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Abstract: We address theoretically and numerically pump-probe switch-
ing in a nonlinear semiconductor nanocavity where tuning is achieved
via a dominant mechanism of free-carrier plasma dispersion. By using
coupled-mode approach we give a set of guidelines to optimize the switch-
ing performances both in terms of avoiding self-pulsation and keeping
switching power to the minimum, ending up by showing that such devices
can achieve high-performances with relatively low-power consumption.
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1. Introduction

Nanocavities with high Q/V ratio allows for strong enhancement of nonlinear behavior which
has been exploited for achieving ultra-fast switching in different platforms involving, e.g., de-
fects in photonic crystal (PhC) membranes [1–7] or microring resonators [8–11]. Such struc-
tures, made either in silicon or III-V semiconductors, have demonstrated the viability of free-
carrier dispersion (FCD) induced by two-photon absorption (TPA) as a dominant nonlinear
effect [12–14]. In particular, such mechanism permits pump-probe operations, where a carrier-
plasma density induced by TPA of a high-intensity pump coupled via a waveguide, causes the
refractive index change inside the cavity and, as a consequence, the wavelength resonant tuning
of the probe signal [15, 16]. However, switching could be quite demanding in terms of en-
ergy consumption, as long as the dynamical pump-probe interaction is not properly designed.
Moreover, it has been predicted that the non-instantaneous response of the carriers determines
the onset of a FCD-driven instability, namely self-pulsing (SP) [17]. This is an widespread
phenomenon first predicted for Kerr-like nonlinearities [19] and recently investigated theoreti-
cally and experimentally in different nano-structures [20–26]. In this paper, we give criteria for
optimizing bistable pump-probe operations both in terms of minimizing the required switch-
ing power and avoiding SP, which could impact the switching dynamics, spoiling the simple
bistable features. This is provided by suitable choice of the detunings of the pump-probe pair
for a given time constant of carrier dynamics.

2. Coupled-mode equations and lossless dynamics

We start by considering the model for a single slowly-varying envelope analyzed in [15, 17],
suitably generalized to account for non-degenerate pump-probe operation occurring in a system
composed of a resonator coupled to a waveguide in which the standard Kerr effect is negligible
compared to FCD driven by TPA. The model applies to semiconductors where TPA is the main
source of losses (e.g., not in the regime considered in [6,7]). By denoting as ap,s the normalized
(dimensionless) time-dependent variables that stand for intra-cavity pump and signal (probe)
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fields and the carrier density as n, and assuming that |ap|2 � |as|2, which implies that TPA
and any related effect such as FCD are essentially driven by the more intense pump field, such
model reads as [14]

∂ap

∂ t
= i(δp +n)ap −ap −α|ap|2ap − γnap +

√
Pp, (1)

∂as

∂ t
= i(δs +n)as −as −2α|ap|2as − γnas +

√
Ps, (2)

∂n
∂ t

= |ap|4 − n
τ
, (3)

where the time t and characteristic lifetime of generated carriers τ are in units of 1/Γ0 ≡
2Q/ω0 = 2τ0, where Γ0 and τ0 are the field damping coefficient and the cavity lifetime, re-
spectively, ω0 is the cavity resonance and Q is the quality factor. We also recall that |aj|2,Pj,
j = p,s and n are related to the real-world intra-cavity energy |U |2, input power Pin, and
carrier density N, as follows: |a j|2 = |Uj|2

√
σβ , Pj = (

√
σβ/Γ0)(Pin) j, n = σN, where

σ [m3] ≡ e2/(Γ02ε0n2
0ω0m∗) and β [J−2m−3] ≡ c2βTPA/(Γ02�ω0n2

0VTPAVcar), being c the vac-
uum light speed, n0 the refractive index, � the Planck constant, e the electron charge, m∗ the
electron effective mass, βTPA the TPA coefficient, σe and σh the cross sections for free-electron
absorption and free-hole absorption, respectively, VTPA the nonlinear TPA volume, and Vcar the
volume in which the charges spread and recombine [15]. The important parameters are the cav-
ity detunings δp,s = (ω0 −ωp,s)/Γ0 at pump and probe frequencies ωp,s, respectively, whereas
α and γ are the normalized loss coefficients for TPA and free carrier absorption (FCA), whose
explicit expressions are reported in [17].

