running perpendicular to the May 20 fault strike. Profile G-F-C (a) perfectly reproduces the satellite results, while profile H-D-B shows some marked differences with strongly subsided benchmarks. The error bar at each benchmark calculated on the basis of the standard deviations of the differences in elevation (pre- to post-earthquake) is smaller than the symbol size. Capital letters refer to the benchmarks labelled in Figure 4. HPL: high-precision levelling; RS1: RADARSAT-1; CSM: COSMO-SkyMed.

Figure 8: a) GoogleEarth frame of Mirabello cemetery area showing the distribution of the secondary coseismic effects, like sand ejection points (blue dots), ground deformation sites (red squares), drill cores (black stars), ground ruptures (yellow arrows) and sliding direction due to lateral spreading (white arrows). The yellow star indicates the location of benchmark 78020 characterised by 11.4
cm of subsidence. b) Ground ruptures observed on top of the abandoned levee (see (a) for location).

c) Effects of the lateral spreading on the lateral wall of the cemetery (see (a) for location). d)
Example of ground deformation associated with shallow liquefaction phenomena (see (a) for
location).

Figure 9: a) Digital elevation model of the San Carlo area clearly showing the two levees of the
palaeo-Reno River. Red lines represent the major ground ruptures observed after the May 20 event
(Caputo and Papathanassiou, 2012) generally associated with lateral spreading phenomena (white
arrows). Blu dots are san ejection points while black ones are penetration tests providing
information about the shallow subsoil. Yellow stars are benchmarks of the high-precision levelling
line. b) The foundations of the lamppost installed at the center of the roundabout at the northern
entrance of San Carlo village where diffuse liquefaction has occurred (c) (see (a) for locations). d)
The southern wall of the Sant'Agostino cemetery built on the slope of the palaeolevee and affected
by lateral spreading thus contributing to the subsidence of benchmark 78090. e) Example of water
well located close to benchmark 78080, which was apparently uplifted ca. 8 cm relative to the
ground surface therefore coming out from its case. See text for discussion.
Figure 2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9