We point out that Eqs. (1)–(3) can be explicitly derived from the following equations for a
single envelope at the resonant reference frequency ω0 (the model in [17] with zero detuning)

∂a
∂ t

= ina−a−α|a|2a− γna+
√

P;
∂n
∂ t

= |a|4 − n
τ
. (4)

By inserting in Eqs. (4) the two-frequency ansatz a = ap exp(−iδpt) + as exp(−iδst)
and

√
P =

√
Pp exp(−iδpt) +

√
Ps exp(−iδst) and grouping terms with the same fre-

quency, we arrive at Eqs. (1)–(3). We recall that two approximations are essentially in-
volved in this step. The first involves approximating |a|4 � |ap|4 in the rate equation
for the carrier density, which amounts to assume that the carriers are essentially gener-
ated by the pump (|ap|2 � |as|2). The second one involves neglecting the last term in
the following expansion of the nonlinear loss term from the first of Eqs. (4): α|a|2a ≈
α
(|ap|2ap exp(−iδpt)+2|ap|2as exp(−iδst)+a2

pa∗s exp[−i(2δp −δs)t]
)
. The latter term is in-

deed responsible for four-wave mixing, i.e. the generation of a new idler frequency 2δp − δs

which turns out to be the specular image of the probe frequency with respect to the pump.
Such frequency and the consequent modulation impressed on the carriers could be accounted
for [27], though only at the expense of adopting a self-consistent model more complicated than
Eqs. (1)–(3). In the regime considered here, where the probe beam is brought on resonance
by the nonlinear effect, the four-wave mixing frequency turns out to be sufficiently detuned
from the resonance, and hence is expected to be negligible (this is especially true in the optimal
conditions defined in the analysis reported below). In this case, Eqs. (1)–(3), where only the
incoherent nonlinear coupling between the probe and pump beams is retained (as also done
in [14]), constitute a satisfactory approximation which allows us to successfully tackle the op-
timization problem. Note that we retain a factor of two in the cross-TPA nonlinear loss term
in Eq. (2) which ultimately stems from the non-degeneracy of the frequencies involved in the
underlying nonlinear susceptibility term.
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Fig. 1. Typical stationary responses [Eqs. (6)] for pump (Ep vs. Pp, black curve) and probe
(ηs vs. Pp, red curve). We highlight the bistable jumps (arrows) occurring at branch point
energies E±

b , and the critical pump point [Pc
p,E

c
p, Eq. (7)] for highest probe efficiency ηs =

1. Dot-dashed portions stand for unstable branches. Here δp =−3, δs =−4, and τ = 1.

In order to understand the effect of FCD over the pump-probe operation, let us first analyze
the dynamics ruled by Eqs. (1)–(3) in the absence of nonlinear losses and FCA (lossless limit)
[17]. When the loss coefficients α and γ are set to zero, the system reduces to

∂a j

∂ t
= i(δ j +n)a j −a j +

√
Pj, j = p,s;

∂n
∂ t

= |ap|4 − n
τ
. (5)

The corresponding steady-state (d/dt = 0), once expressed in terms of probe efficiency ηs =
Es/Ps, i.e. the cavity energy stored per unit pump power, reads as

Pp = Ep
[
1+(δp + τE2

p)
2] ; ηs =

1
1+(δs + τE2

p)
2 , (6)

where Ep,s ≡ |ap,s|2 are henceforth the intra-cavity energies. Figure 1 shows the pump intra-
cavity energy Ep and the switching efficiency ηs as functions of the input pump power Pp.
Bistability occurs simultaneously for the pump and probe whenever δp < δ c

p ≡−√
5/2, featur-

ing three different levels of energy for the same input power Pp, when the latter is in the range
P−

p ≤ Pp ≤ P+
p . The values P±

p = Pp(E
∓
b ) can be easily calculated through the first of Eqs. (6)

from the branch-point energies

E±
b =

√√√
√−3δp ±

√
4δ 2

p −5

5τ
, (7)

which correspond to the knees (branch points) of the bistable response [see Fig. 1]. Figure
1 clearly shows that the bistability of the pump (black curve) drives the probe response (red
curve), so that stable (lower and upper) branches of the probe efficiency correspond to stable
branches of the pump, whereas the negative-slope (unstable and inaccessible) branch for the
probe (dot-dashed in Fig. 1) arises from the similar branch for the pump.

In our analysis, we focus on the pump-probe switch-on regime. This means that the probe is
initially blue-detuned from the cavity resonance so that the probe is in a low-state corresponding
to Es/Ps|Pp=0 = (1+ δ 2

s )
−1 ≤ 0.5 (less than 50% of the input is stored in the cavity), which

requires to operate with δs < −1. Then, the injection of the pump lowers the refractive index,
shifting the cavity resonance and inducing the probe beam to jump on a high-state. In particular,
our aim is to investigate the conditions to achieve the switching with Maximal Probe Efficiency
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(MPE) ηs = 1. By solving dηs/dEp = 0 from the second of Eqs. (6), we find the following
expressions for the critical pump energy Ec

p and the corresponding input power Pc
p ,

(Ec
p)

2 =−δs

τ
; Pc

p =

√
|δs|
τ

[
1+(δp −δs)

2] . (8)

These critical values identify the point on the pump bistable response such that the injected
probe power Ps is switched into the cavity with MPE (ηs = 1). However since the pump input-
output response is multi-valued, in order to understand where the critical operation point is
located on the bistable curve, it is important to identify the conditions under which the critical
pump energy coincides with the branching points of the response. For a fixed probe detuning
δs, this occurs at the following values of the pump detuning (obtained by imposing Ec

p = E±
b )

δ±
p = 3δs ±

√
4δ 2

s −1. (9)

The two values in Eq. (9) along with the threshold value δ c
p ≡ −√

5/2, define three different
regimes: (i) δ+

p ≤ δp < δ c
p; (ii) δ−

p ≤ δp ≤ δ+
p ; (iii) δp ≤ δ−

p , which correspond to the critical
value in Eq. (8) lying on the upper (UB), negative-slope branch, or lower branch (LB) of the
three-fold pump response, respectively, yet always maintaining the MPE condition ηs = 1. On
the other hand, another important figure of merit of the probe switch-on is the Contrast Ratio
(CR) defined as the ratio between the probe energies stored in the resonator in the presence and
absence of the pump injection, respectively. For a given probe detuning δs, when the condition
of MPE is achieved, the CR is calculated to be 1+δ 2

s ≡ 1/(ηs|Ep=0), as can be easily obtained
from the ratio between the MPE (ηs = 1) and the value of ηs obtained from the second of Eqs.
(6) for Ep = 0. Therefore, optimization of the pump-probe switching requires first to choose
the value of probe detuning δs accordingly with the desired CR, and then to choose the pump
detuning δp that ensures the MPE with lowest possible pump power.

In order to work out the latter criterium we have summarized the results given through Eqs.
(8) and (9) in Fig. 2, which shows a level map of the critical pump power Pc

p in the parameter
plane (δp, δs) with fixed τ , along with samples of pump-probe responses. In Fig. 2(a), the
bistable region lying on the left of the vertical dashed line δp = δ c

p , is divided by the curves
δ−

p (δs) [solid red] and δ+
p (δs) [solid green] into three domains labeled UB, LB, and NSB,

according to the name of the branch of the pump response where the critical condition in Eq.
(8) falls.

To better illustrate how the MPE and the corresponding critical pump value move on the
bistable response, the latter is shown in Figs. 2(b)–2(e) for different (increasing in modulus)
values of δp < δ c

p , and fixed δs = −3. As shown in Fig. 2(b), when δ+
p ≤ δp < δ c

p , the critical
point (8) lies on the UB, and moves together with the MPE condition at lower pump powers for
increasing detuning in modulus. Under this regime, the minimum driving pump power needed
to yield the MPE condition, is clearly obtained when Pp = P+

p (i.e., when the cavity is driven at
the first knee of the response), which is obtained for δp = δ u

p =−2.2, as illustrated in Fig. 2(c).
Keeping on increasing |δp| results in further shifting the critical point on the UB of the

response. However this does not allow to decrease the minimum required pump power, since
these points can be reached only through hysteresis by decreasing Pp after switch-on to the UB,
which still requires to drive the cavity above the knee Pp = P+

p . This situation holds up to the
limit value δp = δ+

p = −3.1 such that the MPE is obtained exactly at the upper knee of the
response as shown in Fig. 2(d).

Further increasing |δp| above the value |δ+
p | [i.e. entering the region labeled NSB in Fig.

2(a)], makes the critical point (8) to move on the negative-slope branch, thus making the MPE
condition unaccessible. This regime holds until |δp| reaches the new limit value |δ−

p |, in corre-
spondence of which the cavity operates on the first knee of the LB [see Fig. 2(e)]. For detunings
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Fig. 2. (a) Level plot of power Pc
p (dB units) from Eq. (8) in the plane of detunings (δp,

δs). In the bistable region (left of the vertical dashed line δp = δ c
p), the curves labelled δ+

p
(green) and δ−

p (red) delimit the domains corresponding to the three branches of the station-
ary response shown in Fig. 1 (LB/UB stand for the lower/upper branch, NSB stands for the
negative-slope branch). The optimum (MPE ηs = 1 with minimal Pp) is achieved for pump
detunings δ u

p (yellow dot-dashed curve). (b)-(e) Corresponding steady-state pump (black)
and probe efficiency (red) responses for fixed probe detuning δs = −3 (CR = 10) and in-
creasing values of |δp|. The dots indicate the optimum operation points (the red and black
dots give MPE ηs = 1 and corresponding critical values Pp = Pc

p,Ep = Ec
p, respectively):

(b) Pump detuning values δp = −1.2,−1.6,−2.1 (Pc = 7.3,5.1,3.1) in the UB region; (c)
Optimum operation at δp = δ u

p =−2.2 (minimal Pc
p = 2.8); (d)-(e) MPE at δ+

p =−3.1 and
δ−

p =−15, respectively. Here τ = 1.

|δp| ≥ |δ−
p |, the MPE condition becomes accessible again since the critical point (8) lies on the

LB, though the required input powers grow so large to become unpractical, as can be clearly
seen in Fig. 2(e).

Therefore we conclude that optimized pump-probe operation which allows to obtain MPE
with minimal pump power requires to operate at the pump detuning δp = δ u

p such that the
critical point coincides with the UB energy level [black dot in Fig. 2(c), not to be confused
with E−

b in Eq. (7)] that corresponds to the knee level of input power Pp = P+
p . This optimum

detuning can be found for any choice of the signal detuning δs by imposing that the largest real
root Ep = Ep(P+

p ) coincides with the critical value Ec
p =

√−δs/τ . The pump detunings δ u
p that

fulfills this constraint (no simple analytical expression can be found since it involves the roots
of a quintic polynomial) for different values of probe detuning δs, leads to the curve of optimal
detunings reported (in dot-dashed yellow line) in the parameter plane in Fig. 2(a). The choice
of δp on this curve guarantees to reach the MPE condition with minimal required pump power.

It is worth noting that the curves delimiting the different regions in Fig. 2(a) remain un-
changed with respect to variations of τ . This means that for fixed δs (fixed CR), by varying τ ,
the pump power level needed to obtain MPE changes, but the required value δu

p is the same in
the same cavity, regardless of the specific carrier lifetime.

#188285 - $15.00 USD Received 3 Apr 2013; revised 5 Jun 2013; accepted 7 Jun 2013; published 25 Jun 2013
(C) 2013 OSA 1 July 2013 | Vol. 21,  No. 13 | DOI:10.1364/OE.21.015859 | OPTICS EXPRESS  15864



Fig. 3. Temporal dynamics of pump (solid black) and probe (solid red) energies for δs =−3
and pump detuning: (a)-(c) δp =−2.2 (peak power Pp = 3); (b)-(d) δp =−3.1 (peak power
Pp = 6). The left column cases (a)-(b) and right column cases (c)-(d) are relative to τ = 1
and τ = 4, respectively. The (blue) dashed line is the driving pump Pp(t) (Ps is a cw signal).

3. Role of self-pulsing

The analysis of the previous section is based on the stationary response. However, as shown
previously in [17], FCD with finite lifetime of the carriers can be responsible for the destabi-
lization of the UB steady-states via a Hopf bifurcation, which causes the onset of spontaneous
oscillations (SP). As long as |ap|2 � |as|2, SP is induced by the pump and its threshold anal-
ysis carried out in [17] remains valid. Here, in order to investigate how SP affects the probe
switching, we have integrated numerically Eqs. (5). We report examples for the case in which
the probe is a cw signal, whereas the control beam is ramped slowly up and down, following a
trapezoidal waveform with given peak value Pp (qualitatively similar results are obtained also
for other waveforms).

In Figs. 3(a)-(b) we compare the pump-probe temporal dynamics corresponding to the
steady-states displayed in Fig. 2(c) for δp = −2.2 and Fig. 2(d) for δp = −3.1 (with fixed
δs = −3, τ = 1). In both cases the up-switching of the pump to the UB, which occurs at peak
value Pp (we use Pp = 3,6 for δp = −2.2,−3.1), always triggers the onset of SP. However, in
the optimal case δp = δ u

p = −2.2, when the pump starts to exhibit SP, the probe has nearly
reached the MPE condition in up-switching and shows only small spurious oscillations driven
by those of the pump beam. Therefore SP does not dramatically deteriorate the probe switch-
ing performances. Conversely, the case δp =−3.1 (non-optimal detuning), besides requiring a
nearly double power Pp, leads to a dynamics where strong oscillations are exhibited by both
beams. In this case SP heavily affects the dynamics of the probe over the whole signal dura-
tion, up to the MPE point ηs ∼ 1, which is reached only in a particular instant when the pump
experiences down-switching [as expected from Fig. 2(d)].

The SP, however, is greatly affected by the carrier lifetime, and can be inhibited by τ large
enough [17]. This is illustrated in Figs. 3(c)-3(d), where we display the dynamics obtained with
τ = 4, while the detunings are the same as in Figs. 3(a)-3(b). In this case no SP occurs and
the pump dynamics shows only strongly damped relaxation oscillations that are characteristic
of any bistable system. With optimal detuning [δp = −2.2, Fig. 3(c)], the MPE is reached in
up-switching and maintained until the pump ramps down, whereas for δp = −3.1 [Fig. 3(d)],
MPE is reached again only in down-switching.

In terms of typical dimensional quantities that correspond to pump-probe experiments per-
formed in III-V photonic crystal cavities [15, 16], operating with τ = τr/τ0 = 1 and τr = 8 ps
amounts to have (at telecom wavelength λ0 = 1.55 μm) Q � 5000. The dynamics in Fig. 3(a)-
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Fig. 4. As in Fig. 3 for δs =−3, δp =−15, and τ = 1, contrasting two dynamical behaviors:
(a) pump self-switching (dark curve) towards a SP state [the inset shows the corresponding
limit cycle in the phase plane Re(ap)− Im(ap)], obtained with maximum driving power
Pp = 250 (slightly larger than knee value P+

p ); (b) stable behavior for Pp = 248.5 (slightly
lower than P+

p ), with MPE reached with pump on the lower branch (note the different
vertical scale in the two plots).

3(b) can be observed by operating with the following dimensional detunings: Δλs =−0.465 nm
(δs =−3), and Δλp =−0.341 nm (δp =−2.2) or Δλp =−0.481 nm (δp =−3.1), respectively.
The injected powers turns out to be Pin = 2 mW and Pin = 4 mW, respectively. With the same
carrier lifetime τr = 8 ps, τ = 4 [Fig. 3(c)-3(d)] can be obtained by lowering the quality factor
to Q = 1200, while the detuning values and powers become in this case: Δλs = −1.937 nm,
Δλp = −1.421 nm and Pin = 17.25 mW (δp = −2.2), or Δλp = −2 nm and Pin = 37.73 mW
(δp =−3.1).

For completeness, we have also investigated the temporal dynamics corresponding to the
case in Fig. 2(e), namely for pump detunings so large (δp = −15) that the MPE is obtained
at a critical energy coincident with the first knee of the response [Ec ≡ E−

b ]. For such large
values of |δp|, when the driving power is slightly higher than the value P+

p of the knee, the
cavity dynamics is ruled by the up-switching of the pump to the upper branch, which then
undergoes SP. This is illustrated in Fig. 4(a) for δp = −15 and Pp = 250 (corresponding in
real-world units to Δλp =−2.31 nm and pump power Pin = 168.4 mW), and τ = 1. As shown,
the pump undergoes SP, and its evolution is attracted in phase space towards a stable limit
cycle (supercritical Hopf bifurcation). In this case, the onset of SP deteriorates the pump-probe
operations by inducing an abrupt switch-off of the probe, which remains in a low state (very
far from MPE). Conversely, even a slight decrease of pump power, as shown in Fig. 4(b) for a
driving level Pp = 248.5 (Pin = 167.4 mW) leaves the intra-cavity pump on the lower branch,
thus allowing for the probe to switch-on and achieve dynamically MPE when the pump reaches
its maximum level of intra-cavity energy (yet on the lower branch). This regime, however, is
not advantageous due to the large driving power Pp required to reach the MPE.

4. Effect of Losses

In this section we extend the previous analysis to include the effect of losses. Specifically we
investigate the effect of TPA losses assuming for simplicity negligible FCA (γ = 0, though
similar qualitative conclusions can be applied to the effect of FCA when is not negligible).
While TPA is unavoidable being at the origin of FCD, a proper engineering of the cavity allows
for working with relatively low normalized coefficients in the range α = 0.1−0.2 (see [17] for
a discussion). In this case, the steady-state solutions read as (ηs = Es/Ps is the probe switching
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Fig. 5. Effect of TPA: level plots of (a) MPE; (b) CR, in the plane (α ,δs) for fixed optimum
value of pump detuning (δ u

p = −2.2) and τ = 1 (labels UB and NSB stand for uppe and
negative slope branch, respectively). (c)-(d) Temporal pump-probe dynamics for α = 0.1
and τ = 1, contrasting: (c) stable probe switching for δp = −2.2 (MPE of 0.55 and a CR
of 5.5) and (d) SP-dominated dynamics for δp =−3.1.

efficiency defined previously)

Pp = Ep
[
(1+αEp)

2 +(δp + τE2
p)

2] , ηs =
1

(1+2αEp)2 +(δs + τE2
p)

2 . (10)

Following the approach used for the lossless regime, we first seek for the critical pump energy
Ec

p and pump power Pc
p that gives the MPE condition by solving the equation dηs/dEp = 0. In

this case, the solution of such equation, as well as the branch-point (knee) energies E±
b can be

obtained only numerically. The constraint Ec
p = E±

b allows us to implicitly draw the threshold
curves δ±

p which defines the three regions where MPE occurs on the upper, lower, or negative-
slope branch of the bistable response, respectively. Since TPA losses do not significantly affect
the branch-point energies, the map of Fig. 2(a) remains practically unchanged (we do not report
such map for the lossy case because differences are barely noticeable). Conversely, the losses
may significantly affect both the MPE [max(ηs)] and the contrast ratio CR, which are mapped
in Figs. 5(a)-5(b) in the plane (α,δs) for fixed δp =−2.2 and τ = 1. As shown, both the MPE
and CR decreases, as expected, for larger losses, while they slightly depend on δs.

Based on such maps one can still optimize the pump-probe switching. For instance, with
τ = 1 and α = 0.1, the choice of probe detuning, for instance δs =−3, fixes the contrast ratio
to CR= 5.5 from Fig. 5(b). Then the optimum pump detuning remains, with good approxima-
tion, unchanged with respect to the lossless case (δp =−2.2), whereas the MPE obtained with
such detuning, decreases to ∼ 0.55 as inferred from Fig. 5(a). The outcome of the numerical in-
tegration of Eqs. (1)-(3) reported in Fig. 5(c) confirms such values of MPE and CR. Moreover,
comparing with the lossless case in Fig. 3(a), we notice that SP is suppressed. Indeed the TPA
losses moves the SP pump energy threshold at a value (EH = 1.9, from the linearized analysis
in [17]) larger than the value of the jump on the UB (E = 1.65). Therefore we can summarize by
saying that the losses on one hand decrease the achievable MPE, and on the other hand stabilize
the dynamics against SP even for low values of τ . However the latter statement is true only for
the optimum detuning. Non-optimal values of detunings, as shown for instance in Fig. 5(d) for
δp =−3.1 [comparable with the lossless case in Fig. 3(b)], still leads to SP, besides reaching a
reduced MPE in down-switching.

It is important to make two final considerations on the additional losses that can ultimately
deteriorate pump-probe switching operations. First, losses due to free-carrier absorption are
expected to further reduce the switching performances. For instance, by setting γ = 0.1 [17],
we find that the MPE and the CR are degraded to the values 0.37 and 3.7, respectively. We
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point out, however, that, though TPA and FCA losses cannot be completely ignored, they can
be significantly reduced by suitable engineering of the material and cavity design. A second
issue is related to the regime of operation that involves high repetition rates, which may result
in additional losses due to a steady-state component of the carriers. In order to address this issue
we carried out simulations for δp = −2.2, δs = −3, and τ = 1, with τr = 8 ps, by considering
a RZ train of super-Gaussian pulses, at 2 GHz and then at 12.5 GHz. While at 2 GHz we
observe only a slight reduction (∼ 10%) in the MPE and CR (both in the lossless-limit case
or accounting for losses), at the higher repetition rate of 12.5 GHz, we find a strong reduction
(∼ 45%) in the MPE and CR. Therefore we conclude that, as expected, high repetition rates
result in the deterioration of the switching performances.

5. Conclusions

In summary, the analysis of CME for pump-probe operation in a semiconductor nanocavity
allows us to assess the optimized conditions for pump-induced switching of the probe beam.
For a given desired contrast ratio, the optimization in terms of reaching the best probe efficiency
with minimum driving pump power requires the proper choice of the pump detuning, while a
constraint on the characteristic lifetime of the carriers is necessary to avoid self-pulsing.
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